Помощь в учёбе, очень быстро...
Работаем вместе до победы

Молекулярная динамика и диффузия в биомембранах

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Взаимодействие углеродных нанотрубок и их комплексов с пептидами с биомембранами показывает, что в ходе «нановыстрела» из «нанош^ прица» начальная спиральная конформация наиболее сильно деформируется при выбросе полипептида в вакуум и менее всего — в мембрану. Среда играет в этом процессе демпфирующую и структурирующую роль. Преимуществом моделируемой конструкции является ее способность… Читать ещё >

Содержание

  • Список сокращений
  • Глава 1. Молекулярное моделирование биомембран
  • Молекулярно-динамические расчеты
  • Силовое поле в молекулярной динамике
  • Определение парциальных атомных зарядов методами квантовой химии
  • Анализ заселенностей орбиталей
  • Уравнения движения
  • Выбор ансамбля
  • Контроль давления и температуры
  • Экспериментальные данные по бислоям
  • Монослои — модель мембраны в молекулярно-динамических расчетах
  • Модели неявно заданной мембраны
  • Изучение гидрофобных взаимодействий на мембранном интерфейсе
  • Изучение диффузии малых молекул через мембраны
  • Глава 2. Гидрофобная мембрана на основе тетрадекана
  • Простые модели гидрофобных сред
  • Протокол молекулярной динамики
  • Результаты и обсуждение
  • Глава 3. Динамическая гетерогенность липидного бислоя
  • Постановка задачи
  • Протокол молекулярной динамики
  • Релаксация бислоя
  • Флуктуации параметров бислоя
  • Поверхностное натяжение бислоя
  • Распределения атомных групп и характер укладки атомов бислоя
  • Параметры порядка
  • Профиль электростатического потенциала
  • Латеральная диффузия липидов и микровязкость мембраны
  • Обсуждение оптимальной длины траектории
  • Глава 4. Взаимодействие углеродных нанотрубок и их комплексов с биомембранами
  • Перспективы молекулярного моделирования в бионанотехнологии
  • Постановка численного эксперимента
  • Нанотрубка
  • Внутренне содержимое нанотрубки
  • Ван-дер-ваальсовы сферы
  • Липидный бислой
  • Расчеты с абсорбцией
  • Моделирование «нановыстрела»
  • Абсорбция холестерина
  • Взаимодействие полипептида с нанотрубкой
  • Взаимодействие углеродной нанотрубки с фосфолипидным бислоем
  • Наношприц" в действии

Молекулярная динамика и диффузия в биомембранах (реферат, курсовая, диплом, контрольная)

МД мембранных структур в настоящее время представляет значительный интерес в связи с развитием молекулярных технологий и биотехнологий. Вместе с тем эти объекты достаточно трудны для экспериментальных исследований, и фундаментальные закономерности динамического поведения таких структур остаются все еще не вполне ясными, несмотря на огромный прогресс в этой области. Это касается и детальной микроскопической картины массои энергопереноса в сильно анизотропных структурированных гетерогенных средах, формирования и релаксации неравновесных надмолекулярных структур, особенностей распределения молекулярных групп с различной полярностью на границах раздела фаз. В данной работе метод МД с использованием полноатомных силовых полей, специальных процедур и достаточно длинных траекторий применяется для уточнения микроскопической картины диффузионных процессов на границе водной и мембранной фаз. Использование полноатомного приближения делает МД-расчеты столь г больших систем достаточно трудоемкими и не позволяет надеяться на достижение термодинамического равновесия. Поэтому весьма актуальным является развитие таких методов МД и протоколов расчета, которые позволяли бы за разумные времена вычислять величины, сопоставимые с экспериментальными данными. Сравнительно новым подходом здесь является развиваемый ниже вариант метода управляемой динамики, который позволяет стимулировать молекулярные процессы по определенным степеням свободы. Использование этого метода при одновременном контроле над равновесным характером распределений значимых с физической точки зрения величин (скоростей, объема, площади и давления) на масштабе характерных времен интересующих процессов позволяет дать количественную оценку параметрам, характеризующим физические механизмы элементарных актов переноса в микрогетерогенных структурах. Важным с биологической точки зрения является использование подобного подхода в дизайне и моделировании функциональных наноструктур, задействованных, например, при направленной доставке веществ через мембрану.

выводы.

1. Переход молекул из водного раствора в биомембраны и модельные углеводородные слои связан с преодолением значительного кинетического барьера. Бислойная мембрана, состоящая из тетрадекана (объемная плотность от 0.707 до 0.771 г/см, удельная поверхностная площадь углеводорода 19 А2 на молекулу) проницаема при давлении 1 атм лишь для очень маленьких и сильно гидрофобных молекул на временах порядка 10 не. Диффузия молекулярного кислорода приводит к накоплению молекул 02 в середине бислоя, где наблюдается пониженная плотность. Заметные скорости форсированного проникновения молекул в мембраны (более 1 А/пс, т. е. 100 м/с) за времена порядка 1 не наблюдаются лишь при действии внешней силы, большей некоторой критической величины, возрастающей с увеличением радиуса молекулы. При этом наблюдаются нелинейные зависимости скорости дрейфа молекул от величины внешней силы. Гидродинамическое соотношение Стокса работает здесь лишь качественно, что указывает на определенную неравновесность системы.

2. Энергия переноса из воды в тетрадекан для основных типов атомов Amber 1999, варьируется от 0.9 до 5.5 ккал/моль, что находится в тесной корреляции с изменением соответствующей борновской энергии сольватации. При этом в ряду атомов Салиф, S, Саро, О, N, О*, Срстеро увеличиваются значения энергии переноса (т.е. гидрофобность уменьшается). Аддитивность вкладов структурных фрагментов молекул в свободную энергию переноса функциональных групп отсутствует.

3. Использование столкновительного термостата и баростата Берендсена с анизотропным баростатированием позволяет компенсировать как эффекты поверхностного натяжения липидного бислоя, так и естественные погрешности параметризации силового поля. Использование специального МД-протокола позволяет получить мембранную структуру ПОФХ в согласии с данными эксперимента по удельной площади липидов и толщине мембраны, параметрам порядка и форме электростатического потенциала. Коэффи.

7 9 циент латеральной диффузии липидов при этом составляет 2.46×10″ см /с и практически совпадает с экспериментальными данными.

4. Численные эксперименты по форсированному транспорту пробных частиц через липидную мембрану дают значение эффективной микровязкости, измеренной в направлении нормали к поверхности мембраны ПОФХ при действии силы больше порогового значения (порядка 1 ккал/(моль-А)), не более 6 сПз, причем центральная область бислоя оказывается примерно на порядок менее вязкой, чем поверхностный слой. Вязкость, измеренная в центре бислоя в латеральном направлении, оказывается приблизительно такой же, как и в области алкильных цепей при действии внешней силы в направлении нормали. Наиболее чувствительна в терминах сопротивления среды в зависимости от химической природы молекулы-пенетранта область липидных голов, гидрофобная сердцевина более чувствительна к размеру молекулы.

5. Взаимодействие углеродных нанотрубок и их комплексов с пептидами с биомембранами показывает, что в ходе «нановыстрела» из «нанош^ прица» начальная спиральная конформация наиболее сильно деформируется при выбросе полипептида в вакуум и менее всего — в мембрану. Среда играет в этом процессе демпфирующую и структурирующую роль. Преимуществом моделируемой конструкции является ее способность к самосборке (продолжительность формирования конфигурации, активной для самосборки структуры нанотрубка-пептид, при 1000 К составила 4.64 нс, при 2000 К -0.655 неэто дает оценку величины энергии активации порядка 7.8 ккал/моль, а ожидаемое время самосборки при 300 К составляет 43 мкс). Полноатомный МД-расчет также подтвердил предположение о возможности использовать углеродные нанотрубки как наноконтейнеры, в частности для холестерина (энергия абсорбции — 30 ккал/моль).

БЛАГОДАРНОСТИ.

Автор признателен научному руководителю, К. В. Шайтану за неоценимый вклад в развитие идей, излагаемых в диссертации, а также сотрудникам лаборатории молекулярного моделирования кафедры биоинженерии МГУ, оказывавшим помощь на разных этапах работы. Отдельная признательность выражается Д. Н. Голику за помощь при сборке наноструктур и расчете их динамики.

ЗАКЛЮЧЕНИЕ

.

Разработанные методы и протоколы МД, в том числе SMD, позволяют получить новую информацию о динамике и функционировании молекулярных конструкций на основе мембран. Использованная простейшая полноатомная модель гидратированной мембранной структуры на основе тетрадекана позволяет исследовать закономерности формирования распределения различных молекул между двумя фазами — гидрофобной и водной. Как было показано, лишь очень маленькие и сильно гидрофобные молекулы, например кислород, способны за времена меньше 10 нс самостоятельно проникнуть в мембранный слой при нормальных условиях. При фиксированном объеме проникновение в структурированную мембранную среду сильно затруднено. Обнаружено накопление кислорода в середине бислоя, что обусловлено повышенной рыхлостью структуры на интерфейсе двух монослоев.

Изучение динамики трансмембранной диффузии за времена порядка 10 нс требует проведения расчетов при повышенной температуре. Энергия переноса, вычисленная при температуре 1000 К для основных типов атомов Amber 1999, варьируется от 0.9 до 5.5 ккал/моль. Эти изменения энергии находятся в тесной корреляции с изменением соответствующей борновской энергией сольватации. Важно отметить отсутствие аддитивности вкладов атомов в свободную энергию переноса функциональных групп. Это затрудняет простую континуальную имитацию гидрофобной среды путем включения в потенциальную энергию дополнительного терма, описывающего взаимодействие атомов с этой средой.

Вычисленные распределения аминокислотных остатков между тетраде-кановым монослоем находятся в соответствии с их известными гидрофобными свойствами.

Рассмотрение процессов равновесной динамики даже относительно небольших молекул в рассматриваемых системах не позволяет за разумные времена численного эксперимента сделать окончательные выводы о балансе гидрофобных сил при комнатной температуре. Развиваемый метод неравновесной динамики (SMD) позволяет организовать направленный и более быстрый сценарий развития событий по определенным степеням свободы. При этом вместо накопления равновесных траекторий осуществляется контроль над характером распределений значимых с физической точки зрения величин (скоростей, объема, площади и давления), который позволяет судить о достижении локального равновесия. Вычисляемые таким способом кинетические коэффициенты термодинамическими и статистическими соотношениями связаны с равновесными параметрами системы. Модельные расчеты диффузии на молекулярных масштабах показывают уже при скоростях 1 А/пс существенные отклонения от движения сферических частиц в сплошной среде, описываемого гидродинамической формулой Стокса, что вполне естественно — приближение сплошной среды на молекулярном уровне работает плохо. Формула Стокса в этом случае может использоваться лишь для качественных оценок. Аналогично обстоит дело и с динамикой образования и релаксации надмолекулярных мембранных структур (в контексте мембраны, пор). Образование поры кардинально меняет динамику трансмембранного транспорта. Время релаксации поры в тетрадекановой мембране относительно велико (более 10 не), и эффекты памяти в динамике такой простейшей мембраны могут быть весьма существенными.

При рассмотрении полностью гидратированного бислоя ПОФХ методами МД оказывается возможным определить, в частности, следующие параметры: поверхностную плотность мембраны, толщину бислоя, распределение атомных групп относительно нормали к мембране, радиальные функции распределения атомов в плоскости бислоя, параметры порядка для липидных цепей. Показано, что использование столкновительного термостата и баростата Берендсена с анизотропным баростатированием позволяет компенсировать как эффекты поверхностного натяжения, так и естественные погрешно^ сти параметризации силового поля. Использование данного МД-протокола позволяет получить мембранную структуру в согласии с данными эксперимента по удельной площади липидов и толщине мембраны. (По этим параметрам обычно калибруют МД-протоколы). При этом не наблюдается значи* тельных расхождений для параметров порядка и формы электростатического потенциала с результатами других экспериментов и численных расчетов, использующих несколько иные методики. Коэффициент латеральной диффузии.

7 2 липидов составляет 2.46×10″ см /с и весьма близок к экспериментальным результатам, в отличие от многих завышенных значений других вычислений. В целом, использованная выше методика приводит систему к локальному равновесию и практически неизменным дальнейшим распределениям и профилям изученных параметров за время порядка 3 не.

Развиваемый метод управляемой МД также позволяет определить анизотропную микровязкость в разных частях липидного бислоя. Отметим, что само понятие вязкости или микровязкости для таких систем нуждается в определенных пояснениях. Речь идет фактически о некоторой количественной характеристике локальных диссипативных свойств, выраженной в единицах вязкости. Гидродинамическим соотношением Стокса при этом можно пользоваться лишь для оценок порядка величины. В этом случае необходима калибровка микровязкости в заданном диапазоне сил по частицам определенного радиуса и химической природы.

Анизотропная микровязкость в разных частях бислоя может различаться на порядок и более. Отметим, что заметные скорости проникновения молекул в бислой за времена порядка 2 не наблюдаются лишь при действии внешней силы, большей некоторой критической величины. Значение величины критической силы возрастает с увеличением радиуса молекулы. Как и в случае с тетрадекановой мембраной, при скоростях движения начиная с 1 А/пс начинают наблюдаться неравновесные эффекты.

Отметим, что наибольшие различия для эффективной микровязкости в зависимости от химической природы молекулы-пенетранта наблюдаются в области липидных голов, тогда как рыхлая гидрофобная сердцевина чувствительна к размеру молекулы-пенетранта.

Коэффициент диффузии молекулярного кислорода в направлении нормали к мембране, в силу некоторой неравновесности метода SMD, дает за-вышенны по сравнению с тетрадекановым бислоем (1.71×10'5 см2/с) значения как в области липидных голов (3.12×10'5 см2/с), так и гидрофобной сердцевины бислоя ПОФХ (6.79×10″ 5 см2/с).

Полученные величины для коэффициентов трения в направлении нормали к поверхности мембраны при действии силы больше порогового значения (порядка 1 ккал/(моль-А)) составляют не более 6 сПз в терминах эффективной микровязкости. При этом центральная область бислоя для ван-дер-ваальсового шара оказывается примерно на порядок менее вязкой, чем псверхностный слой. Отметим также, что при силе, превышающей критическое значение, имеется временная задержка для проникновения частицы в мембрану, причем это время уменьшается при возрастании силы. Вязкость, измеренная в центре бислоя в латеральном направлении, оказывается приблизительно такой же, как и в области алкильных цепей при действии внешней силы в направлении нормали.

Проведенные расчеты, в которых нанотрубка протыкала липидный бислой, позволяют оценить соответствие временных масштабов силовым воздействиям, которое важно учитывать, например, при постановке аналогичных экспериментов атомно-силовой микроскопии. В данном случае внешняя сила соответствует напору кантилевера с присоединенной на конце нанот-рубкой.

Полноатомный МД-расчет абсорбции холестерина нанотрубкой подтвердил предположение о возможости использовать углеродные нанотрубки как наноконтейнеры для биомолекул. В самом деле, вне зависимости от того, нанотрубка предварительно гидратирована или нет, она легко может поглотить небольшие негидрофильные молекулы, в том числе холестерин и поли-аланин. Другой особенностью подобных наноконтейнеров является их логическое развитие в устройства на основе нанотрубок, такие как «наношприц». Было показано, что базовая конструкция «наношприца» может быть использована для доставки молекул через липидную мембрану.

В будущем, модифицируя нанотрубку (путем добавления функциональных групп) можно достичь как селективной абсорбции, так и селективной посадки нанотрубки на клеточных мембранах. Результаты данного МД-исследования являют мощный инструмент в проектировании будущего реального устройства.

Показать весь текст

Список литературы

  1. Nagle J.F., Weiner M.C. Structure of fully hydrated bilayer dispersions. Biochim. Biophys. Acta, 942, 1988, 1−10.V
  2. Seelig J., Waespe-Sarcevic N. Molecular order in cis and trans unsaturated phospholipids bilayers. Biochemistry, 17, 1978, 3310−3315.
  3. Pasenkiewicz-Gierula M., Murzyn K., Rog Т., Czaplewski C. Molecular dynamics simulation studies of lipid bilayer systems. Acta Biochim. Pol., 47, 2000, 601−611.
  4. Heller H., Schaefer M., Schulten K. Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid crystal phases. J. Phys. Chem., 97, 1993,8343−8360.
  5. Chiu S.W., Jakobsson E., Scott H.L. Combined Monte Carlo and molecular dynamics simulation of hydrated lipid-cholesterol lipid bilayers at low cholesterol concentration. Biophys. J., 80, 2001, 1104−1114.
  6. Almeida P.F.F., Vaz W.L.C. Lateral diffusion in membranes. In: Handbook of biological physics, Lipowsky R., Sackmann E., Eds. Elsevier Science B. V, 1995, vol. 1, chap. 6, 305−357.
  7. Subczynski W.K., Wisniewska A. Physical properties of lipid bilayer membranes: relevance to membrane biological functions. Acta Biochim. Pol., 47, 2000,613−625.
  8. Essmann U., Berkowitz M.L. Dynamical properties of phospholipid bilayers from computer simulation. Biophys. J., 76, 1999, 2081−2089.
  9. Lindahl E. Computational modeling of biological membrane and interface dynamics. Doctoral dissertation. Royal Institute of Technology, 2001. *
  10. Tieleman D.P., Marrink S.J., Berendsen H.J. A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim. Biophys. Acta, 1331, 1997, 235−270.
  11. Sonnleitner A., Schutz G.J., Schmidt Th. Free brownian motion of individual lipid molecules in biomembranes. Biophys. J., 77, 1999, 2638−2642.
  12. Koynova R., Caffrey M. Phases and phase transitions of the phosphatidylcholines. Biochim. Biophys. Acta, 1376, 1998, 91−145.9
  13. Mashl R.J., Scott H.L., Subramaniam Sh., Jakobsson E. Molecular simulation of dioleoylphosphatidylcholine lipid bilayers at differing levels of hydration. Biophys. J., 81, 2001, 3005−3015.
  14. Rabinovich A.L., Balabaev N.K., Alinchenko M.G., Voloshin V.P., Medve-dev N.N., Jedlovszky P. Computer simulation study of intermolecular void" in unsaturated phosphatidylcholine lipid bilayers. J. Chem. Phys., 122, 2005, 84 906.
  15. Sengupta K., Raghunathan V.A., Katsaras J. Novel structural features of the ripple phase of phospholipids. Europhys. Lett., 49,2000, 722−728.
  16. A.JI., Рипатти П. О., Балабаев H.K. Молекулярная динамика липидных бислоев: флуктуационные свойства углеводородных цепей. Журн. Физ. Химии, 76, 2002, 2007−2011.
  17. Small D.M. Lateral chain packing in lipids and membranes. J. Lipid Res., 25, 1984, 1490−1500.
  18. Saiz L., Klein M.L. Structural properties of a highly polyunsaturated lipid bilayer from molecular dynamics simulations. Biophys. J., 81, 2001, 204 216.
  19. Tourleigh Ye.V., Shaitan K.V. Molecular dynamics study of molecular mobility in catenanes. Defect Diff. Forum, 237−240, 2005, 1181.
  20. Wang J., Cieplak P., Kollman P.A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem., 21, 2000, 1049−1074.
  21. Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminatan S., Karplus M. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem., 93, 1983, 2487−2502.
  22. Nelson M., Humphrey A., Gursoy A., Dalke A., Kale R.D., Skeel R.D., Schulten K. NAMD a parallel, object-oriented molecular dynamics program. Int. J. Supercomput. Appl. High Perform. Comput., 10, 1996, 251 268.
  23. Feller S.E. Molecular dynamics simulation of phospholipid bilayers. In: Lipid bilayers, Katsaras J., Gutberlet Th., Eds. Springer, New York, 2000, 89−107.
  24. Patra M., Karttunen M., Hyvonen M.T., Falck E., Lindqvist P., Vattulainen I. Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys. J., 84, 2003, 3636−3645.
  25. Seelig J., Macdonald P.M., Scherer P.G. Phospholipid head groups as sensors of electric charge in membranes. Biochemistry, 26, 1987, 7535−7541.
  26. Pasenkiewicz-Gierula M., Takaoka Y., Miyagawa H., Kitamura K., Kusumi A. Charge pairing of headgroups in phosphatidylcholine membranes: a molecular dynamics simulation study. Biophys. J., 76, 1999,1228−1240.
  27. M., Гавезотти А., Кучицу К. Молекулярные структуры. Прецизионные методы исследования. Мир, М., 1997.
  28. Rick S.W., Berne B.J. Free energy of the hydrophobic interaction from molecular dynamics simulations: the effects of solute and solvent polarizability. J. Phys. Chem. B, 101, 1997, 10 488−19 493.
  29. Feller S.E., Pastor R.W. Constant surface tension simulations of lipid bilayers: the sensitivity of surface areas and compressibilities. J. Chem. Phys., Ill, 1999, 1287.
  30. Feller S.E., Pastor R.W. On simulating lipid bilayers with an applied surface tension: periodic boundary conditions and undulations. Biophys. J., 7К 1996,1350−1355.
  31. Tu K., Tobias D.J., Blasie K., Klein M.L. Molecular dynamics investigation of the structure of a fully hydrated gel-phase dipalmitoylphosphatidylcholine bilayer. Biophys. J., 70, 1996, 595−608.
  32. P. Атомы в молекулах: квантовая теория. Мир, М., 2001.
  33. В.И., Симкин Б. Я., Миняев P.M. Теория строения молекул. Феникс, Ростов-на-Дону, 1997.
  34. Н.Ф. Квантовая механика и квантовая химия. Мир, Изд. Московского ун-та, М., 2001.
  35. К.В., Немухин А. В., Фирсов Д. А., Богдан Т. В., Тополь И. А. Электронно-конформационные взаимодействия и значение эффективных зарядов на атомах в пептидах. Мол. Биология, 31, 1997, 109−117.
  36. Tieleman D.P., Berendsen H.J.С. Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters. J. Chem. Phys., 105, 1996, 4871−488G<
  37. Marsh D. Lateral pressure in membranes. Biochim. Biophys. Acta, 1286,1996, 183−223.
  38. Cantor R.S. Lipid composition and the lateral pressure profile in bilayers. Biophys. J, 76,1999, 2625−2639.
  39. P. Биомембраны: Молекулярная структура и функции. Мир, М., 1997.
  40. Seelig A. Local anesthetics and pressure: a comparison of dibucaine binding to lipid monolayers and bilayers. Biochim. Biophys. Acta, 899, 1987, 196— 204.
  41. Chiu S.W., Clark M., Balaji V., Subramaniam S., Scott H.L., Jakobsson E^ Incorporation of surface tension into molecular dynamics simulation of interface: a fluid phase lipid bilayer membrane. Biophys. J., 69, 1995, 1230— 1245.
  42. Notter R.H., Tabak S.A., Mavis R.D. Surface properties of binary mixtures of some pulmonary surfactant components. J. Lipid Res., 21, 180, 10−22.
  43. Yun H., Choi Y.-W., Kim N.J., Sohn D. Physicochemical properties of phosphatidylcholine (PC) monolayers with different alkyl chains, at the air/water interface. Bull. Kor. Chem. Soc., 24, 2003, 377−383.
  44. Janig F. What is the surface tension of a lipid bilayer membrane? Biophys. J., 71, 1996, 1348−1349.
  45. Roux B. Commentary: surface tension of biomembranes. Biophys. J. 1996, 1346−1347.
  46. Lemak A.S., Balabaev N.K. On the Berendsen thermostat. Mol. Simul., 13, 1994, 177−187.
  47. B.JI., Шайтан К. В. Динамический аттрактор в термостате Беренд-сена и медленная динамика биомакромолекул. Биофизика, 47, 2002, 611−617.
  48. Paci Е., Marchi М. Free energy of the hydrophobic interaction from molecular dynamics simulations: the effects of solute and solvent polarizability. J. Phys. Chem, 100, 1996,4314−4322.
  49. Leermakers F.A.M, Rabinovich A. L, Balabaev N.K. Self-consistent-field modeling of hydrated unsaturated lipid bilayers in the liquid-crystal phase and comparison to molecular dynamics simulations. Phys. Rev. E, 67, 2003, 11 910.
  50. Rabinovich A. L, Ripatti P.O., Balabaev N. K, Leermakers F.A.M. Molecular dynamics simulations of hydrated unsaturated lipid bilayers in the liquid-crystal phase and comparison to self-consistent field modeling. Phys. Rev. E, 67, 2003,11 909.
  51. Binder H. The molecular architecture of lipid membranes new insights from hydration-tuning infrared linear dichroism spectroscopy. Appl. Spec. Rev., 38, 2003,15−69.
  52. Binder H, Gawrisch K. Dehydration induces lateral expansion of polyunsaturated 18:0−22:6 phosphatidylcholines in a new lamellar phase. Biophys. J, 81,2001,969−982.a.
  53. Binder H, Gawrisch K. Effect of unsaturated lipid chains on dimensions, molecular order and hydration of membranes. J. Phys. Chem. B, 105, 2001, 12 378−12 390.
  54. Biirsing H, Kundu S, Vohringer P. Solvation dynamics at aqueous lipid-membrane interfaces explored by temperature-dependent 3-pulse-echo peak shifts: influence of the lipid polymorphism. J. Phys. Chem. B, 107, 2003, 2404−2414.
  55. Binder H, Arnold K, Ulrich A. S, Zschornig O. Interaction of Zn2+ with phospholipid membranes. Biophys. Chem, 90, 2001, 57−74.
  56. Vogel M, Miinster C, Fenzl W, Salditt T. Thermal unbinding of highly oriented phospholipid membranes. Phys. Rev. Lett, 84, 2000, 390−393.
  57. Volke F., Pampel A. Membrane hydration and structure on a subnanometer scale as seen by high resolution solid state nuclear magnetic resonance: POPC and POPC/C12EO4 model membranes. Biophys. J., 68, 1995, 19 601 965.
  58. Funari S.S. X-Ray diffraction and NMR studies on mixtures of non-ionic surfactant (Ci2E02) and phospholipids (POPC). Acta Phys. Pol. A, 91, 1997, 953−960.
  59. Pabst G., Katsaras J., Raghunathan V.A., Rappolt M. Structure and interactions in the anomalous swelling regime of phospholipid bilayers. Langmuir, 19,2003, 1716−1722.
  60. Rappolt M., Pabst G., Amenitsch H., Laggner P. Salt-induced phase separation in the liquid crystalline phase of phosphatidylcholines. Colloids Surf. A: Physicochem. Eng. Aspects, 183,2001, 171−181.
  61. Tristram-Nagle S., Petrache H.I., Nagle J.F. Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys. J., 75, 1998, 917−925.
  62. Tristram-Nagle S., Liu Y., Legleiter J., Nagle J.F. Structure of gel phase DMPC determined by X-ray diffraction. Biophys. J., 83, 2002, 3324−3335.
  63. Wiener M.C., White S.H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron diffraction data. II. Distribution and packing of terminal methyl groups. Biophys. J., 61, 1992, 428−433.
  64. Winter R. Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure. Biochim. Biophys. Acta, 1595, 2002, 160−184.
  65. Fenske D.B., Cullis P.R. Acyl chain orientational order in large unilamellar• • 2 31vesicles: comparison with multilamellar liposomes. A H and P NMR study. Biophys. J., 64, 1993, 1482−1491.
  66. Lafleur M., Bloom M., Cullis P.R. Lipid polymorphism and hydrocarbon order. Biochem. Cell Biol., 68, 1990, 1−8.
  67. Nezil F.A., Bloom M. Combined influence of cholesterol and synthetic am-phiphillic peptides upon bilayer thickness in model membranes. Biophys. L* 61, 1992, 11 766−1183.
  68. Seelig J., Niederberger W. Deuterium-labeled lipids as structural probes in liquid crystalline bilayers. J. Am. Chem. Soc., 96, 1974, 2069−2072.
  69. Sternin E., Fine В., Bloom M., Tilcock C.P.S., Wong K.F., Cullis P.R. Acyl chain orientational order in the hexagonal Ни phase of phospholipid-water dispersions. Biophys. J., 54,1988, 689−694.
  70. Vaz W.L.C., Clegg R.M., Hallmann D. Translational diffusion of lipids in liquid crystalline phase phosphatidylcholine multibilayers. Biochemistry, 24, 1985,781−786.
  71. Fringeli U. P. Structural investigations of oriented membrane assemblies FTIR-ATR spectroscopy. Proc. 11th Int. Conf. Fourier Transf. Spec. AIP Conference Proceedings. 1998, 729−746.
  72. K.B., Пустошилов П. П. Молекулярная динамика монослоя стеариновой кислоты. Биофизика, 44, 1999, 436−441.
  73. Rabinovich A.L., Ripatti P.O., Balabaev N.K. Molecular dynamics investigation of bond ordering of unsaturated lipids in monolayers. J. Biol. Phys., 25, 1999, 245−262.
  74. H.K., Рабинович A.JT., Рипатти П. О., Корнилов В. В. Молекулярная динамика монослоев, состоящих из полиненасыщенных липидов. Журн. Физ. Химии, 72, 1998, 686−689.
  75. Efremov R.G., Volynsky Р.Е., Nolde D.E., Vergoten G., Arseniev A.S. Implicit two-phase solvation model as a tool to assess conformation and energetics of proteins in membrane-mimic media. Theor. Chem. Acc., 106, 2001,48−54.
  76. Efremov R.G., Nolde D.E., Vergoten G., Arseniev A.S. Peptides in membranes: assessment of environmental effects via simulations using an implicit solvation model. Theor. Chem. Acc. 1999, 170−174.
  77. Wolde P.R. Hydrophobic interactions: an overview. J. Phys. Cond. Matt., 14,2002, 9445−9460.
  78. White S., Wimley C.W. Hydrophobic interactions of peptides with membrane interfaces. Biochim. Biophys. Acta, 1376, 1998, 339−352.
  79. Han X., Tamm L.K. A host-guest system to study structure-function relationships of membrane fusion peptide. Proc. Natl. Acad. Sci. USA, 79, 2000, 13 097−13 102.
  80. Wimley W.C., White S.H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nature Struct. Biol., 3, 1996, 842−848.
  81. A.B., Птицын О. Б. Физика белка. Книжный дом «Университет», М., 2002.
  82. Chang Т.-М., Dang L.X. Molecular dynamics simulations of CCI4-H2O liquid-liquid interface with polarizable potential models. J. Chem. Phys., 104, 1996,6772−6783.
  83. MacCallum J. L., Mukhopadhyay P., Luo H., Tieleman D. P. Large scale molecular dynamcis simulations of lipid-drug interactions. Proc. 17th Ann. Int. Symp. High Perf. Comput. Syst. 2003.
  84. Feller S.E., Brown C.A., Nizza D.T., Gawrisch K. Nuclear overhauser enhancement spectroscopy cross-relaxation rates and ethanol distribution across membranes. Biophys. J., 82, 2002, 1396−1404.
  85. Olbrich K., Rawicz W., Needham D., Evans E. Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophys. J., 79, 2000, 321−327.
  86. Subczynski W.K., Hyde J.S., Kusumi A. Oxygen permeability of phosphati-dylcholine-cholesterol membranes. Proc. Natl. Acad. Sci. USA, 86, 1989* 4474−4478.
  87. Subczynski W.K., Hyde J.S. Diffusion of oxygen in water and hydrocarbons using an electron spin resonance spin-label technique. Biophys. J., 45, 1984, 743−748.
  88. Subczynski W.K., Hyde J.S., Kusumi A. Effect of alkyl chain unsaturation and cholesterol intercalation on oxygen transport in membranes: a pulse ESR spin labeling study. Biochemistry, 30, 1991, 8578−8590.
  89. Subczynski W.K., Hopwood L.E., Hyde J.S. Is the mammalian cell plasma membrane a barrier to oxygen transport? J. Gen. Physiol., 100, 1992, 69−87.
  90. McKinnon S.J., Whittenburg S.L., Brooks B. Nonequilibrium molecular dynamics simulation of oxygen diffusion through hexadecane monolayers with varying concentrations of cholesterol. J. Phys. Chem., 96, 1992, 10 506.
  91. З.И., Лонский A.B. Биофизика мембран. Изд-во СПбГУ, СПб., 1994.
  92. Wu К., Iedema M.J., Cowin J.P. Ion penetration of the water-oil interface. Science, 286, 1999, 2482−2485.
  93. Feller S.E. Molecular dynamics simulations of lipid bilayers. Cur. Opin. Colloid Interface Sci., 5, 2000, 217−223.
  94. Heyse S., Vogel H., Sanger M., Sigrist H. Covalent attachment of function-alized lipid bilayers to planar waveguides for measuring protein binding to biomimetic membranes. Prot. Sci., 4, 1995, 2532−2544.
  95. White S.H., Ladokhin A.S., Jayasinghe S., Hristova K. How membranes shape protein structure. J. Phys. Chem., 276, 2001, 32 395−32 398.
  96. Salamon Z., Lindblom G., Rilfors L., Linde K., Tollin G. Interaction of phosphatidylserine synthase from E. coli with lipid bilayers: coupled plas-mon-waveguide resonance spectroscopy studies. Biophys. J., 78, 2000, 1400−1412.
  97. Tieleman D.P., Forrest L.R., Sansom M.S., Berendsen H.J.C. Lipid properties and the orientation of aromatic residues in OmpF, Influenza M2 and Alamethicin systems: molecular dynamics simulations. Biochemistry, 37, 1998, 17 554−17 561.
  98. Lague P., Zuckermann M.J., Roux B. Lipid-mediated interactions between intrinsic membrane proteins: dependence on protein size and lipid composition. Biophys. J., 81, 2001, 276−284.
  99. Zhu F., Tajkhorshid E., Schulten K. Molecular dynamics study of aq* uaporin-1 water channel in a lipid bilayer. FEBS LEtt., 504, 2001, 212−218.
  100. Colombo G., Marrink S.J., Mark A.E. Simulation of MscL gating in a bilayer under stress. Biophys. J., 84, 2003, 2331−2337.
  101. Edholm O., Jflnig F. The structure of a membrane-spanning polypeptide studied by molecular dynamics. Biophys. Chem., 30, 1998, 279−292.
  102. Park S., Schulten K. Calculating potentials of mean force from steered molecular dynamics simulations. J. Chem. Phys., 120, 2004, 5946−5961.1.lk
  103. Gullingsrud J, Braun R, Schulten K. Reconstructing potentials of mean force through time series analysis of steered molecular dynamics simulations. J. Comput. Phys, 151, 1999, 190−211.
  104. Lemak A. S, Balabaev N.K. A comparison between collisional dynamics and Brownian dynamics. Mol. Simul, 15, 1995, 223−231.
  105. Lemak A. S, Balabaev N.K. Molecular dynamics simulation of a polymer chain in solution by collisional dynamics method. J. Comput. Chem, 17- 1996, 1685−1695.
  106. Jorgensen W. L, Chandrasekhar J, Madura J.D. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys, 79, 1983, 926 935.
  107. Lavi A, Weitman H, Holmes R. T, Smith K. M, Ehrenberg B. The depth of porphyrin in a membrane and the membrane’s physical properties affect the photosensitizing efficiency. Biophys. J, 82, 2002, 2101−2110.
  108. Ligeza A, Tikhonov A. N, Hyde J. S, Subczynski W.K. Oxygen permeability of thylakoid membranes: electron paramagnetic resonance spin labeling study. Biochim. Biophys. Acta, 1365, 1998, 453−463.
  109. Marsh D. Polarity and permeation profiles in lipid membranes. Proc. Natl. Acad. Sci. USA, 98, 2001, 7777−7782.
  110. Dzikovski B. G, Livshits V. A, Marsh D. Oxygen permeation profile in lipid membranes: comparison with transmembrane polarity profile. Biophys. J, 85, 2003, 1005−1012.
  111. Merx M. W, Flugel U, Stumpe T, Godecke A, Decking U.K., Schrader J. Myoglobin facilitates oxygen diffusion. FASEB J, 15, 2001, 1077−1079.
  112. Bouwer S. Th, Hoofd L, Kreuzer F. Diffusion coefficients of oxygen and hemoglobin measured by facilitated oxygen diffusion through hemoglobin solutions. Biochim. Biophys. Acta: Prot. Struct. Mol. Enzym. 1997, 127— 136.
  113. Itoh Т., Yaegashi К., Kosaka Т., Fukushima H. Diffusion coefficient of oxygen in viscous solution as a function of water content and temperature. Biorheology, 33, 1996, 80.
  114. St-Denis C.E., Fell C.J. Diffusivity of oxygen in water. Canad. J. Chem. Eng., 49, 1971,885−885.
  115. Mahoney M.W., Jorgensen W.L. Diffusion constant of the TIP5P model of liquid water. J. Chem. Phys., 114, 2001, 363−366.
  116. Park H.S., Chang Т., Lee S.H. Diffusion of small probe molecule in oligomers. J. Chem. Phys., 113, 2000, 5502−5510.
  117. Fauchere J.L., Pliska V. Hydrophobic parameters of amino-acid side chains from the partitioning of N-acetyl-amino-acid amides. Eur. J. Med. Chem. Chim. Ther., 18,1986, 369−375.
  118. Г. Е., Ширмер P.X. Принципы структурной организации белков. Мир, М., 1982.
  119. Е.В., Шайтан К. В., Балабаев Н. К. Молекулярная динамика гид-ратированных углеводородных мембранных структур и диффузия на границе раздела фаз. Журн. Физ. Химии, 79, 2005, 1448−1457.
  120. К.В., Сарайкин С. С. Метод калиброванной среды для молеку-лярно-динамического расчета коэффициентов диффузии низкомолекулярных соединений. Жур. Физ. Хим., 76, 2002, 1091−1096.
  121. Golo V.L., Salnikov V.N., Shaitan K.V. Harmonic oscillators in the Nosfi-Hoover environment. Phys. Rev. E, 70,2004, 46 130.
  122. Isralewitz В., Gao M., Schulten K. Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol., 11, 2001, 224−230.
  123. K.B. Динамика электронно-конформационных переходов и новые подходы к физическим механизмам функционирования биомакромолекул. Биофизика, 39, 1994, 949−967.
  124. Stouch T.R., Ward К.В., Altieri A., Hagler А.Т. Simulations of lipid crystals: characterization of potential energy functions and parameters for lecithin molecules. J. Comput. Chem., 12,1991, 1033−1046.
  125. Feller S.E., Yin D., Pastor R.W., Mackerell A.D., Jr. Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parametrization and comparison with diffraction studies. Biophys. J., 73, 1997, 2269−2279.
  126. Murzyn K., Rog Т., Jezierski G., Takaoka Y., Pasenkiewicz-Gierula M. Effects of phospholipids unsaturation on the membrane/water interface: a molecular simulation study. Biophys. J., 81, 2001, 170−183.
  127. Ryckaert J.-P., Ciccotti G., Berendsen H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dy" namics of n-alkanes. J. Comput. Phys., 23, 1977, 327−341.
  128. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., DiNola A., Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 81, 1984,3684−3690.
  129. Pabst G., Rappolt M., Amenitsch H., Laggner P. Structural information from multilamellar liposomes at full hydration: full g-rangefitting with high quality X-ray data. Phys. Rev. E, 62, 2000, 4000009.
  130. Smaby J.M., Mornsen M.M., Brockman H.L., Brown R.E. Phosphatidylcholine acyl unsaturation modulates the decrease in interfacial elasticity induced by cholesterol. Biophys. J., 73, 1997, 1492−1505.
  131. Hyslop P.A., Morel В., Sauerheber R.D. Organization and interaction of cholesterol and phosphatidylcholine in model bilayer membrane. Biochemistry 1990, 1025−1038.
  132. Evans R.W., Williams M.A., Tinoco J. Surface areas of 1-palmitoyl phosphatidylcholines and their interactions with cholesterol. Biochem. J., 245, 1987, 455—462.
  133. Braganza L.F., Worcester D.L. Structural changes in lipid bilayers and biological membranes caused hydrostatic pressure. Biochemistry, 25, 1986, 7484−7488.
  134. Adamson A.W., Gast A.P. Physical chemistry of surfaces. John Wiley and Sons, New York, 1997.
  135. Safran S.A. Statistical thermodynamics of surfaces, interfaces and membranes. Frontiers of physics. Addison-Wesley, Reading, 1994.
  136. Evans E., Rawicz W. Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys. Rev. Lett., 64, 1990, 2094−2097.
  137. Rand R., Parsegian V. Hydration forces between phospholipids bilayers. Biochim. Biophys. Acta, 998, 1989, 351−376.
  138. Pabst G. X-ray kinematography of temperature-jump relaxation probes the elastic properties of fluid bilayers. Langmuir, 16, 2000, 8994−9001.
  139. Lindahl E., Edholm O. Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys. J., 79, 2000, 426−433.
  140. Dolan E.A., Venable R.M., Pastor R.W., Brooks B.R. Simulations of membranes and other interfacial systems using P2j and Pс periodic boundary conditions. Biophys. J., 82,2002, 2317−2325.
  141. White S.H. Small phospholipid vesicles: internal pressure, surface tension, and surface free energy. Proc. Natl. Acad. Sci. USA, 77, 1980, 4048050.
  142. Pearlman D.A., Case D.A., Caldwell J.C., Seibel G.L., Singh U.C., Weiner P.K., Kollman P.A. Amber 4.0. University of California, San Francisco, 1991.
  143. Rog Т., Murzyn K., Pasenkiewicz-Gierula M. Molecular dynamics simulations of charged and neutral lipid bilayers: treatment of electrostatic interactions. Acta Biochim. Pol., 50, 2003, 789−798.
  144. Nagle J.F., Zhang R., Tristram-Nagle S., Sun W.J., Petrache H.I., Suter R. M-X-ray structure determination of fully hydrated L alpha phase dipalmitoyl-phosphatidylcholine bilayers. Biophys. J., 70, 1996, 1419−1431.
  145. Wiener M.C., White S.H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron diffraction data. III. Complete structure. Biophys. J., 61, 1992, 43447.
  146. Seelig A., Seelig J. Effect of a single cis double bond on the structures of a phospholipid bilayer. Biochemistry, 16, 1977, 45−50.
  147. Seelig J., Seelig A. Lipid conformation in model membranes and biological membranes. Q. Rev. Bioph., 13, 1980, 19−61.
  148. Lafleur M., Fine В., Sternin E., Cullis P.R., Bloom M. Smoothed orienta-tional order profile by 2H-NMR. Biophys. J., 56, 1989, 1037−1041.
  149. Yau Y.-M., Wimley W.C., Gawrisch K., White S.H. The preference of tryptophan for membrane interfaces. Biochemistry, 37, 1998, 14 713−14 718.
  150. Huster D., Muller P., Arnold K., Herrmann A. Dynamics of membrane penetration of the fluorescent 7-nitrobenz-2-oxa-l, 3-diazol-4-yl (NBD) group attached to an acyl chain of phosphatidylcholine. Biophys. J., 80, 2001.
  151. Scheidt H.A., Muller P., Herrmann A., Huster D. The potential of fluorescent and spin labeled steroid analogs to mimic natural cholesterol. J. Biol. Chem., 278, 2003, 45 563−45 569.
  152. Lafleur M., Cullis P.R., Bloom M. Modulation of the orientational order profile of the lipid acyl chain in the L6 phase. Eur. Biophys. J., 19, 1990, 5562.
  153. Klose G., Madler В., Schafer H., Schneider K.P. Structural characterization of POPC and C12E4 in their mixed membranes at reduced hydration by solid state 2U NMR. J. Phys. Chem. B, 103, 1999, 3022−3029.
  154. Schneider M.J., Feller S.E. Molecular dynamics simulations of a phosphol-ipid-detergent mixture. J. Phys. Chem. B, 105, 2001, 1331−1337.
  155. R.A., Нас A., Heimburg Т., Grubmiiller H. Effect of sodium chloride on a lipid bilayer. Biophys. J., 85, 2003, 1647−1655.
  156. A.JT., Рипатти П. О. Внутримолекулярная упорядоченность связей углеводородных цепей липидов. Имитационное моделирование на ЭВМ. Биофизика, 42, 1997, 138−146.
  157. Chiu S.W., Jakobsson Е., Subramaniam Sh., Scott H.L. Combined Monte Carlo and Molecular Dynamics simulation of fully hydrated dioleyl and palmitoyloleyl-phosphatidylcholine lipid bilayers. Biophys. J., 77, 1999, 2462−2469.
  158. Lin J.-H., Baker N.A., McCammon J.A. Bridging implicit and explicit solvent approaches for membrane electrostatics. Biophys. J., 83, 2002, 13 741 379.
  159. Simon S., Mcintosh T. Magnitude of the solvation pressure depends on di-pole potential. Proc. Natl. Acad. Sci. USA, 86, 1989, 9263−9267.
  160. Flewelling R. F, Hubbell W.L. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys. J, 49, 1986, 541−552.
  161. Gawrisch K, Ruston D, Zimmerberg J, Parsegian V. A, Rand R. P, Fuller N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys. J, 61, 1992, 1213−1223.
  162. Sackmann E. Structure and dynamics of membranes. In: Handbook of biological physics, Lipowsky R, Sackmann E, Eds. Elsevier, Amsterdam, 1995, vol. 1,213−304.
  163. Pfeiffer W, Henkel T, Sackmann E, Knoll W, Richter D. Local dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering. Euro-phys. Lett, 8, 1989, 201−206.
  164. Filippov A, Oradd G, Lindblom G. The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers. Biophys. J, 84, 2003, 3079 > 3086.
  165. Batchelor G.K. Developments in microhydrodynamics. In: Theoretical and Applied Mechanics. IUTAM Congress, Koiter W. T, Ed. North Holland-Elsevier Science Publishers, Amsterdam-New York-Oxford, 1976, 33−55.
  166. Kung C. E, Reed J.K. Microviscosity measurements of phospholipid bilayers using fluorescent dyes that undergo torsional relaxation. Biochemistry, 25, 1986,6114−6121.
  167. Dunham W. R, Sands R. H, Klein S. B, Duelli E. A, Rhodes L. M, Marcelo C.L. EPR measurements showing that plasma membrane viscosity can vary from 30 to 100 cP in human epidermal cell strains. Spectrochim. Acta A, 52,1996, 1357−1368.
  168. Sinensky M. Homeoviscous adaptation a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA, 71, 1974,522−525.
  169. Hughes B. D, Pailthorpe В .A, White L. R, Sawyer W.H. Extraction of membrane microviscosity from translational and rotational diffusion coefficients. Biophys. J, 37, 1982, 673−676.
  170. H.H. Проблемы динамической теории в статистической физике. Гостехиздат, 1946.
  171. Е.В., Шайтан К. В., Балабаев Н. К. Молекулярная динамика гид-ратированного бислоя пальмитоилолеоилфосфатидилхолина в столк-новителыюм термостате. Биол. мембраны, 22, 2005, 491−502.
  172. Е.В., Шайтан К. В., Балабаев Н. К. Динамическая гетерогенность фосфолипидного бислоя и диффузия молекул на границе раздела фаг. Биофизика, 50, 2005, 1042−1047.
  173. Ko?er A., Walko М., Meijberg W., Feringa B.L. A light-actuated nanovalve derived from a channel protein. Science, 309, 2005, 755−758.
  174. Gao H., Kong Y., Cui D., Ozkan C.S. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett., 3, 2003, 471−473.
  175. Yeh I.-C., Hummer G. Nucleic acid transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. USA, 101,2004, 12 177−12 182.
  176. Xie Y.H., Soh A.K. Investigation of non-covalent association of single-walled carbon nanotube with amylose by molecular dynamics simulation. Mat. Lett., 59, 2005,971−975.
  177. Lopez C.F., Nielsen S.O., Moore P.B., Klein M.L. Understanding nature’s design for a nanosyringe. Proc. Natl. Acad. Sci. USA, 101, 2004, 4431— 4434.
  178. Gao H. Modelling strategies for nano- and biomaterials. In: European white book on fundamental research in materials science, Van der Woorde M. H., et al., Eds. Max Planck Gesellschaft, 2001,144−148.
  179. Frenkel D., Smit B. Understanding molecular simulation: from algorithms to applications. Academic Press, San Diego, ed. 2nd, 2002.
  180. Рит M. Наноконструирование в науке и технике. Введение в мир нано-расчета. НИЦ «Регулярная и хаотическая динамика», Москва-Ижевск, 2005.
  181. Hummer G., Rasaiah J.C., Noworyta J.P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 414, 2001−188.
  182. Dellago C., Naor M.M., Hummer G. Proton transport through water-filled carbon nanotubes. Phys. Rev. Lett., 90, 2003,105 902.
  183. Zhu F., Schulten K. Water and proton conduction through carbon nanotubes as models for biological channels. Biophys. J., 82, 2003, 236−244.
  184. Kalra A., Garde Sh., Hummer G. Osmotic water transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. USA, 100,2003, 10 175−10 180.
  185. Zahab A., Spina L., Poncharal P., Marliere C. Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat. Phys. Rev. B, 62,2000,10 000−10 003.
  186. Gogotsi Yu., Libera J.A., Gtivenf-Yazicioglu A., Megaridis C.M. In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl. Phys. Lett., 79, 2001,1021−1023.
  187. Ye H., Naguib N., Gogotsi Yu. ТЕМ study of water in carbon nanotubes. JEOL news, 39, 2004, 38−43.
  188. Shaitan K.V., Tourleigh Y.V., Golik D.N. Computer-aided molecular design of nanocontainers for inclusion and targeted delivery of bioactive compounds. J. Drug Deliv. Sci. Technol., 16,2006, 253−258.
  189. Shaitan K.V., Tourleigh Ye.V., Golik D.N. Molecular dynamics of carbon nanotube-polypeptide complexes at the biomembrane-water interface-NATO Science Series II: Mathematics, Physics and Chemistry. Springer, 2006, 233−234.
  190. К.В., Турлей Е. В., Голик Д. Н., Терешкина К. Б., Левцова О. В., Федик И. В., Шайтан А. К., Кирпичников М. П. Молекулярная динамика и дизайн био- и наноструктур. Вест. Биотехн. Физ. -Хим. Биол., 1, 2005, 66−78.
  191. К.В., Турлей Е. В., Голик Д. Н., Терешкина К. Б., Левцова О. В., Федик И. В., Шайтан А. К., Ли А., Кирпичников М. П. Динамический молекулярный дизайн био- и наноструктур. Росс. Хим. Журн., 50, 2006, 53−65.
  192. К.В., Турлей Е. В., Голик Д. Н., Терешкина К. Б., Левцова О.В.> Федик И. В., Шайтан А. К., Ли А., Кирпичников М. П. Неравновесная молекулярная динамика наноструктур, включая биологические. Хим. Физика, 25,2006,31−48.
  193. Hugel Т., Holland N.B., Cattani A., Moroder L., Seitz M., Gaub H. Single-molecule optomechanical cycle. Science, 296, 2002, 1103−1106.
Заполнить форму текущей работой