ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² ΡƒΡ‡Ρ‘Π±Π΅, ΠΎΡ‡Π΅Π½ΡŒ быстро...
Π Π°Π±ΠΎΡ‚Π°Π΅ΠΌ вмСстС Π΄ΠΎ ΠΏΠΎΠ±Π΅Π΄Ρ‹

Π‘ΠΈΠ½Ρ‚Π΅Π· ΠΈ биологичСская Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π½ΠΎΠ²Ρ‹Ρ… 1, 2, 4-триоксановых Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² Π°Ρ€Ρ‚Π΅ΠΌΠΈΠ·ΠΈΠ½ΠΈΠ½Π°

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Posner G. II., Park S. Π’., Gon/alez L. et al. Evidence for the importance of high-valent Fe=0 and of a diketone in the molecularmechanism of action of antimalarial trioxane analogs of artemisinin. //J. Am. Chem. Soc. 1996. — 118. — p. 3537βˆ’3538. Mirjalili Π’. F, Zolfigol M. Π›., Bamoniri A., Zarei A. Silica sulfuric acid/potassium permanganate/wet S1O2 as an efficient heterogeneous method for the… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Π²Π²ΠΏΠ΄Π½Π½ΠΈΠ½
  • 1. Π›Π˜Π’ΠΠ Π›Π’Π£Π 11Π«Π™ ΠžΠ’Π—ΠžΠ 
    • 1. 1. АртСмизинин
    • 1. 2. ΠŸΠΎΠ»Π½Ρ‹ΠΉ ΠΈ Ρ‡Π°ΡΡ‚ΠΈΡ‡Π½Ρ‹ΠΉ ситС? Π°Ρ€1Π΅ΠΌΠΈΠ·ΠΈΠ½ΠΈΠ½Π°
    • 1. 3. Π‘ΠΈΡ‚Π΅* ΠΏΡ€ΠΎΠΈ{Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½Π½Ρ‹Ρ… Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² Π°Ρ€Ρ‚Π΅ΠΌΠΈΠ·ΠΈΠ½ΠΈΠ½Π°
    • 1. 4. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ Π°Π½ΡˆΠΌΠ°Π»ΡΡ€ΠΈΠΉΠ½ΠΎΡŽ дСйствия эндонСроксидных ΠΏΡ€Π΅Π½Π°Ρ€Π°Π³ΠΎΠ²
    • 1. 5. Π”ΠΈΠΌΠ΅Ρ€Ρ‹ΠΈ Ρ„ΠΈΠΌΠ΅Ρ€Ρ‹ Π°Ρ€ Π³Π΅ΠΌΠΈΠ·ΠΈΠ½ΠΈΠ½Π°, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠ΅ Π°ΡˆΠΈΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Π³ΠΈΠ²Π½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ 1Ρ‹ΠΎ
  • 2. Π₯Π˜ΠœΠ˜Π§Π•Π‘ΠšΠΠ― ЧАБ Π“
    • 2. 1. БишСз Π½ΠΎΠ²Ρ‹Ρ… 3-Π°Ρ€ΠΈΠ»Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Ρ… 1,2,4-Ρ„ΠΈΠΎΠΊΠ΅Π°Π½ΠΎΠ²Ρ‹Ρ… Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² 83 Π°Ρ€Π³Π΅ΠΌΠΈΠ·ΠΈΠ½ΠΈΠ½Π° Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π³Ρ€ΠΈΡ„Π΅Π½ΠΈΠ»Ρ„ΠΎΡΡ„ΠΈΡŽΡŽΠ½ΠΈΠ΄Π° Π² ΠΊΠ°Ρ‡Π΅Ρ I Π²Π΅ Ρ…имичСског ΠΎ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ i, Π° ΡΠΈΠ½Π³Π»Π΅ i Π½ΠΎΠ³ ΠΎ ΠΊΠΈΡΠ»ΠΎΡ€ΠΎΠ΄Π°
    • 2. 2. Π‘ΠΈΠ½Ρ‚Π΅Π· Π΄ΠΈΠ°Π΅Π³Π΅Ρ€Π΅ΠΎΠΌΠ΅Ρ€Π½ΠΎ Ρ‡ΠΈΡΡ‚ΠΎΡŽ, Ρ€Π°Ρ†Π΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΡŽ 1,2,4Ρ„ΠΈΠΎΠΊΡΠ°Π½ΠΎΠ²ΠΎΡŽ Π΄ΠΈΠΌΠ΅Ρ€Π°, ΡΡ…ΠΎΠ΄Π½ΠΎΡŽ с Π΄ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°Ρ€Ρ‚Π΅ΠΌΠΈΠ·ΠΈΠ½ΠΈΠ½Π°, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠΌΠΈ Π°Π½Ρ‚ΠΈΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ
    • 2. 3. Π‘ΠΈΠ½Ρ‚Π΅Π· рацСмичСских грицикличСских 1,2,4-фиоксанов, ΠΈΠ·ΠΎΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½Π½Ρ‹ΠΌ Π°Π½Π°Π»ΠΎΠ³Π°ΠΌ Π°Ρ€Ρ‚Π΅ΠΌΠΈΠ·ΠΈΠ½ΠΈΠ½Π°

    2.4 БишСз ΠΈ ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΡƒΠ΅ΠΌΠ°Ρ Fe (II) дСградация 3- 104 Ρ†ΠΈΠΊΠ»ΠΎΠΏΡ€ΠΎΠΏΠΈΠ»Π·Π°ΠΌΠ΅Ρ‰Π΅Π½ΠΏΠΎΠ³ ΠΎ 1,2,4-гриоксано1юг ΠΎ Π°Π½Π°Π»ΠΎΠ³, Π° Π°Ρ€Ρ‚ΡΠΌΠΈΡˆΠ½ΠΈΠ½Π° ΠΊΠ°ΠΊ способ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠΈ истинности Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π°Π½Ρ‚ΠΈΠΌΠ°Π»ΡΡ€ΠΈΠΉΠ½ΠΎΡŽ дСйсгвия данною Π³ΠΈΠ½Π° соСдинСний.

    2.5 Π‘ΠΈΠ½Ρ‚Π΅Π· 12-Π±Π΅Π½ΡˆΠ»ΠΎΠΊΡΠΈΠ·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Ρ… 1,2,4-Ρ„ΠΈΠΎΠΊΠ΅Π°Π½ΠΎΠ²Ρ‹Ρ… 110 Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² Π°Ρ€Π³Π΅ΠΌΠΈΠ·ΠΈΠ½ΠΈΠ½Π° с ΡˆΠΈΡ€ΠΎΠΊΠΈΠΌ ΠΏΡ€ΠΎΡ„ΠΈΠ»Π΅ΠΌ линольносги

    2.6 Поиск ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡŽ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΊ ΡΠΈΡˆΠ΅? Ρƒ 3-(я- 120 карбоксифСнил) ΡˆΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Ρ… 1,2,4-гриоксанов для доклиничСского испытания Π½Π° Ρ‚Ρ€Ρ‹Π·ΡƒΠ³Π³Π°Ρ…

    2.7 НовыС 1,2,4-триоксановыС Π°Π½Π°Π»ΠΎΠ³ΠΈ Π°Ρ€ 1Смишнина, содСрТащиС 126 ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄Π½Ρ‹ΠΉ ΠΈ ΡΡƒΠ»ΡŒΡ„ΠΎΠ½ΠΎΠ²Ρ‹ΠΉ Ρ„Ρ€Π°ΡˆΠ΅ΡˆΡ‹ ΠΏΡ€ΠΈ Π‘-12. БишСз, Π°ΡˆΠΈΠΌΠ°Π»ΡΡ€ΠΈΠΉΠ½Π°Ρ Π°ΠΊΡˆΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅

    Π²Ρ‹Π²ΠΎΠ΄Ρ‹ огносшСльно ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π±ΠΈΠΎΠ»ΠΎ1ичСского дСйствия.

    ЭКБ1 1НРИМП1 ГГАЛЫ 1АЯ ЧАБВЬ

    3.1 Π Π΅Π°ΠΊΡ‚ΠΈΠ²Ρ‹, рас Ρ‚ΠΎΡ€ΠΈ Π³Π΅Π»ΠΈ, Π°Π½Π°Π»ΡˆΠΈΡ‡Π΅ΡΠΊΠ°Ρ Π±Π°Π·Π°

    3.2 ΠžΠ±Ρ‰ΠΈΠ΅ мСюдики, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅

    3.3 Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅ΡˆΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ ΠΊ Ρ€Π°Π·Π΄Π΅Π»Ρƒ 2.

    3.4 Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ ΠΊ Ρ€Π°Π·Π΄Π΅Π»Ρƒ 2.

    3.5 Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅ΡˆΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ ΠΊ Ρ€Π°Π·Π΄Π΅Π»Ρƒ 2.

    3.6 Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅ΡˆΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ ΠΊ Ρ€Π°Π·Π΄Π΅Π»Ρƒ 2.

    3.7 Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅ΡˆΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ ΠΊ Ρ€Π°Π·Π΄Π΅Π»Ρƒ 2.

    3.8 Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅ΡˆΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ ΠΊ Ρ€Π°Π·Π΄Π΅Π»Ρƒ 2.

    3.9 Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ ΠΊ Ρ€Π°Π·Π΄Π΅Π»Ρƒ 2.7 166 OCHOBI ΠͺΠ¨ РЕЗУЛЬВАВЫ Π ΠΠ‘ΠžΠ’Π« И

    Π’Π«Π’ΠžΠ”Π« 169 Π›Π˜ ГНРА’ГУРА

Π‘ΠΈΠ½Ρ‚Π΅Π· ΠΈ биологичСская Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π½ΠΎΠ²Ρ‹Ρ… 1, 2, 4-триоксановых Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² Π°Ρ€Ρ‚Π΅ΠΌΠΈΠ·ΠΈΠ½ΠΈΠ½Π° (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ΠžΠ‘ΠΠžΠ’ΠΠ«Π™ РЕЗУЛЬВАВЫ Π ΠΠ‘Πž Π’Π« И Π’Π«Π’ΠžΠ”Π«.

1. ΠžΠΏΡ€ΠΎΠ±ΠΈΡ€ΠΎΠ²Π°Π½Π° мСюдоло1ия синюза 1,2,4-фиоксановых аналоюв Π°Ρ€ΡŽΠΌΠΈΠ·ΠΈΠ½ΠΈΠ½Π° ΠΈΠ· Π΅Π½ΠΎΠ»ΡΡ„ΠΈΡ€Π½Ρ‹Ρ… ΠΊΠ΅ Π³ΠΎΠ½ΠΎΠ² с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Ρ„ΠΈΡ„Π΅Π½ΠΈΠ»Ρ„ΠΎΡΡ„ΠΈΡŽΠ·ΠΎΠ½ΠΈΠ΄Π° Π² ΠΊΠ°Ρ‡Π΅ΡΠΏΠ·Π΅ ΡΠΈΡˆΠ΅ΡˆΡ‡Π΅ΡΠΊΠΎΡŽ эквивалСнта синглС Ρ‚ΠΎΡŽ кислорода. Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… эюй ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎ1ΠΈΠΈ Π½Π°ΠΌΠΈ Π±Ρ‹Π»ΠΈ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ ΡΠΈΡˆΠ΅Π·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ 3-Π°Ρ€ΠΈΠ» Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Π΅ фиоксаны, показавшиС Π²Ρ‹ΡΠΎΠΊΡƒΡŽ Π°Π½Π³ΠΈΠΌΠ°Π»ΡΡ€ΠΈΠΉΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ ib Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠΉ) Π°Ρ€ΡŽΠΌΠΈΠ·ΠΈΠ½ΠΈΠ½Π°. Π’Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ ΠΈ ΠΈΠ΄Π΅ΡˆΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΏΠΎΠ±ΠΎΡ‡Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠ΄ΡƒΠΊ1Ρ‹ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ: ΠΎΠΆΠΈΠ΄Π°Π΅ΠΌΡ‹ΠΉ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΈ ΡˆΠ΅Π΅ Ρ‚ΠΎΠ³ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π°,|3-Π½Π΅ΠΈΡ€Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΉ альдСгид, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅ΠΎΠΆΠΈΠ΄Π°Π½Π½Ρ‹ΠΉ 1,3-диоксолановый ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΉ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ образования ΠΊΠΎ ΡŽΡ€ΠΎΡŽ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½.

2. Показана Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ использования ΠΈΠ·ΠΎΠΌΠ΅Ρ€Π½Ρ‹Ρ… Снолэфирных ΠΊΠ΅ Π³ΠΎΠ½ΠΎΠ² Π² ΡΠΈΡˆΠ΅Π·Π΅ фиоксановых Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² Π°Ρ€ΡŽΠΌΠΈΠ·ΠΈΠ½ΠΈΠ½Π° ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΡΡ„Ρ„Π΅ΠΊΡˆΠ²Π½Ρ‹ΠΉ мСюд синю Π³Π° ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΡ…. Π Π°Π·Ρ€Π°Π±ΠΎ1Π°Π½Π½ΠΌΠΉ Π½Π°ΠΌΠΈ ΡΠΈΠ½ΡŽΡˆΡ‡Π΅ΡΠΊΠΈΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ «ΠΈΠ·ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ» 1,2,4-фиоксанам сущСствСнно Ρ€Π°ΡΡˆΠΈΡ€ΡΠ΅Ρ‚ ΠΊΡ€ΡƒΠ³ ΡΠΈΡˆΠ΅ΡˆΡ‡Π΅ΡΠΊΠΈ доступных Π½ΠΎΠ²Ρ‹Ρ… фиоксановых сфукгур. НСсмотря Π½Π° Π½ΠΈΠ³ΠΊΠΈΠ΅ значСния Π°ΡˆΠΈΠΌΠ°Π»ΡΡ€ΠΈΠΉΠ½ΠΎΠΉ активности, Π½Π°Π±Π»ΡŽΠ΄Π°Π΅ΠΌΡ‹Π΅ для Π΄Π°Π½Π½Ρ‹Ρ… (Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΡΠΈΡˆΠ΅Π·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ…) соСдинСний, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π³ΡƒΠ»ΡŒΡ‚Ρ‹ ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°ΡŽΡ‚ возмоТности для установлСния ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… Π²Π·Π°ΠΈΠΌΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ «ΡΠ³Ρ€ΡƒΠΊ1ΡƒΡ€Π°-Π°ΠΊ1ивнос1Π¬» Π² Ρ€ΡΠ΄Ρƒ «ΠΈΠ·ΠΎΠΌΠ΅Ρ€Π½Ρ‹Ρ…» фиоксанов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Moiyi бьпь ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎ ΠΈΠ½Ρ‹ΠΌΠΈ, Ρ‡Π΅ΠΌ для ряда «Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ…» 1,2,4-триоксанов, ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π²ΡˆΠΈΡ…ΡΡ Ρ€Π°Π½Π΅Π΅.

3. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ мСюд сишСза Π‘Π·-Π‘Π·'-(/7-Ρ„Π΅Π½ΠΈΠ»ΠΈΠ΄Π΅Π½)-связанною 1,2,4-Ρ‚Ρ€ΠΈΠΎΠΊΡΠ°Π½ΠΎΠ²ΠΎΡŽ Π΄ΠΈΠΌΠ΅Ρ€Π°, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰Π΅ΡŽ Π·Π°ΠΌΠ΅Ρ‚Π½ΠΎΠΉ Π°ΡˆΠΈΠΌΠ°Π»ΡΡ€ΠΈΠΉΠ½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ. УстановлСно, Ρ‡ΡŽ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… фиоксановых Π΅Π΄ΠΈΠ½ΠΈΡ† ΠΏΠ΅Ρ€Π΅Π³Ρ€ΡƒΠΏΠΏΠΈΡ€ΠΎΠ²ΠΊΠΎΠΉ 1,2-диоксСгановою ΠΈΡˆΠ΅Ρ€ΠΌΠ΅Π΄ΠΈΠ°Ρ‚Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΎΠ΄Π½ΠΎΠΉ молСкулярной структуры. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ мСюд сишСза позволяСт ΠΏΠΎΠ»ΡƒΡ‡Π°Π³ΡŒ Π°ΡˆΠΈΠΈΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°ΡˆΠΈΠ½Ρ‹Π΅ Π΄ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ структуры ΠΏΡƒΡ‚Π΅ΠΌ Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ шпа ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² «ΠΌΠ΅ΠΆΡ„ΠΈΠΎΠΊΠ΅Π°Π½ΠΎΠ²ΠΎΡŽ» ΡΠ²ΡΠ·ΡƒΡŽΡ‰Π΅ΡŽ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚.

4. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π½Ρ‹ ΡΠΈΡˆΠ΅ΡˆΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ Π½ΠΎΠ²Ρ‹ΠΌ 1,2,4-фиоксановым Π°Π½Π°Π»ΠΎΠ³Π°ΠΌ Π°Ρ€Π³Π΅ΠΌΠΈΠ·ΠΈΠ½ΠΈΠ½Π°, сгрукгура ΠΊΠΎΡŽΡ€Ρ‹Ρ… нозволяСг Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Π³ΡŒ свойство Π»ΠΈΠΏΠΎΡ„ΠΈΠ»Ρ‹ΡŽΡΠ³ΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ имСюг Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ для построСния гСорСгичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΏΡ€Π΅Π΄ΡΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰Π΅ΠΉ взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ Π»ΠΈΠΏΠΎΡ„ΠΈΠ»Ρ‹ΡŽΡΠ³Ρ‹ΠΎ ΠΈ Π°ΡˆΠΈΠΌΠ°Π»ΡΡ€ΠΈΠΉΠ½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ для ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ ΠΊΡ€ΡƒΠ³Π° 1,2,4-гриоксановых Π°Π³Π³Π°Π»ΠΎΠ³ΠΎΠ² Π°Ρ€Π³Π΅ΠΌΠΈΠ·ΠΈΠ½ΠΈΠ½Π°.

5. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½ΠΎΡŽ мСюда сишСза одною ΠΈΠ· 1,2,4-триоксановых Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² Π°Ρ€Ρ‚Π΅ΠΌΠΈΠ·ΠΈΠ½ΠΈΠ½Π° исходя ΠΈΠ· ΠΊΠΎΠΌΠΌΠ΅Ρ€Ρ‡Π΅ΡΠΊΠΈ доступных циклотСксанона ΠΈ Π°Ρ€ΠΈΠ»Π±Ρ€ΠΎΠΌΠΈΠ΄Π° (5 сгадий, ΠΎΠ±Ρ‰ΠΈΠΌ Π²Ρ‹Ρ…ΠΎΠ΄ΠΎΠΌ 9,3%), Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ синтСтичСский ΠΏΡƒΡ‚ΡŒ Π±Ρ‹Π» сокращСн Π½Π° 2 стдии, Π° ΡΡƒΠΌΠΌΠ°Ρ€Π½Ρ‹ΠΉ Π²Ρ‹Ρ…ΠΎΠ΄ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ Π² 2 Ρ€Π°Π·Π°, Π½ΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ€Π°Π½Π΅Π΅ извСстным ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ отличаСтся oi Ρ€Π°Π½Π΅Π΅ извСсшого использованиСм кислорода Π²ΠΎΠ·Π΄ΡƒΡ…Π° Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ источника синглСшого кислорода ΠΈ ΠΎΡ‚сутствиСм Π½Π΅ ΡƒΠ»Π°Π²Π»ΠΈΠ²Π°Π΅ΠΌΡ‹Ρ… ΡŽΠΊΡΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ².

6. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° новая ситпСгичСская схСма, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π°Ρ ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½ΠΎ Π½ΠΎΠ²Ρ‹ΠΉ Ρ‚ΠΈΠΏ структур: Π‘|2-ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΈ ΡΡƒΠ»ΡŒΡ„ΠΎΠ½Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Π΅ 1,2,4-фиоксановыС Π°Π½Π°Π»ΠΎΠ³ΠΈ Π°Ρ€Π³Π΅ΠΌΠΈΠ·ΠΈΠ½ΠΈΠ½Π°. БишСз Π΄Π°Π½Π½Ρ‹Ρ… соСдинСний Π±Ρ‹Π» ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π² Π΄ΠΈΠ°ΡΡ‚Π΅Ρ€Π΅ΠΎΠΌΠ΅Ρ€ΠΏΠΎ Ρ‡ΠΈΡΡŽΠΉ Ρ„ΠΎΡ€ΠΌΠ΅, послС раздСлСния Π‘^-эгтимСров мСюдом Π’Π­Π–Π₯.

1. TDR News (News from the WHO Division of Control of Tropical Diseases) — 1994.-46.-p. 5.

2. Oaks S. C., Jr., Mitchell V. S., Pearson, G. W., Carpenter, Π‘. C., eds. Malaria: obstacles and opportunities. Washington, DC: National Academy Press, 1991.

3. Ziffer, II.- Ilighet, R. J.- Klayman, D. L. Artemisinin: an endoperoxidic antimalarial from Artemisia annua L. // Prog. Chem. Org. Nat. Prod. 1997. — 72, № 1 — p. 121.

4. Miller L II., Warrell D. A. Malaria. // Tropical and geographical medicine. K. S. Warren and A. A. F. Mahmoud, eds. New York: McGraw-Hill, 1990.

5. Luo X.-D., Ni M.Y., Fan J.-F., et al. Structure and reactions of arteannuin. // Acta Chim. Sinica. 1979. — 37, № 2. — p. 129.

6. Posner G. 11. Antimalarial peroxides in the qinghaosu (artemisinin) and ying/haosu families. // Hxp. Opin, Ther. Patents. 1998. — 8, № 7. — p. 1487−1493.

7. Posner G. П., Parker M. II., Northrop J., et al. Orally active, hydrolytically stable, semisynthetic, antimalarial trioxanes in the artemisinin family. //J. Med. Chem. 1999. — 42, № 2, p. 300−304.

8. Jung M., Lee S. Stability of acetal and non acetal-type analogs of artemisinin in simulated stomach acid. // Bioorg. Med. Chem. Lett. -1998.-8, № 5, p. 1003−1006.

9. Pu Y. M., Ziffer II. Synthesis and antimalarial activities of 12.beta.-allyldeoxoartemisinin and its derivatives. // J. Med. Chem. 1995. — 38, № 5.-p. 613−616.

10. Cumming J. N., Ploypradith P., Posner G. II. Antimalarial activity of artemisinin (qinghaosu) and related trioxanes: mechanism (s) of action. // Advances in Pharmacology. 1997. — 37. — pp. 253−297.

11. Паi. 5 578 637 БША. Methods for inhibition or killing cancer cells using an endoperoxide / Lai II. C., Singh N. P. ΠžΠΏΡƒΠ±Π». 26.11.1996.

12. Schmid G., Hofheinz W. Total synthesis of qinghaosu. // J. Am. Chem. Soc. 1983. — 105, № 5, p. 624−625.

13. Schulte К. II., Ohloff G. // Ilelv. Chim. Acta. 1967. — 50. — p. 153.

14. McCullough K. J. Synthesis and use of cclie peroxides, i, Contemp. Org. Synth. 1995. — 2, № 3. — p. 225.

15. Buchi G., Wuest 11. // J. Am. Chem. Soc. 1977. 99. — p. 294.

16. Greene T. W., Wuts P. G. M. Protective groups in organic synthesis. 3rd lid. N. Y.: Wiley-Interscience, 1999.

17. Corey L.J., Suggs W. Pyridinium chlorochromate. An efficient reagent for oxidation of primary and secondary alcohols to carbonyl compounds. // Tetrahedron Lett. 1975. — 31, № 15. -p. 2647−2650.

18. Michael J. S., Dewar M. J. S., 'Ihiel W. MINDO/3 study of the addition of singlet oxygen (1 .DHLTA.g02) to 1,3-butadiene. // J. Am. Chem. Soc. 1977. — 99, № 7 — p. 2338−2339.

19. Xu X. X., Zhu J., Huang D. Z., Zhou W. S. Total synthesis of arteannuin and deoxyarteannuin. //Tetrahedron. 1986. — 42. — p. 819 828.

20. Avery M. A., Chong W. К. M., Jennings-White C. Stereoselective total synthesis of (f)-artemisinin, the antimalarial constituent of Artemisia annua L. // Am. Chem. Soc. 1992. — 114. — p. 974−979.

21. Caine, D.- Procter, K.- Cassell, A. A facile synthesis of (-)-R-5-methyl-2-cyclohexen-l-one and related 2-substituted enones from (+)-pulegone. J. Org. Chem. — 1984. — 49. — p. 2647−2648.

22. Shapiro R. I I., Lipton M.F., Kolonko K.J. et al. Tosylhydra/ones and alkyllithium reagents: more on the regiospecificity of the reaction and the trapping of three intermediates. //Tetrahedron Lett. 1975. — p. 18 111 814.

23. Ravindranathan Π’., Kumar M. Π›., Menon R. Π’., I liremath S. V. Stereoselective synthesis of artemisinin. //Tetrahedron Lett.- 1990. -31. -p. 755−758.

24. Ilaynes R. K., Vonwiller S. C. From qinghao, marvelous herb of antiquity, to the antimalarial trioxane quinghaosu. Some remarkable new chemistry. // Π›Π΅Π΅. Chem. Res. 1997. — 30. — p. 73−79.

25. Zaman S. S., Sharma R. P. Some aspects of the chemistry and biological activity of artemisinin and related antimalarials. // Heterocycles.- 1991.-32.-p. 1593−1638.

26. Xu X.-X., Zhu J., Huang D.-A., Zhou W.-S. 'I he stereocontrolled synthesis of arteannuin and deoxyarteannuin from arteannuic acid. // Acta Chem. Sinica. 1983. — 41. — p. 574.

27. Roth R. J., Acton N. A Simple conversion of artemisinic acid into artemisinin.//J. Nat. Prod. 1989. — 52. — p. 1183.

28. Roth R. J., Acton N. A facile semisynthesis of antimalarial drug qinghaosu //J. Chem. ltd. 1991. — 68.-p. 613.

29. Vroman J. A., Alvim-Gaston M., Avery M. A. Current progress in the chemistry, medicinal chemistry, and drug design of artemisinin based antimalarials.//Curr. Pharm. Design. 1999.-5.-p. 101−138.

30. Jung M., Lee K., Kim II., Park M. Recent advances in artemisinin and its derivatives as antimalarial and antitumor agents. // Curr. Med. Chem. -2004. 11.-p. 1265−1284.

31. Maggs J. L., Batty К. Π’., Ilett K. F. et al. // Br. J. Clin. Pharmacol. -1998.-39.-p. 1533 1537.

32. Woo S. 11., Parker M. 11., Ploypradith P. et al. Direct conversion of pyranose anomeric OII-> F -> R in the artemisinin family of antimalarial trioxanes. //Tetrahedron Lett. 1998. — 39. — p. 1533 — 1536.

33. Matsumoto Π’., Hosoya Π’., Suzuki K. Improvement in O—>C-glycoside rearrangement approach to C-aryl glycosides: use of 1 -O-acetylsugar as stable but efficient glycosyl donor. // Tetrahedron Lett. 1990. 31.-p. 4629−4632.

34. O’Neil P. M., Miller A., Ward S. A. et al. Application of the TMSOTf-AgClO, activator system to the synthesis of novel, potent, C-10 phenoxy derivatives of dihydroartemisinin. //Tetrahedron Lett. 1999.40.-p. 9129−9132.

35. O’Neil P. M., Miller A., Bisop L. P. D. et al. Synthesis, antimalarial activity, biomimetic iron (U) chemistry, and in vivo metabolism of novel, potent Π‘-10-phenoxy derivatives of dihydroartemisinin. // J. Med. Chem. -2001.-44.-p. 58−67.

36. Ma J., Katz It., Kyle D. П., Ziffer II. Syntheses and antimalarial activities of 10-substituted deoxoartemisinins. // J. Med. Chem. 2000. -43.-p. 4228−4236.

37. Burton J. W., Clark J. S., Derrer S. et al. Synthesis of medium ring ethers. 5. 'I he synthesis of (J)-laurencin. // J. Am. Chem. Soc. 1997.32.-p. 7483−7498.

38. Jung M., Freitas А. Π‘. C., McChensey J. D.- HlSohly II. N. A practical and general synthesis of (+)-carboxyalkylartemisinins. // I Ieterocycles. 1994. — 39. — p. 23 — 29.

39. Ilaynes R. K., Vonwiller S. C. Efficient preparation of novel quinghaosu (artemisinin) derivatives: conversion of qinghao (artemisinic) acid into deoxoqinghaosu derivatives and 5-carba-4-deoxoartesunic acid. // Synlett. 1992. -p. 481−483.

40. Jung M., Lee S. A concise synthesis of novel aromatic analogs of artemisinin. //1 Ieterocycles. 1997. — 45. — p. 1055−1058.

41. Jung M., Lee S. An efficient synthesis of novel spirodeoxoartemisinin with 2-pyrazoline ring. // I Ieterocycles. 1997. -45.-p. 1907;1911.

42. Paitayatat S., Tarnchompoo Π’., Thebtaranonth Y., Yuthavong Y. Correlation of antimalarial activity of artemisinin derivatives with bindingaffinity with ferroprotoporphyrin IX. // J. Med. Chem. 1997. — 40. — p. 633−638.

43. Avery M. A., Fan P., Karle J. M. et al. Replacement of the nonperoxidic trioxane oxygen atom of artemisinin by carbon: total synthesis of (+)-13-carbaartemisinin and related structures. //Tetrahedron Lett. 1995.-36.-p. 3965−3968.

44. Ohsugia S.-I., Nishidea K., Oonob K. et al. New odorless method for the Corey-Kim and Swern oxidations utilizing dodecyl methyl sulfide (Dod-S-Me). // 'Tetrahedron. 2003. — 59. — p. 8393−8398.

45. I leathcock Π‘. II., Hllis J. E., McMurry J. E., Coppolino A. Acid-catalyzed robinson annelations. // 'Tetrahedron Lett. 1971. — 12. — p. 4995−4996.

46. G. II. Posner An Introduction to synthesis using organocopper reagents. New York: Wiley, 1980.

47. Ploypradith, P. Development of artemisinin and its structurally simplified trioxane derivatives as antimalarial drugs. // Acta Trop. 2004. -89.-p. 329−342.

48. Corey E. J., Mehrotra M. M., Khan A. U. Generation of 'Ag 02 from triethylsilane and o/one. // J. Am. Chem. Soc. 1986. — 108. — p. 24 722 473.

49. Posner G. II., Webb K. S., Nelson W. M. et al. A new oxidizing reagent: triethylsilyl hydrotrioxide. // J. Org. Chem. 1989. — 54. — p. 3252−3254.

50. Synglet oxygen. Wassermann, II. F., Murray, R. W., Eds. New York: Academic Press, 1979.

51. Jefford Π‘. W., Velarde J., Bernardinelli G. Synthesis of tricyclic arteannuin-like compounds. Tetrahedron Lett. — 1989. — 30. — p. 44 854 488.

52. Posner G. II., Oh Π‘. II., Milhous W. K. Olefin oxidative cleavage and dioxetane formation using triethylsilyl hydrotrioxide: applications to preparation of potent antimalarial 1,2,4-trioxanes. // Tetrahedron Lett. -1991.-32.-p. 4235−4238.

53. Posner G. II., Oh Π‘. II., Gerena L., Milhous W. K. Synthesis and antimalarial activities of structurally simplified 1,2,4-trioxanes related to artemisinin //1 Ieteroatom Chemistry. 1995. — 6. — p. 105−116.

54. Oh Π‘. II., Wang D., Gumming J. N., Posner G. II. Antimalarial 1,2,4-trioxanes related to artemisinin: rules for assignment of relative stereochemistry in diversely substituted analogs. // Spectroscopy Lett. -1997.-30.-p. 241−255.

55. Posner G. II., Oh Π‘. II., Gerena L., Milhous W. K. Extraordinarily potent antimalarial compounds: new, structurally simple, easily synthesized, tricyclic 1,2,4-trioxanes. // J. Med. Chem. 1992. — 35. — p. 2459−2467.

56. Posner G. II., McGarvey D. J., Oh Π‘. II. et al. Structure-activity relationships of lactone ring-opened analogs of the antimalarial 1,2,4-trioxane artemisinin. // J. Med. Chem. 1995. — 38. — p. 607−612.

57. Oh Π‘. II., Kang J. II., Posner G. II. A short synthesis of 6,9-desmethyldeoxoartemisinin and its isomer. // Bull. Korean Chem. Soc. -1996. 17.-p. 581−582.

58. Oh Π‘. II., Posner G. II. Syntheses and iron (II) induced reactions of phenyl-substituted 1,2,4-trioxanes. // Bull. Korean Chem. Soc. 1997. -18.-p. 644−648.

59. Abraham R. J., Fisher J., Loftus P. Introduction to NMR Spectroscopy. Chichester, UK: John Wiley, 1990. — Chapter 3, Section 5.

60. Posner G. II., Cumming J. N., Woo S.-II. et al. Orally active antimalarial 3-substituted trioxanes: new synthetic methodology and biological evaluation. // J. Med. Chem. 1998. — 41. — p. 940−951.

61. Cumming J. N., Wang D., Park S. B. et al. Design, synthesis, derivati/ation, and structure-activity relationships of simplified, tricyclic, 1,2,4-trioxane alcohol analogues of the antimalarial artemisinin. // J. Med. Chem. 1998.-41.-p. 952−964.

62. Posner G. 11., Wang D., Gonzalez L. et al. Mechanism-based design of simple, symmetrical, easily prepared, potent antimalarial endoperoxides. //Tetrahedron Lett. 1996. — 37. — p. 815−818.

63. Posner G. 11., Gonzalez L., Cumming J. N. et al. Synthesis and antimalarial activity of heteroatom-containing bicyclic endoperoxides. //Tetrahedron. 1997. — 53. — p. 37−50.

64. Takashi Y., Okitsu O., Ando M., Miyashi T. Hlectron-transfer induced intramolecular |2 -t 2. cyloaddition of 2,6-Diarylhepta-l, 6-dienes Tetrahedron Lett. 1994. — 35. — p. 3953−3956.

65. Tebbe F. N., Parshall G. W., Reddy G. S. Olefin homologation with titanium methylene compounds. // J. Am. Chem. Soc. 1978. — 100. — p. 3611−3613.

66. Desjardins R. I:., Canfield C. J., Ilaynes J. D., Chulay J. D. Quantitative assessment of antimalarial activity in vitro by asemiautomated microdilution technique. // Antimicrob. Agents Chemother. 1979. — 16. — p. 710−718.

67. Milhous W. K., Weatherly N. F., Bowdre J. II., Desjardins R. E. // Antimicrob. Agents Chemother. 1985. — 27. — p. 525−531.

68. Posner G. П., Tao X., Cumming J. N. et al. Antimalarial^ potent, easily prepared, fluorinated endoperoxides. // Tetrahedron Lett. 1996. -37.-p. 7225−7228.

69. Adam W., Balci M. Photooxegynation of 1,3,5-cyclopentatriene: isolation and characterization of endoperoxides. // J. Am. Chem. Soc. -1979.-101. 7537−7541.

70. Posner G. II., O’Dowd II., Ploypradith P. et al. Antimalarial cyclic peroxy ketals. // J. Med. Chem. 1998. — 41. — p. 2164−2167.

71. Posner G. II., O’Dowd II. An antimalarially active cyclic peroxy ketal. //1 Ieterocycles. 1998. — 47. — p. 643−646.

72. Ricard R., Sauvage P., Wan C. S. K. et al. Photochemical enoli/ation of P-alkyl «^-unsaturated ketones. J. Org. Chem. 1986. -51.-p. 62−67.

73. Snider Π’. Π’., Shi Z. Total synthesis of (±)-chondrillin, (i)-plakorin, and related peroxy ketals. // J. Am. Chem. Soc. 1992. — 114. — p. 17 901 800.

74. Snider Π’. Π’., Shi Z., O’Neill S. V. et al. Stereochemical dependence of base-cataly/ed cleavage of cyclic peroxy ketals. // J. Org. Chem. -1994. -59.-p. 1726−1729.

75. Bachi M. D., Korshin H. K. Thiol-oxygen cooxidation of monotrpenes. synthesis of endoperoxides structurally related to antimalarial yingzhaosu A. // Synlett. 1998. — p. 122−124.

76. Bachi M. D., Korshin H. H., Ploypradith P. et al. Synthesis and in vitro antimalarial activity of sulfone endoperoxides. // Bioorg. Med. Chem. Lett. -1998. 8. — p. 903−908.

77. Posner G. II., O’Dowd II., Caferro T. et al. Antimalarial sulfone trioxanes. // Tetrahedron Lett. 1998. — 39. — p. 2273−2276.

78. Posner G. 11., Maxwell J. P., O’Dowd 11, et al. Antimalarial sulfide, sulfone, and sulfonamide trioxanes. // Bioorg. Med. Chem. 2000. — 8. -p. 1361−1370.

79. Bartlett P. D., Chu II.-K. Mechanism of the direct reaction of phosphite o/onides with olefins. // J. Org. Chem. 1980. — 45. — p. 30 003 004.

80. Bartlett P. D., Mendenhall G. D., Durham D. L. Controlled generation of singlet oxygen at low temperature from triphenyl phosphite ozonide. // J. Org. Chem. 1980. — 45. — p. 4269−4271.

81. Mendenhall G. D., Priddy D. B. A reexamination of the o/one-triphenyl phosphite system. The origin of triphenyl phosphate at low temperatures. // J. Org. Chem. 1999. — 64. — p. 5783−5786.

82. Lee I. S., HI Sohly II. N., Croom E. M., Ilufford C. D. Microbial metabolism studies of the antimalarial sesquiterpene artemisinin. // J. Nat. Prod. 1989.-52.-p. 337−341.

83. Vennerstrom J. L., Eaton J. W. Oxidants, oxidant Drugs, and malaria. J. Med. Chem. 1988. — 31. — p. 1269−1277.

84. Posner G. II., Oh Π‘. II. A regiospecifically oxyge-18 labeled 1,2,4-trioxane: A simple chemical model system to probe the mechanism (s) of the antimalarial activity of artemisinin (qinghaosu). // J. Am. Chem. Soc. 1992.-114.-p. 8328−8329.

85. Posner G. II., Park S. Π’., Gon/alez L. et al. Evidence for the importance of high-valent Fe=0 and of a diketone in the molecularmechanism of action of antimalarial trioxane analogs of artemisinin. //J. Am. Chem. Soc. 1996. — 118. — p. 3537−3538.

86. Robert A., Meunier B. Characterization of the first covalent adduct between artemisinin and a heme model // J. Am. Chem. Soc. 1997. -119.-p. 5968−5969.

87. Robert A., Meunier B. Is alkylation the main mechanism of action of the antimalarial drug artemisinin? // Chem. Soc. Rev. 1998. — 27. — p. 273−279.

88. Posner G. 11., Cumming J. N., Ploypradith P., Oh Π‘. 11. Evidence for Fe (IV)=0 in the molecular mechanism of action of the trioxane antimalarial artemisinin. // J. Am. Chem. Soc. 1995. — 117. — p. 58 855 886.

89. Bharel S., Vishwakarma R. A., Jain S. K. Artemisinin mediated alteration of haemin to a 5-meso oxidation product: relevance to mechanism of action. // J. Chem. Soc. Perkin Trans. 1. 1998. — p. 21 632 166.

90. Wu W.-M., Yao Z.-J., Wu Y.-L. et al. Ferrous ion induced cleavage of the peroxy bond in qinghaosu and its derivatives and the DNA damage associated with this process. //Chem. Commun. 1996. — p. 2213−2214.

91. Sadava D., Phillips Π’., Lin C., Kane S. E. Transferrin overcomes drug resistance to artemisinin in human small cell lung carcinoma cells. // Cancer Lett. 2002. — 179. — p. 151 -156.

92. Lai II. C., Singh N. P. Selective cancer cell cytotoxicity from exposure to dihydroartemisinin and holotransferrin. Cancer Lett. 1995. -91. — p. 41−46.

93. I lai. 5 578 637 БША. Methods of inhibition or Killing Cancer Cells Using an Hndoperoxide. / Lai 11. C., Singh, N. P. ΠžΠΏΡƒΠ±Π». 08.09.1996.

94. Woerdenbag, II. J. et al. Cytotoxicity of artemisinin-related endoperoxides to HAT cells. // J. Nat. Prod. 1993. — 56. — p. 849−856.

95. Posner G. II., Nelson T. D., Guton K. Z., Kensler, T. W. New vitamin D3 derivatives with unexpected antiproliferative activity: 1-(hydroxymethyl)-25-hydroxyvitamin D3 homologs. // J. Med. Chem. -1992.-35.-p. 3280−3287.

96. Posner G. 11., Ploypradith P., I Iapangama W. et al. Trioxane dimers have potent antimalarial, antiproliferative, and antitumor activities in vitro. // Bioorg. Med. Chem. 1997. — 5. — p. 1257−1265.

97. Posner G. II., Ploypradith P., Parker M. II. et al. Antimalatial, antiproliferative, and antitumor activities of artemisinin-derived, chemically robust, trioxane dimers. // J. Med. Chem. 1999. 42. — p. 4275−4280.

98. Jung M., Lee S., I lam J. et al. Antitumor activity of novel deoxoartemisinin monomers, dimers, and trimer. // J. Med. Chem. 2003. 46. p. 987−994.

99. Posner G. II., Paik I.-II., Sur S. et al. Orally active, antimalarial, anticancer, artemisinin-derived trioxane dimers with high stability and efficacy. //J. Med. Chem. 2003. — 46. — p. 1060−1065.

100. Jeyadevan J. P., Bray P. G., Chadwick J. et al. Antimalarial and antitumor evaluation of novel C-10 non-acetal dimers of 10P-(2-hydroxyethyl)deoxoartemisinin. // J. Med. Chem. 2004. — 47. — p. 12 901 298.

101. Stork G., Bri//olara A., Landesman II. et al. 'I he enamine alkylation and acylation of carbonyl compounds. // J. Am. Chem. Soc. -1963.-85.-p. 207−222.

102. Ilam/aoui M., Provot O., Camu/t-Dedenis B. et al. Wittig reaction: a new route to a-methoxyketones. application to the synthesis of simplified analogs of artemisinin. // Tetrahedron Lett. 1998. — 39. — p. 4029−4030.

103. Wang X., Rabbat P., O’Shea P. et al. Selective monolithiation of 2,5-dibromopyridine with butyllithium. // Tetrahedron Lett. 2000. — 41. -p. 4335−4338.

104. Tanino K., Katoh 'I'., Kuwajima I. A highly selective one-carbon ring enlargement reaction directed by silicon. // Tetrahedron Lett. 1988. 29. p. 1815−1818.

105. Ley S. V., Norman J., Griffith W. P., Marsden S. P. Tetrapropylammonium perruthenate, Pr4NTRuO, 'Π“Π Π›Π : a catalytic oxidant for organic synthesis. // Synthesis. 1994. — p. 639−657.

106. Mascarenas J.-L., Perez-Sestelo J., Castedo L., Mourino Π›. Π› short, flexible route to vitamin D metabolites and their side chain analogues. // Tetrahedron 1, ett. 1991. 32. — p. 2813−2816.

107. Ilaynes R. K., Vonwiller S. C. The behaviour of qinghaosu (artemisinin) in the presence of non-heme iron (II) and (III). //Tetrahedron Lett. 1996.-37.-p. 257−260.

108. Fadel A., Salaun J., Conia J. M. Small ring compounds — XLI: cyclobutene cycloadditionssynthesis and reactivity in the bicyclo2.2.0.hexan-2-one series. // Tetrahedron. 1983. — 39. — p. 15 671 574.

109. ΠœΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½Ρ‹ΠΉ naieni W00059501. Synthesis and activity of water-soluble trioxanes as potent and safe antimalarial agents. / Posner G. II., Parker, M. II., Krasavin M., Shapiro Π’. A. ΠžΠΏΡƒΠ±Π». 06.06.2000.

110. I lai. 6 136 847 БША. Water-soluble trioxanes as potent and safe antimalarial agents. / Posner G. 11., Parker M. H., Krasavin M., Shapiro T. А.-ΠžΠΏΡƒΠ±Π». 16.08.2000.

111. Posner G. II., Weitzberg M., Nelson W. M. et al. 1,2-Dioxetanes from vinyl aromatics. // J. Am. Chem. Soc. 1987. — 109. — p. 278−279.

112. Carless II. A. J., Billinge J. R., Oak O. Z. Photochemical routes from arenes to inositol intermediates: the photo-oxidation of substituted cis-cyclohexa-3,5-diene-l, 2-diols. // Tetrahedron Lett. 1989. — 30. — p. 3113−3116.

113. Mirjalili Π’. F, Zolfigol M. Π›., Bamoniri A., Zarei A. Silica sulfuric acid/potassium permanganate/wet S1O2 as an efficient heterogeneous method for the oxidation of alcohols under mild conditions. // Bull. Korean Chem. Soc. 2003. — 24. — p. 400−402.

114. Avery M. A., Mehrota S., Bonk J. D. et al. Structure-activity relationships of the antimalarial agent artemisinin. 4. effect of substitution at C-3. // J. Med. Chem. 1996. — 39. — p. 2900−2906.

115. Posner G. II., Jeon II. Π’., Parker M. II. et al. Antimalarial simplified 3-aryltrioxanes: synthesis and preclinical efllcacy/toxicity testing in rodents. // J. Med. Chem. 2001. — 44. — p. 3054−3058.

116. Trabanco A. A., Montalban A. G., Rumbles G. et al. A seco-porphyrazine: superb sensitizer for synglet oxygen generation and endoperoxide synthesis. // Synlett. 2000. — 7. — p. 1010−1012.

117. Wang D. Ph. D. thesis. The Johns I lopkins University, 1996.

118. McDougal P. G., Rico J. G., Oh Y. I., Condon B. D. A convenient procedure for the monosilylation of symmetric l, n-diols. // J. Org. Chem. 1986.-51.-p. 3388−3390.

119. Ploypradith P. Ph. D. thesis. The Johns I lopkins University, 1999. -p. 157.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ