Помощь в учёбе, очень быстро...
Работаем вместе до победы

Исследование структурно-функциональных свойств люменальных белков PSBO и САН3 фотосистемы 2 растений

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Отличительной чертой белков PsbO и СаЬЗ является наличие дисульфидной связи. Исходя из современных знаний о структуре ФС 2, это единственные белки этого комплекса, имеющие дисульфиды. В данной работе показано, что дисульфидная связь СаЬЗ абсолютно необходима для активности фермента. Инактивация фермента в результате восстановления этой связи полностью обратима. Вопрос о необходимости дисульфидной… Читать ещё >

Содержание

  • ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Структурно-функциональная организация фотосистемы
    • 1. 2. Белки водоокисляющего комплекса фотосистемы
      • 1. 2. 1. Белки PsbP и PsbQ высших растений и зеленых водорослей
  • Структура и взаимодействие с фотосинтетической мембраной
  • Функция
    • 1. 2. 2. Белки PsbU и PsbV красных водорослей, цианобактерий и зеленых оксифотобактерий
  • Структура и взаимодействие с фотосинтетической мембраной
  • Функция
    • 1. 2. 3. Белки цианобактерий, гомологичные PsbP и PsbQ эукариот
    • 1. 2. 4. Белок красных водорослей, гомологичный PsbP эукариот
    • 1. 3. Белок PsbO
    • 1. 3. 1. Структура PsbO
  • Первичная структура белка
  • Структура PsbO, связанного с фотосистемой
  • Структура PsbO в растворе
  • Дисульфидиая связь
  • Кислотно-щелочной гистерезис буферных свойств белка
    • 1. 3. 2. Взаимодействие PsbO с фотосинтетической мембраной
    • 1. 3. 3. Фуикция PsbO
  • Эффекты, возникающие в отсутствие PsbO
  • Гипотезы о функциональном значении PsbO
    • 1. 4. Карбоангидразная активность, ассоциированная с фотосистемой
    • 1. 5. Карбоангидраза Cah3 одноклеточной зеленой водоросли
  • Chlamydomonas reinhardti
    • 1. 5. 1. Внутриклеточная локализация
    • 1. 5. 2. Функциональное значение.'
    • 1. 6. Редокс-регуляция фото синтетических процессов
  • ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
    • ГЛАВА 2. ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЙ
    • 2. 1. Экспрессия PsbO в Escherichia coli, выделение и очистка рекомбинантного белка
    • 2. 1. 1. Конструирование плазмид для экспрессии PsbO
    • 2. 1. 2. Экспрессия рекомбинантных белков
    • 2. 1. 3. Выделение и очистка слитных белков trx-Hise-PsbO и trx-Hise-Xa-PsbO
    • 2. 1. 4. Разделение слитного белка trx-His6-PsbO
    • 2. 1. 5. Разделение слитного белка trx-His6-Xa-PsbO
    • 2. 2. Сайт-направленный мутагенез PsbO
    • 2. 3. Экспрессия СаЬЗ в Escherichia coli, выделение и очистка рекомбинантного белка
    • 2. 3. 1. Конструирование экспрессионного вектора
    • 2. 3. 2. Экспрессия и очистка СаЬЗ
    • 2. 4. Получение препаратов ФС 2 из листьев шпината, выделение и очистка PsbO шпината
    • 2. 5. Реконструкция usw-ФС 2 с помощью рекомбинантного PsbO
    • 2. 6. Получение препаратов ФС 2 из клеток С. reinhardti
    • 2. 7. Реконструкция препаратов ФС 2 из мутанта С. reinhardtii cia с рекомбинантной карбоангидразой саЬЗ
    • 2. 8. Исследование взаимодействия ионов Са2+ и Мп2+ с PsbO методом температурной зависимости собственной флуоресценции белка
    • 2. 9. Исследование взаимодействия ионов Са и
  • Мп с PsbO и рН-индуцируемых конформационных переходов PsbO методом флуоресценции гидрофобного зонда АНС
    • 2. 10. Температурная и солевая обработка з?-ФС2 препаратов на свету и в темноте
    • 2. 11. Электрофорез в градиенте мочевины
    • 2. 12. Расчет плотности межмолекулярных контактов в молекуле PsbO
    • 2. 13. Электрофорез и иммуноблоттинг
    • 2. 14. Определение концентрации белка
    • 2. 15. Определение концентрации хлорофилла
    • 2. 16. Определение карбоангидразной активности
    • 2. 17. N-концевое секвенирование и масс-спектрометрия
  • ГЛАВА 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
    • 3. 1. Экспрессия шпинатного PsbO в Escherichia coli, разработка методики выделения и очистки рекомбинантного белка
      • 3. 1. 1. Экспрессия PsbO в векторных плазмидах рЕТ28 и рЕТ
      • 3. 1. 2. Выделение и очистка рекомбинантного PsbO, экспрессированного в векторной системе рЕТ
      • 3. 1. 3. Замена последовательности сайта узнавания энтерокиназы в экспрессионном векторе pET32-PsbO на последовательность сайта узнавания фактора Ха
      • 3. 1. 4. Экспрессия PsbO в векторной плазмиде pET32-Xa-PsbO, выделение и очистка рекомбинантного белка
      • 3. 1. 5. Исследование структурно-функциональных свойств рекомбинантного PsbO
    • 3. 2. Экспрессия карбоангидразы СаЬЗ в Escherichia coli, разработка методики выделения и очистки рекомбинантного белка
    • 3. 3. Изучение влияния рН на конформацию PsbO in vitro и на способность белка взаимодействовать с ионами кальция и марганца
      • 3. 3. 1. Исследование взаимодействия ионов кальция и марганца с PsbO методом температурной зависимости собственной флуоресценции белка
      • 3. 3. 2. Исследование взаимодействия ионов кальция и марганца с PsbO и рН-ипдуцируемых конформационных переходов
  • PsbO с использованием гидрофобного красителя АНС
    • 3. 4. Влияние освещения на экстракцию PsbO и ионов марганца из препаратов ФС
    • 3. 5. Сайт-направленный мутагенез аминокислотных остатков PsbO, предположительно ответственных за рН-индуцируемые конформациопные изменения белка
    • 3. 6. Реконструкция препаратов ФС 2 из мутанта С. reinhardtii cia с рекомбинантной карбоангидразой СаЬЗ
      • 3. 6. 1. Влияние рекомбинантной карбоангидразы СаЬЗ на скорость выделения кислорода у препаратов ФС 2 из мутанта cia
      • 3. 6. 2. Влияние рекомбинантной карбоангидразы СаЬЗ на фотоиндуцируемые изменения выхода флуоресценции хлорофилла ФС 2 мутанта cia
      • 3. 6. 3. Связывание СаЬЗ с комплексами ФС 2 из мутанта
    • 3. 7. Исследование влияния окислителей и восстановителей сульфгидрильных групп на структуру и функцию белков СаЬЗ и PsbO
      • 3. 7. 1. Влияние окислителей и восстановителей сульфгидрильных групп на активность СаЬЗ
      • 3. 7. 2. Влияние дисульфидной связи на стабильность структуры PsbO

Исследование структурно-функциональных свойств люменальных белков PSBO и САН3 фотосистемы 2 растений (реферат, курсовая, диплом, контрольная)

Важнейший для энергетики биосферы процесс фотосинтетического окисления воды осуществляется во встроенном в мембрану тилакоидов пигмент-белковом комплексе, называемом фотосистемой 2 (ФС 2). Собственно реакция окисления воды происходит в энзиматическом центре, расположенном на люменальной стороне ФС 2 и состоящем из четырех атомов марганца и атома кальция. Лигандами для атомов марганца и кальция активного центра являются аминокислотные остатки интегральных белков Д1 и СР43 [Ferreira el al., 2004]. Однако для стабильности и оптимальной работы каталитического центра, осуществляющего окисление воды, необходимо присутствие ряда периферических белков, ассоциированных с ФС 2 на донорной стороне. Эти белки называют также внешними белками водоокисляющего комплекса (ВОК). У высших растений и зеленых водорослей это белки PsbO, PsbP, PsbQ, а у красных водорослей, цианобактерий и зеленых фотобактерий PsbO, PsbU, PsbV. Однако исследования последних лет показывают, что белковый состав ВОК вероятно более разнообразен. Недавно в составе высокоочищенных комплексов ФС 2 Synechocystis 6803 были обнаружены белки, гомологичные PsbP и PsbQ эукариот [Thornton et al., 2004]. У красной водоросли Cyanidium caldarium в составе ВОК обнаружен белок, гомологичный PsbQ зеленых растений [Enami et al., 1998]. Кроме того, показано, что с донорной стороной ФС 2 одноклеточной зеленой водоросли Chlamydomonas reinhardtii ассоциирована карбоангидраза Cah3 [Karlsson et al., 1995; Park et al., 1999; Villarejo et al., 2001]. Полученные данные позволяют расширить традиционные представления о белковом составе водоокисляющего комплекса.

PsbO — единственный белок ВОК, который встречается у всех оксигенных организмов, он, по-видимому, появился одновременно с возникновением способности окислять воду [De Las Rivas et al., 2004]. Этот белок не принимает непосредственного участия в реакции окисления воды, однако он является минимальным внешним компонентом ВОК необходимым для оптимального осуществления этой реакции. Другие люменальные белки ФС 2 — PsbU, PsbV, PsbP и PsbQ эволюционно возникли позднее и служат для оптимизации работы ВОК в разных экологических условиях [De Las Rivas et al., 2004]. Несмотря на интенсивные исследования структуры и функции PsbO на протяжении вот уже тридцати лет, молекулярный механизм участия этого уникального белка в оптимизации функции окисления воды до сих пор не выяснен. Наиболее распространена гипотеза об участии PsbO в связывании ионов кальция, являющегося ключевым кофактором фотосинтетического окисления воды [Zhang et al., 1996; Heredia and De Las Rivas, 2003; Kruk et al., 2003; Murray and Barber, 2006]. Кроме того, существует предположение о том, что PsbO принимает участие в отводе протонов от каталитического центра и/или в транспорте к нему молекул воды [Shutova et al., 1997; Rutherford and Faller,.

2001; De Las Rivas and Barber, 2004]. Уникальным свойством PsbO является кислотно-щелочной гистерезис буферных свойств, предположительно связанный с существованием двух устойчивых протон-зависимых конформаций белка [Шутова с соавт., 1992; Shutova et al., 1997]. In vivo функционирование PsbO осуществляется в условиях изменяющегося рН: при освещении происходит подкисление люмена в результате выделения протонов при окисления воды, в темноте рН люмена близок к нейтральному [Siggel, 1975; Kramer et al., 1999]. В связи с этим можно предположить, что обнаруженные протон-зависимые конформационные состояния PsbO могут иметь место in vivo и играть функциональную роль. Целью данной работы было изучение влияния рН на конформацию PsbO in vitro и in vivo, а также на его способность связывать ионы кальция и марганца.

Первоначально предполагалось, что роль карбоангидразы Cah3, обнаруженной на люменальной стороне ФС 2 С. reinhardtii, не связана с функцией окисления воды, а заключается в поставке субстрата (СО2) для стромального фермента рибулозобифосфаткарбоксилазы [Karlsson et al., 1995; Karlsson et al., 1998; Park et al., 1999]. Впоследствии в работе Вилларехо с соавт. было проведено сравнение функциональных свойств ФС 2 у мутанта cia3, лишенного СаЬЗ, и дикого типа С. reinhardtiiи были получены данные, свидетельствующие о непосредственном участии карбоангидразы СаЬЗ в работе ВОК [Villarejo et al., 2002]. Однако для более прямого доказательства необходимости СаЬЗ для функционирования ВОК, а также для выяснения механизма участия этого белка в оптимизации функции окисления воды, необходимы эксперименты по реконструкции препаратов ФС 2 из мутанта cia3 изолированной карбоангидразой СаЬЗ, что и является целью данной работы.

За исключением одного из белков свето-собирающего комплекса, LHCbll [Balmer et al., 2006], белки PsbO и СаЬЗ являются единственными белками ФС 2, имеющими парные остатки цистеина. Известно, что два цистеина в молекуле PsbO образуют дисульфидную связь [Tanaka and Wada, 1988]. Однако в вопросе о влиянии дисульфидной связи на структуру и функцию белка до сих пор существует противоречие [Tanaka and Wada, 1988; Irrgang et al., 1992; Burnap et al., 1994; Betts et al., 1996; Wyman and Yocum, 2005]. Обнаружение у люменального белка иммунофилина FKBP13 дисульфидной связи, необходимой для активности [Gopalan et al., 2004], дало начало новому направлению в изучении фотосинтеза — редокс-регуляции в люмене [Buchanan and Luan, 2005] и привело к активному поиску других белков люмена, которые могут регулироваться за счет окислительно-восстановительных превращений. Наличие у белков СаЬЗ и PsbO парных остатков цистеина дает возможность рассматривать их как потенциальные мишени для редокс-регуляции в люмене. В связи с этим целью данной работы было исследование влияния окисления и восстановления сульфгидрильных групп на структуру и функцию белков СаЬЗ и PsbO, в свете возможной редокс-регуляции их активности.

выводы.

1. Подобрана система экспрессии в Е. coli люменальных белков ФС 2, PsbO и СаЬЗ, позволяющая экспрессировать целевые белки в слиянии с тиоредоксином, Hise и сайтом разрезания протеазой фактором Ха. Разработана методика выделения и очистки рекомбинантных белков. Предложенная система экспрессии в отличие от ранее использованной позволяет получать PsbO в растворимой форме, избегая длительной процедуры рефолдинга. Кроме того, с помощью данной экспрессионной системы впервые удалось получить гомогенный препарат СаЬЗ.

2. Рекомбинантный PsbO способен реактивировать функцию выделения кислорода у препаратов ФС 2, лишенных PsbO, и обладает физико-химическими свойствами, характерными для белка, выделенного из растений. Карбоангидраза СаЬЗ экспрессирована в активной форме, ее СОг-гидратазная активность составляет 14 001 600 единиц Вильбура-Андерсона на 1 мг белка.

3. Методами собственной флуоресценции белка и флуоресценции гидрофобной метки АНС показано, что изолированный PsbO претерпевает рН-зависимые конформационные изменения в диапазоне рН 5,7 — 7,2, сопровождающиеся относительным открытием гидрофобного ядра белковой глобулы, а также увеличением способности связывать ионы Са и Мп при рН 5,7, и напротив закрытием гидрофобного ядра и потерей способности связывать ионы металлов при рН 7,2. Предполагается, что конформация изолированного белка при рН 7,2 аналогична таковой у PsbO in vivo в темноте (когда рН люмена близок к нейтральному), тогда как при освещении реализуется конформация, характерная для рН 5,7, вследствие фотоиндуцируемого подкисления люмена.

4. Показано, что ионы Мп и Са оказывают разное влияние на копформацию изолированного PsbO, что свидетельствует о том, что эти металлы имеют независимые.

24″ места связывания на белке. Определена константа связывания ионов.

Мп с PsbO при рН 5,7, равная 1,2×104 М" 1, и ионов Са2±2,1хЮб М" 1.

5. Впервые показано, что связывание СаЬЗ с препаратами ФС 2 мутанта С. reinhardtii cia3, не содержащего СаЬЗ, приводит к стимуляции кислородвыделяющей активности на 85% и увеличению выхода переменной флуоресценции хлорофилла ФС 2. Показано, что бычья карбоангидраза II, относящаяся к тому же классу карбоангидраз, что и СаЬЗ, не приводит к стимуляции кислородвыделяющей активности ФС 2 из мутанта cia3, из чего следует, что СаЬЗ является специфичной для ФС 2 С. reinhardtii карбоангидразой. Полученные данные подтверждают то, что СаЬЗ является необходимым компонентом.

ВОК ФС 2 С. reinhardtii, обеспечивающим оптимальное осуществление функции окисления воды.

6. Показано, что Cah3 имеет дисульфидную связь, которая абсолютно необходима для активности фермента. Инактивация Cah3 в результате восстановления дисульфидной связи полностью обратима. Показано, что восстановление дисульфидной связи PsbO приводит к изменению свободной энергии белка на 9 кДж/моль. Обнаружено, что Cys51, участвующий в образовании дисульфидной связи PsbO, находится в кластере с высокой плотностью межмолекулярных контактов, что, вероятно, является причиной дестабилизации белка в результате разрыва дисульфидной связи. Показано, что формирование дисульфидной связи необходимо, для правильного сворачивания PsbO при экспрессии в Е. coli. Полученные данные свидетельствуют о необходимости дисульфидной связи для структуры PsbO. Выдвинуто предположение о роли редокс-регуляции в функционировании люменальных белков ФС 2, СаЬЗ и PsbO.

3.8.

ЗАКЛЮЧЕНИЕ

: БЕЛКИ PSBO И САНЗ КАК НЕОБХОДИМЫЕ КОМПОНЕНТЫ ВОДООКИСЛЯЮЩЕГО КОМПЛЕКСА ФС 2.

Водоокисляющий комплекс, а именно его белковая часть, это наиболее эволюционно вариабельный компонент ФС 2. ВОК высших растений и зеленых водорослей представлен белками PsbO, PsbP, PsbQ и отличается от ВОК цианобактерий, зеленых оксифотобактерий и красных водорослей, для которого характерно наличие белков PsbO, PsbU, PsbV. Кроме того, открытия последних лет приводят к необходимости расширения традиционных представлений о белковом составе ВОК. В составе высокоочищенных комплексов ФС 2 Synechocystis 6803 обнаружены белки, гомологичные PsbP и PsbQ эукариот [Thornton et al., 2004]. У красной водоросли Cyanidium caldarium в составе ВОК обнаружен белок, гомологичный PsbQ [Enami et al., 1998]. Также показано, что на люменальной стороне ФС 2 одноклеточной зеленой водоросли С. reinhardtii ассоциирована карбоангидраза Cah3 [Karlsson et al., 1995; Karlsson et al., 1998; Park et al., 1999; Villarejo et al., 2002]. PsbO — это единственный белок ВОК, который присутствует у всех оксигенных фотосинтезирующих организмов, его появление связывают с возникновением способности к фотосинтетическому окислению воды. Функциональная роль белков водоокисляющего комплекса заключается в оптимизации и стабилизации работы каталитического центра, осуществляющего окисление воды, однако специфическая роль каждого из белков в этом процессе до сих пор не установлена.

В данной работе было проведено исследование структурно-функциональных свойств люменальных белков ФС 2, PsbO и СаЬЗ, и предложена гипотеза о специфической роли этих белков в функционировании ВОК.

Для получения больших количеств белков, необходимых для проведения структурно-функциональных исследований, в том числе с применением сайт-направленного мутагенеза, целевые белки были экспрессированы в Е. coli. Разработанные системы экспрессии, выделения и очистки позволили получить достаточные количества белков PsbO и СаЬЗ, причем оба рекомбинантных белка были экспрессированы в функционально активной форме.

С использованием рекомбинантной карбоангидразы СаЬЗ впервые проведены эксперименты по реконструкции препаратов ФС 2 из мутанта С. reinhardtii cia3, лишенного СаЬЗ. Получены данные, свидетельствующие о том, что Cah3 является специфичной для ФС 2 С. reinhardtii карбоангидразой. Связывание СаЬЗ с препаратами ФС 2 из мутанта cia3, лишенного этого белка, стимулирует транспорт электронов на донорной стороне и приводит к полной реактивации кислородвыделяющей функции ФС 2. На основании данных, полученных в нашей работе, а также результатов, полученных ранее [Villarejo et al., 2002], можно сделать заключение, что СаЬЗ является одним из ключевых компонентов ВОК С. reinhardtii, необходимым для его оптимальной активности. Предполагаемый механизм участия СаЬЗ в функционировании ВОК заключается в ускорении отвода протонов, выделяющихся в результате реакции окисления воды, за счет катализируемой этим ферментом реакции дегидратации бикарбоната Н+ + НС03″ Н20 + С02.

Хотя наличие СаЬЗ в составе ВОК показано только для одного организма (С. reinhardtii) многочисленные данные свидетельствуют о наличии карбоангидразной активности, ассоциированной с ФС 2 у высших растений [Stemler, 1986; Moskvin et al., 2004; Игнатова и др., 2006; Hillier et al., 2006J. Это дает возможность предполагать, что карбоангидраза может быть ключевым компонентом ВОК всех эукариотических фотосинтезирующих организмов.

В данной работе было показано, что в физиологическом диапазоне рН (5,7 — 7,2) изолированный PsbO претерпевает протон-зависимые конформационные изменения, сопровождающиеся изменением степени доступности гидрофобного ядра белковой глобулы и способности связывать ионы Са2+ и Мп2+. Предполагается, что аналогичные конформационные изменение могут иметь место in vivo и играть функциональную роль. Предложена гипотеза, согласно которой конформация PsbO, связанного с фотосинтетической мембраной, изменяется при освещении вследствие протопирования определенных аминокислотных остатков белка ионами Н+, выделяющимися в результате фотоокисления воды. PsbO в «световой» конформации обладает повышенным сродством к ионам Мп2″ 1 и Са2+. Предполагается, что эта конформация белка может принимать участие в связывании и «хранении» ионов марганца и кальция, высвобождающихся из каталитического центра при фотоингибировании, эти ионы впоследствии могут быть использованы для восстановления ВОК. Функциональное значение рН (свето)-индуцируемых конформационных переходов PsbO может также заключаться в регуляции высвобождения продукта (протонов) и доставки субстрата (воды) к водоокисляющему комплексу.

Отличительной чертой белков PsbO и СаЬЗ является наличие дисульфидной связи. Исходя из современных знаний о структуре ФС 2, это единственные белки этого комплекса, имеющие дисульфиды. В данной работе показано, что дисульфидная связь СаЬЗ абсолютно необходима для активности фермента. Инактивация фермента в результате восстановления этой связи полностью обратима. Вопрос о необходимости дисульфидной связи для структуры и функции PsbO остается дискуссионным. Данные Танаки и соавт. [Tanaka and Wada, 1988; Tanaka et al., 1989], Иррганга и соавт. [Irrgang et al., 1992], Бурнапа и соавт. [Burnap et al., 1994], а также результаты, полученные в данной работе, свидетельствуют о том, что дисульфидная связь необходима для структуры и функции PsbO. Беттс с соавт. [Betts et al., 1996] и Виман [Wyman and Yocum, 2005] напротив показывают, что восстановление дисульфидной связи не влияет на функцию белка. Такое противоречие может быть объяснено, если предположить что дисульфидная связь PsbO не существует на протяжении всего цикла функционирования белка, а может разрушаться и формироваться заново, как способ модуляции функции белка. На сегодняшний день известен только один люменальный белок, который предположительно является редокс-регулируемым — это иммунофилин FKBP13 [Gopalan et al., 2004]. Предполагается, что редокс-регуляция в люмене заключается в активации белков-мишеней на свету за счет окисления цистеинов, и в этом состоит принципиальное отличие от редокс-регуляции стромальных ферментов [Buchanan and Luan, 2005]. Белки PsbO и Cah3, имеющие дисульфидные связи, влияющие на активность, также могут считаться потенциальными мишенями для редокс-регуляции. Активация этих белков в результате окисления цистеинов хорошо согласуется с предложенной концепцией о редокс-регуляции в люмене. Необходимо отметить, что за исключением LHCbll (который имеет парные остатки цистеина [Balmer et al., 2006]) PsbO и Cah3 — это единственные белки ФС 2, которые могут быть редокс-регулируемым.

Ill.

Показать весь текст

Список литературы

  1. Л.К., Руденко Н. Н., Христин М. С., Иванов Б. Н. (2006) Гетерогенная природа карбоангидразной активности тилакоидных мембран. Биохимия, 71, 651−659.
  2. Е.А. (2003) Температурные зависимости параметров белковой флуоресценции. В кн.: Метод собственной люминесценции белка. М.: Наука, с. 107−113.
  3. Н.А., Клячко-Гурвич Г.Л., Ладыгин В. Г., Семененко В. Е. (1990) Активность карбоангидразы у мутантов Chlamydomonas reinhardtii с различной организацией фотохимических систем хлоропластов. Физиология растений, 37, 899−906.
  4. Н.А., Семененко В. Е. (1984) Локализация мембраносвязанной и растворимой форм карбоангидразы в клетках хлореллы. Физиол. Раст., 31, 241−251.
  5. Ю.М., Доман Н. Г., Шапошников ГЛ. (1982) Две формы карбонагидрзы из хлоропластов бобов. Биохимия, 47, 1027−1034.
  6. Т.В., Христин М. С., Опанасенко В. К., Ананьев Г. М., Климов В. В. (1992) Протон-акцепторные свойства водорастворимого белка 33 кДа фотосистемы 2 шпината. Биол. Мембр., 9, 836−842.
  7. Akerlund H.-E., Jansson C., Andersson B. (1982) Reconstitution of photosynthetic water splitting in inside-out thylakoid vesicles and identification of a participating polypeptide. Biochim. Biophys. Acta, 681, 1−10.
  8. R., Adir N. (2000) Crystallization of dimers of the manganese-stabilizing protein of Photosystem II. Photosynth. Res., 64, 167−177.
  9. Andersson В., Larsson С., Jansson С., Ljungberg U., Akerlund H.-E. (1984) Immunological studies on the organization of proteins in photosynthetic oxygen evolution. Biochim. Biophys. Acta, 766, 21−26.
  10. D.I. (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris.1. Plant Physiol., 24, 1−24.
  11. Y., Vensel W.H., Hurkman W.J., Buchanan B.B. (2006) Thioredoxin target proteins in chloroplast thylakoid membrane. Antioxid. Redox. Sign., 8, 1829−1832.
  12. M., Carpentier R. (1995) The action of mercury on the binding of the extrinsic proteins associated with the water oxidizing complex of Photosystem II. FEBS Lett., 360, 251−254.
  13. Т., Silow M., Thulin E., Linse S. (2000) Ca2+ and H+ dependent conformational changes of calbindin D28k. Biochemistry, 39, 6864−6873.
  14. , S.D., Huchigan T.M., Pichersky E., Yocum C.F. (1994) Reconstitution of the spinach oxygen-evolving complex with recombinant Arabidopsis manganese-stabilizing protein. Plant Mol. Biol., 26, 117−130.
  15. S.D., Ross J.R., Hall K.U., Pichersky E., Yocum C.F. (1996) Functional reconstitution of photosystem II with recombinant manganese-stabilizing proteins containing mutations that remove the disulfide bridge, Biochim. Biophys. Acta, 1274, 135−142.
  16. E.J., Hankamer В., Bald D., Kruip J., Nield J., Boonstra A.F., Barber J., Roegner M. (1995) Supramolecular structure of the Photosystem II complex from green plants and cyanobacteria. Proc. Natl. Acad. Sci. USA, 92, 175−179.
  17. Bondareva N., Beyer P., Krieger-Liszkay A. (2005) Function of the 23 kDa extrinsic protein of photosystem II as a manganese-binding protein and its role in photoactivation. Biochim. Biophys. Acta, 1708, 63−70.
  18. B.B. (1980) Role of light in the regulation of chloroplast enzymes. Annu. Rev. Plant Physiol., 31,341−374.
  19. B.B., Luan S. (2005) Redox regulation in the chloroplast thylakoid lumen: a new frontier in photosynthesis research. J. Exp. Bot., 56, 1439−1447.
  20. Buchanan B.B., Schurmann P., Wolosiuk R.A., Jasquot J.-P. (2002) The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynth. Res., 73, 215−222.
  21. Burnap R.L., Shen J.-R., Jursinic P.A., Inoue Y., Sherman L.A. (1992) Oxygen yield and thermoluminescence characteristics of a cyanobacterium lacking the manganese-stabilizing protein of photosystem II. Biochemistry, 31, 7404−7410.
  22. R.L., Sherman L.A. (1991) Deletion mutagenesis in Synechocystis sp. PCC 6803 indicates that the Mn-stabilizing protein of Photosystem II is not essential for oxygen evolution. Biochemistry, 30, 440−446.
  23. Burstein E.A., VedenkinaN.S., Ivkova M.N. (1973) Fluorescence and the location of tryptophan residues in protein molecules. Photochem. Photobiol., 18, 263−279.
  24. V., Trabucco M., Vujicic A., Battistutta R., Giacometti G.M., Anreucci F., Barbato R., Zanotti G. (2003) Crystal structure of the PsbQ protein of photosystem II from higher plants. EMBO reports, 4, 900−905.
  25. C.J., Thornburg R.W. (2004) Tobacco Nectarin III is a bifunctional enzyme with monodehydroascorbate reductase and carbonic anhydrase activities. Plant Mol. Biol., 54, 415−425.
  26. De Paula J.C., Li P.M., Miller A.F., Wu B.W., Brudvig G.W. (1986) Effect of the 17- and 23-kilodalton polypeptides, calcium, and chloride on electron transfer in Photosystem II. Biochemistry, 25, 6487−6494
  27. De Las Rivas J., Heredia P. (1999) Structural predictions on the 33 kDa protein associated to the oxygen evolving complex of photosynthetic organisms. Photosynth. Res., 61, 11−21.
  28. De Las Rivas J., Barber J. (2004) Analysis of the structure of the psbO protein and its implications. Photosynth. Res., 81, 329−343.
  29. J.P., Boekema E.J. (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta, 1706, 12−39.
  30. Eaton-Rye, J.J., Murata, N. (1989) Evidence that the amino-terminus of the 33 kDa extrinsic protein is required for binding to the Photosystem II complex. Biochim. Biophys. Acta, 977,219−226.
  31. I., Yoshihara S., Tohri A., Okumura A., Ohta H., Shen J.R. (2000) Cross-reconstitution of various extrinsic proteins and Photosystem II complexes from cyanobacteria, red algae and higher plants. Plant Cell Physiol., 41, 1354−1364.
  32. R.T., Wright R.D., Coghlan J.P. (1987) Complete amino acid sequence of ovine salivary carbonic anhydrase. Biochemistry, 27, 2815−2820.
  33. K.N., Iverson T.M., Maghlaoui K., Barber J., Iwata S. (2004) Architecture of the photosynthetic oxygen-evolving center, Science, 303, 1831−1838.
  34. Fox J. D, Waugh D.S. (2003) Maltose-binding protein as a solubility enhancer. Methods Mol. Biol., 205, 99−117.
  35. Fujikawa-Adachi K., Nishimori I., Taguchi Т., Onishi S. (1999) Human carbonic anhydrase XIV (CA14): cDNA cloning, mRNA expression, and mapping to chromosome 1. Genomics, 61, 74−81.
  36. M., Ohizumi Y., Iijima S., Takayama Т., Ogawa Т., Muramoto K. (2004) Characterization of the yam tuber storage proteins from Dioscorea batatas exhibiting unique lectin activities. J. Biol. Chem., 279, 26 028−26 035.
  37. D.F., Babcock G.T., Yocum C.F. (1984a) Calcium reconstitutes high rates of oxygen evolution in polypeptide depleted Photosystem II preparations. FEBS Lett., 167, 127−130.
  38. D.F., Yocum C.F. (1985) Polypeptides of Photosystem II and their role in oxygen evolution. Photosynth. Res., 7, 97−114.
  39. D.P. (1989) Analysis of protein conformation by gel electrophoresis, in: Т.Е. Creighton (Ed.), Protein Structure, a Practical Approach, Oxford University Press, Oxford, pp. 225−250.
  40. A.P., Vergoten G., Arseniev A.S. (2000) Stabilization of proteins by enchancement of inter-residue hydrophobic contacts: lessons of T4 lysozyme and barnase. J. Biomol. Struct. Dyn., 18,477−491.
  41. A.V., Makhatadze G.I. (1998) Oligomerization and divalent ion binding properties of the S100P protein: a Ca2+/Mg2±switch model. J. Mol. Biol., 283, 679−694.
  42. G.N., Brudvig G.W. (1998) Calcium binding studies of photosystem II using a calcium-selective electrode. Biochemistry, 37, 1532−1539.
  43. N., Pietsch M.C. (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18, 2714−2723.
  44. L., Ghanotakis D., Fedtke В., Spyridaki A., Miller M., Muller S.A., Engle A., Tsotis G. (1997) Structural analysis of Photosystem II: Comparative studies of cyanobacterial and higher plant Photosystem II complexes. J. Struct. Biol., 119, 273−283.
  45. S.H., Provasoli L., Schatz A., Haskins C.P. (1950) Some approaches to the study of the role of metals in the metabolism of microorganisms. Proc. Am. Philos. Soc., 94, 152−170.
  46. Heredia P., De Las Rivas J. (2003) Calcium-dependent conformational change and thermal stability of the isolated PsbO protein detected by FTIR spectroscopy, Biochemistry, 42, 11 831−11 838.
  47. Hilvo M., Tolvanen M., Clark A., Bairong Shen В., Shah G.N., Waheed A., Halmi P., Hanninen M, Hamalainen J.M., Vininen M., Sly W.S., Parkkila S. (2005) Characterization o’f CA XV, a new GPI-anchored form of carbonic anhydrase. Biochem. J., 392, 83−92.
  48. W., Wydrzynski T. (2000) The affinities for the two substrate water binding sites in the O2 evolving complex of photosystem II vary independently during S-state turnover. Biochemistry, 39, 4399−4405.
  49. W., Hendry R.L., Burnap Т., Wydrzynski T. (2001) Substrate water exchange in photosystem II depends on the peripheral proteins. J Biol Chem., 276, 46 917−46 924.
  50. Joliot P., Joliot A., Boughes B. and Barbieri G. (1971) Studies of system II photocenters by comparative measurements of luminescence, fluorescence and oxygen emission. Photochem. Photobiol., 14, 287−305.
  51. Kamiya N., Shen J.-R. (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7 A resolution. Proc. Natl. Acad. Sci. USA, 100, 98 103.
  52. J., Hiltonen Т., Husic H.D., Ramazanov Z., Samuelsson G. (1995) Intracellular carbonic anhydrase of Chlamydomonas reinhardtii. Plant. Physiol., 109, 533−539.
  53. Kashino Y., Inoue-Kashino N., Roose J.L., Pakrasi H.B. (2006) Absence of the PsbQ protein results in destabilization of the PsbV protein and decreased oxygen evolution activity in cyanobacterial photosystem II. J. Biol. Chem., 281, 20 834−20 841.
  54. D.L., Togasaki R.K., Miyachi S. (1983) Carbonic anhydrase in Chlamydomonas reinhardtii. I. Localization. Plant Cell Physiol., 24, 255−259.
  55. V.V., Baranov S.V. (2001) Bicarbonate requirement for the water-oxidizing complex of photosystem II. Biocim. Biophys. Acta, 1503, 187−196.
  56. V.V., Klevanik A.V., Shuvalov V.A., Krasnovsky A.A. (1977) Reduction of pheophytin in the primary light reaction of photosystem II. FEBS Lett., 82, 183−186.
  57. J., Barber J. (1995) Comparison of psbO and psbFI deletion mutants of Synechocystis PCC 6803 indicates that degradation of D1 protein is regulated by the QB site and dependent on protein synthesis, Biochemistry, 34, 9625−9631.
  58. D.M., Sacksteder C.A., Cruz J.A. (1999) How acidic is the lumen? Photosynth. Res., 60, 151−163.
  59. Matsuzaki M., et al. (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature, 428, 653−657.
  60. Mayfield S.P., Bennoun P., Rochaix J.-D. (1987) Expression of the nuclear encoded OEE1 protein is required for oxygen evolution and stability if photosystem II particles in Chlamydomonas reinhardtii. EMBO J., 6, 313−318.
  61. Mavankal G., McCain D.C., Bricker T.M. (1986) Effects of chloride on paramagnetic coupling of manganese in calcium chloride-washed photosystem II preparations. FEBS Lett., 202, 235−239.
  62. M., Murata N. (1984a) Calcium ions can be substituted for the 24 kDa polypeptide in photosynthetic oxygen evolution. FEBS Lett. 118−120.
  63. M., Murata N. (1984b) Role of the 33 kDa polypeptide in preserving Mn in photosynthetic oxygen evolution. FEBS Lett., 170, 350−354.
  64. M., Murata N. (1989) The model of binding of three extrinsic of 33 kDa, 23 kDa and 18 kDa in the photosystem II complex of spinach. Biochim. Biophys. Acta, 977, 315−321.
  65. Miyao M., Murata M., Lavorel J., Maison-Petri В., Boussac A., Etienne A.-L. (1987) Effects of the 33 kDa protein on the S-state transition in photosynthetic oxygen evolution. Biochim. Biophys. Acta, 890, 151−159.
  66. J.V., Togasaki R.K., Husic H.D., Tolbert N.E. (1987) Evidence that an internal carbonic anhydrase is present in 5% C02-grown and air grown Chlamydomonas. Plant. Physiol., 84, 757−761.
  67. J.W., Barber J. (2006) Identification of a calcium-binding site in the PsbO protein of photosystem II. Biochemistry, 45, 4128−4130.
  68. J.K., Pace C.N., Scholtz J.M. (1995) Denaturant m value and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Prorein Sci., 4, 21 382 148.
  69. Nield J., Balsera M., De Las Rivas J., Barber J. (2002) Three-dimensional electron cryo-microscopy study of the extrinsic domains of the oxygen-evolving complex of spinach. Assignment of the PsbO protein. J. Biol. Chem., 275, 27 940−27 946.
  70. Ohta H., Suzuki Т., Ueno M., Okumura A., Yoshihara S., Shen J.-R., Enami I. (2003) Extrinsic proteins of photosystem II. An intermediate member of PsbQ protein family in red algal PS II. Eur. J. Biochem., 270, 4156−4163.
  71. Opavsky R, Pastorekova S, Zelni’k V, Gibadulinova A, Stanbridge EJ, Zavada J, Kettmann R, Pastorek J. (1996) Human MN/CA9 gene, a novel member of the carbonic anhydrase family structure and exon to protein domain relationships. Genomics, 33, 480−487.
  72. Pace C.N., Vajdos F., Fee L., Grimsley G., Gray T. (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci., 11, 2411−2423.
  73. Y.I., Karlsson J., Rojdestvenski I., Pronina N., Klimov V., Oquist G., Samuelsson G. (1999) Role of a novel Photosystem II-associated carbonic anhydrase in photosynthetic carbon assimilation in Chlamydomonas reinhardtii. FEBS Lett., 444, 102−105.
  74. J.B., Diner B.A., Zilinskas B.A. (1991) Construction and characterization of cyanobacterial mutants lacking the manganese-stabilizing protein of Photosystem II. J Biol. Chem., 266, 13 370−13 376.
  75. Popelkova H., Im M.M., D’Auria J., Betts S.D., Lydakis-Simantiris N., Yocum C.F. (2002) N-terminus of the Photosystem II manganese-stabilizing protein: Effects of sequence elongation and truncation. Biochemistry, 41, 2702−2711.
  76. N.A., Semenenko V.E. (1990) Membrane-bound carbonic anhydrase takes place in CO2-concentration in algal cells. In Current Research in Photosynthesis, Vol. 4 (ed. M. Baltscheffsky) pp. 489−492. Kluwer, Dordrecht.
  77. Rader A.J., Anderson G., Isin В., Khorana H.G., Bahar I., Klein-Seetharaman J. (2004) Identification of core amino acids stabilizing rhodopsin. Proc. Natl. Acad. Sci. U. S. A., 1001,7246−7251.
  78. J.A. (1997) CC>2-concentrating mechanisms: a direct role for thylakoid lumen acidification? Plant Cell Envirom., 20, 147−154.
  79. J.L., Kashino Y., Pakrasi H.B. (2007) The PsbQ protein defines cyanobacterial Photosystem II complex with highest activity and stability. Proc. Natl. Acad. Sci. U. S. A., 104, 2548−2553.
  80. Rosenberg A.M., Lade B.N., Chui D.-S., Lin S.-W., Dunn J.J., Studier F.W. (1987) Vector for selective expression of cloned DNAs by T7 RNA polymerase. Gene, 56, 125−135.
  81. A.W., Faller P. (2001) The heart of photosynthesis in glorious 3D.Trends Biochem. Sci., 26, 341−344.
  82. Sacher M., Di Bacco A., Lunin V.V., Ye Z., Wagner J., Gill G., Cygler M. (2005) The crystal structure of CREG, a secreted glycoprotein involved in cellular growth and differentiation. Proc. Natl. Acad. Sci. U. S. A., 102, 18 326−18 331.
  83. M.M., Bolen D.W. (1988) Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmelhanesulfonyl alpha-chymotrrypsin using different denaturants. Biochemistry, 27, 8063−8068.
  84. Schlarb-Ridley B.G., Nimmo R.H., Purton S., Howe C.J., Bendall D.S. (2006) Cytochrome c6A is a funnel for thiol oxidation in the thylakoid lumen, FEBS Lett., 580, 2166−2169.
  85. Т., Kopp J., Guex N., Pietsch M.C. (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research, 31, 3381−3385.
  86. Schurmann P., Jacquot J.-P. (2000) Plant thioredoxin systems revisited. Annu. Rev. Plant Physiol. Plant Mol. Biol., 51, 371−400.
  87. A., Michel H. (1990) Expression in Escherichia coli of the psbO gene encoding the 33 kd protein of the oxygen-evolving complex from spinach, EMBO J., 9, 1743−1748.
  88. A., Rutherford A.W. (1996) The Role of the Extrinsic 33 kDa Protein in Ca2+ Binding in Photosystem II. Biochemistry, 35, 12 104 -12 110.
  89. G., Rodionova N., Razgulyaev O., Uversky V., Gripas A., Gilmanshin R. (1991) Study of the molten globule intermediate state in protein folding by a hydrophobic fluorescent-probe. Biopolymers, 31, 119−128.
  90. Shen J.-R., Ikeuchi M., Inoue Y. (1992) Stoichiometric association of extrinsic cytochrome c550 and the 12 kDa protein with a highly purified oxygen-evolving PS II core complex from Synechococcus vulcanus. FEBS Lett., 301, 145−149
  91. Shen J.-R., Inoue Y. (1993a) Cellular localization of cytochrome C550: Its specific association with cyanobacterial Photosystem II. J Biol. Chem., 268, 20 408−20 413.
  92. Shen J.-R., Inoue Y. (1993b) Binding and functional properties of two new extrinsic components, cytochrome C550 and a 12 kDa protein in cyanobacterial Photosystem II. Biochemistry, 32, 1825−1832.
  93. Shen J.-R., Vermaas W.F., Inoue Y. (1995) The role of cytochrome C550 as studied through reverse genetics and mutant characterization in Synechocystis sp. PCC 6803. J. Biol. Chem., 270, 6901−6907.
  94. Shen J.-R., Ikeuchi M., Inoue Y. (1997) Analysis of the psbU gene encoding the 12-kDa extrinsic protein of photosystem II and studies on its role by deletion mutagenesis in Synechocystis sp. PCC 6803. J. Biol. Chem., 17 821−17 826.
  95. Shen J.-R., Qian M., Inoue Y., Burnap R.L. (1998) Functional characterization of Synechocystis sp. PCC 6803 ApsbU and ApsbV mutants reveals important roles of cytochrome c550 in cyanobacterial oxygen evolution. Biochemistry, 37, 1551−1558.
  96. Shutova, Т., Deikus, G., Irrgang, K., Klimov, V., Renger, G. (2001) Origin and properties of fluorescence emission from the extrinsic 33 kDa manganese stabilizing protein of higher plant water oxidizing complex, Biochim. Biophys. Acta, 1504, 371−378.
  97. Shutova, Т., Irrgang K.-D., Klimov, V.V., and Renger, G. (2000) Is the manganese-stabilizing 33 kDa protein of photosystem II attaining a 'natively unfolded' of 'molten globule' structure in solution? FEBS Lett., 467, 137−140.
  98. Shutova Т., Irrgang K.-D., Shubin V., Klimov V.V., Renger G. (1997) Analysis of pll-induced structural changes of the isolated extrinsic 33 kilodalton protein of photosystem II, Biochemistry, 36, 6350 -6358.
  99. Т., Klimov V.V., Andersson В., Samuelsson G. (2007) A cluster of carboxylic groups in PsbO protein is involved in proton transfer from the water oxidizing complex of Photosystem II. Biochim. Biophys. Acta, 1767, 434−440.
  100. Т., Nikitina J., Deikus G., Andersson В., Klimov V., Samuelsson G. (2005) Structural Dynamics of the manganese-Stabilizing protein effect of pH, calcium, and manganese, Biochemistry, 44, 15 182 -15 192.
  101. V.A. (1994) Composition and function of cytochrome b559 in reaction centers ofphotosystem II of green plants. J. Bioenerg. Biomembr., 26, 619−626. Siggel U. (1975) in Proceedings of the Third International Congress on Photosynthesis (Avron,
  102. Proc. Natl. Acad. Sci. U. S. A., 46, 83−91. Tachiki A., Fukuzawa H., Miyachi S. (1992) Characterization of carbonic anhydrase isozyme CA2, which is the CAH2 gene product, in Chlamydomonas reinhardtii. Biosci. Biotechnol. Biochem. 56, 794−798.
  103. L.E., Ohkawa H., Roose J.L., Kashino Y., Keren N., Pakrasi H.B. (2004) Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem II activity in the cyanobacterium Synechocystis 6803. Plant Cell, 16, 2164−2175.
  104. A., Kumar P., Singh S., Anasari S.A. (2005) Carbonic anhydrase in relation to higher plants. Photosynthetica, 43, 1−11.
  105. A., Shutova Т., Moskvin O., Forssen M., Klimov Y.Y., Samuelsson G. (2002) A Photosystem II-associated carbonic anhydrase regulates the efficiency if photosynthelic oxygen evolution. EMBO J., 21, 1930−1938.
  106. I., Styring S., Andersson B. (1988) Photosystem II disorganization and manganese release after photoinhibition of isolated spinach thylakoid membranes. FEBS Lett., 233, 408−412.
  107. Y., Shinkai H., Isogai Y., Matsura K., Nishimura M. (1984) Isolation of Mn-carrying 33-kDa protein from an oxygen-evolving photosystem-II preparation by phase partitioning with butanol. FEBS Lett., 175, 429−433.
  108. Yu H., Yu X., Britt R.D. (2006) The 33 kDa protein can be removed without affecting the association of the 23 and 17 kDa proteins with the lumenal side of PSII of spinach. Biochemistry, 41, 3404−3011.
  109. Xu Q.A., Bricker T.M. (1992) Structural organization of proteins on the oxidizing side of photosystem II: two molecules of the 33 kDa manganese-stabilizing protein per reaction center. J. Biol. Chem., 267, 25 816−25 821.
  110. R., Newman B.J., Pappin D., Gray J.C. (1989) The extrinsic 33 kDa polypeptide of the oxygen-evolving complex of photosystem II is a putative calcium-binding protein and is encoded by a multi-gene family in pea. Plant Mol. Biol., 12, 439−451.
  111. Whittington D.A., Waheed A., Ulmasov В., Shah G.N., Grubb J.H., Sly W.S., Christianson D.W. (2001) Crystal structure of the dimeric extracellular domain of human carbonic anhydrase
  112. XII, a bitopic membrane protein overexpressed in certain tumor cells. Proc. Natl. Acad. Sci. U. S. A., 98, 9545−9550.
  113. K., Anderson N. (1948) Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176, 147−154
  114. A.J., Yocum C.F. (2005) Structure and activity of the photosystem II manganese-stabilizing protein: role of the conserved disulfide bond, Photosynth. Res., 17, 255−266.
  115. Zhang L.X., Liang H.G., Wang J., Li W.R., Yu T.Z. (1996) Fluorescence and Fourier-transform infrared spectroscopic studies on the role of disulfide bond in the calcium binding in the 33 kDa protein of Photosystem II. Photosynth. Res., 48, 379−384.
  116. H., Ishikawa Y., Yamamoto Y., Carpentier R. (1998) Secondary structure and thermal stability of the extrinsic 23 kDa protein of Photosystem II studied by Fourier transform infrared spectroscopy. FEBS Lett., 426, 347−351.
  117. Zubrzycki I.Z., Frankel L. K, Russo P. S., Bricker T.M. (1998) Hydrodynamic studies on the manganese-stabilizing protein of Photosystem II. Biochemistry, 37, 13 533−13 558.
Заполнить форму текущей работой