Теорема Гаусса-Маркова для множественной линейной регрессии
Линейная регрессия описывается простейшей функциональной зависимостью в виде уравнения прямой линии и характеризуется прозрачной интерпретацией параметров модели (коэффициентов уравнения). Правая часть уравнения позволяет по заданным значениям регрессора (объясняющей переменной) получить теоретические (расчетные) значения результативного (объясняемого) переменного. Эти значения иногда называют… Читать ещё >
Содержание
Линейная регрессия описывается простейшей функциональной зависимостью в виде уравнения прямой линии и характеризуется прозрачной интерпретацией параметров модели (коэффициентов уравнения). Правая часть уравнения позволяет по заданным значениям регрессора (объясняющей переменной) получить теоретические (расчетные) значения результативного (объясняемого) переменного. Эти значения иногда называют также прогнозируемыми, т. е. получаемыми по теоретическим формулам. Однако при выдвижении гипотезы о характере зависимости коэффициенты уравнения остаются неизвестными. Вообще говоря, получение приближенных значений этих коэффициентов возможно различными методами.
Но наиболее важным и распространенным из них является метод наименьших квадратов (МНК). Он основан на требовании минимизации суммы квадратов отклонений фактических значений результативного признака от расчетных (теоретических). Вместо теоретических значений (для их получения) подставляют правые части уравнения регрессии в сумму квадратов отклонений, а затем находят частные производные от этой функции (суммы квадратов отклонений фактических значений результативного признака от теоретических). Эти частные производные берутся не по переменным х и у, а по параметрам, а и b. Частные производные приравнивают к нулю и после несложных, но громоздких преобразований получают систему нормальных уравнений для определения параметров. Коэффициент при переменном х, т. е. b, называется коэффициентом регрессии, он показывает среднее изменение результата с изменением фактора на одну единицу. Параметр a может не иметь экономической интерпретации, особенно если знак этого коэффициента отрицателен.
Список литературы
- Э. И. Бежава, М. Б. Малютов Введение в теорию планирования регрессионных экспериментов, Московский государственный институт электронного машиностроения, Темплан 1983. В учебном пособии исследуется планирование и анализ линейных регрессионных экспериментов.
- Ивченко Г. И., Медведев Ю. И. Математическая статистика, Высшая школа, 1992. В пособии на современном научном уровне изложены основные разделы статистической терии.
- Розанов Ю.А. Теория вероятностей, случайные процессы и математическая статистика, Наука 1985. Книга представляет собой единый учебный курс теории вероятностей, случайных процессов и математической статистики. Изложение материала таково, что книга во многих важных разделах доступна широкому кругу читателей.
- Замечательным введением в элементарную статистику с разнообразными примерами из медицины и генетики является книга Ю. Неймана Вводный курс теории вероятностей и математической статистики, Наука, 1968 (перевод с английского).