Помощь в учёбе, очень быстро...
Работаем вместе до победы

Электродуговой синтез и исследование физико-химических свойств углеродных нанотрубок

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Способность ОНТ обратимо адсорбировать водород привела к росту исследований, направленных на разработку методов увеличения количества запасаемого материалом нанотрубок водорода. Имеющиеся стабильные данные по хранению водорода в количестве 3−4% показывают перспективность этого направления исследований. Нанотрубки являются частью материала, получаемого в процессе электродугового синтеза. Поэтому… Читать ещё >

Содержание

  • 1. Литературный обзор
    • 1. 1. Свойства нанотрубок, обуславливающие их перспективные
  • приложения
    • 1. 2. Электродуговой синтез многостенных нанотрубок и их очистка
    • 1. 3. Получение и очистка одностенных нанотрубок
    • 1. 4. Получение двустенных нанотрубок
  • 2. Экспериментальная часть
    • 2. 1. Приборы и оборудование
    • 2. 2. Аппарат по электродуговому испарению графита ЭДИГ
    • 2. 3. Электрическая и газовая схемы аппарата ЭДИГ
    • 2. 4. Исходные соединения и материалы
    • 2. 5. Электродуговое испарение графитовых электродов
    • 2. 6. Электродуговое испарение металл-графитовых электродов
    • 2. 7. Электродуговой синтез двустенных нанотрубок
    • 2. 8. Определение выхода фуллеренов
    • 2. 9. Фторирование многостенных нанотрубок
    • 2. 10. Исследования автоэмиссионных свойств многостенных нанотрубок
  • 3. Обсуждение результатов
    • 3. 1. Синтез и исследование многостенных нанотрубок
    • 3. 2. Получение ОНТ с ЗСо/№-катализатором
    • 3. 3. Получение ОНТ с У^-катализатором
    • 3. 4. Получение ОНТ с М-Бе-катализатором
      • 3. 4. 1. Исследование продуктов электродугового испарения железо-графитового электрода
      • 3. 4. 2. Исследование продуктов электродугового испарения железо-никель-графитового электрода
    • 3. 5. Выделение и очистка ОНТ
    • 3. 6. Термическая десорбция из ОНТ после процедуры очистки
    • 3. 7. Сорбция водорода очищенными ОНТ
    • 3. 8. Синтез и исследование двустенных нанотрубок
    • 3. 9. Препаративное выделение фуллеренов С6о и С
  • 4. Функционализация многостенных нанотрубок
    • 4. 1. Фторирование многостенных нанотрубок
    • 4. 2. Автоэмиссионные исследования многостенных нанотрубок
  • Выводы

Электродуговой синтез и исследование физико-химических свойств углеродных нанотрубок (реферат, курсовая, диплом, контрольная)

Актуальность исследования.

Открытие углеродных нанотрубок Ииджимой (1991) стимулировало бурный рост публикаций по синтезу и исследованию свойств нанометровых цилиндрических углеродных структур. Фундаментальный интерес к данной проблеме обусловлен необычными механическими, электрическими и магнитными свойствами углеродных нанотрубок (УНТ). Создание эффективных технологий получения и очистки нанотрубок позволяет рассматривать их как основу для широкого круга прикладных разработок. Для них были предложены многочисленные потенциальные приложения: одномерные проводники, материалы для холодных эмиттеров электронов, наноразмерных транзисторов, зондов микроскопов, для повышения прочности полимерных композиций, для сорбции газов (водорода, метана) и т. д.

В настоящее время известно несколько разновидностей углеродных наноматериалов: многостенные нанотрубки (МНТ), двустенные нанотрубки (ДНТ), одностенные нанотрубки (ОНТ), наночастицы и другие виды.

Наиболее широко для получения углеродных нанотрубок. используется метод, основанный на испарении графитового электрода в дуге постоянного тока в атмосфере буферного газа (обычно гелия). Электродуговой метод зарекомендовал себя как дешевый, универсальный, позволяющий получать граммовые количества целевого продукта.

Интерес к углеродным нанотрубкам и созданию материалов на их основе постоянно растет. Поэтому оптимизация методов и методик получения углеродных наноматериалов является чрезвычайно актуальной задачей.

Перспективным направлением представляется изучение возможностей некоторых биметаллических катализаторов при синтезе

ОНТ, как способом повышения выхода трубок, так и изменения их диаметров.

Способность ОНТ обратимо адсорбировать водород привела к росту исследований, направленных на разработку методов увеличения количества запасаемого материалом нанотрубок водорода. Имеющиеся стабильные данные по хранению водорода в количестве 3−4% показывают перспективность этого направления исследований.

Другое важное направление использования углеродных нанотрубок основано на их эмиссионных свойствах.

Нанотрубки являются частью материала, получаемого в процессе электродугового синтеза. Поэтому перед исследователями встает необходимость в эффективных методах очистки нанотрубок с целью получения как можно более однородного материала, имеющего наибольшую ценность при изучении физико-химических свойств.

Однако и побочные материалы, получаемые при выходе нанотрубок, по-прежнему представляют научный интерес. В частности, остается актуальным исследование физико-химических свойств фуллереновой сажи, извлечение и разделение получающихся фуллеренов С6о и С70. Цель работы:

— изучение зависимости структуры и физико-химических свойств УНТ от условий синтеза;

— разработка методик синтеза, выделения, очистки и аттестации многостенных, одностенных, двустенных нанотрубок;

— поиск и разработка новых катализаторов синтеза ОНТ;

— разработка способов модифицирования МНТ и изучение их свойств.

Исследования были сосредоточены на решении следующих задач:

— изучение зависимости выхода МНТ от электрических параметров дуги;

— оптимизация электродугового синтеза ОНТ с применением в качестве катализатора смеси ЗСо/№ и интерметаллида УЪПг;

— изучение зависимости выхода ОНТ от соотношения Ыг. Ре в каталитической смеси;

— исследование магнитных свойств конденсированных продуктов электродугового синтеза;

— исследование железо-содержащих фаз в продуктах синтеза методом мессбауэровской спектроскопии;

— получение двустенных углеродных нанотрубок и изучение их свойств;

— исследование влияния фторирования на свойства МНТ;

— исследование зависимости эмиссионных свойств МНТ от допирования их соединениями бария.

В качестве объектов исследования выступают многостенные нанотрубки, двустенные нанотрубки, одностенные нанотрубки, наночастицы.

МНТ составлены из десятков концентрических цилиндрических л оболочек, имеющих структуру свернутого графенового листа с Бр углеродами, образующими гексагональную решетку. Внешний диаметр МНТ, полученных электродуговым методом, составляет 5−50 нм, внутренний — 1−4 нм, а длина — до нескольких микрон.

ДНТ состоят из двух концентрических цилиндрических графеновых листов. Наружние диаметры ДНТ составляют от 1.5 до 5 нм, а диаметры внутренних трубок соответственно варьируют от 0.7 до 4.2 нм.

ОНТ представляют собой свернутый в цилиндр графеновый лист диаметром 0.8−1.9 нм и до нескольких микрон длиной.

Наночастицы представляют собой замкнутые многослойные структуры, которые могут иметь форму многогранника или сферы, и достигают 20−200 нм в поперечнике. Научная новизна работы.

Разработаны методики получения МНТ колончатого типа и ОНТ с высокими выходами (24 и 50 мае. %, соответственно).

Предложены новые, более эффективные, катализаторы синтеза ОНТ на основе интерметаллических соединений иттрия и никеля.

Впервые предложена методика электродугового синтеза ДНТ в атмосфере Ar+Нг с применением каталитической системы Ni: Co:Fe:FeS.

Впервые получены продукты высокотемпературного газофазного фторирования МНТ, содержащие от 10 до 55 мае. % фтора, и исследованы их адсорбционные свойства.

Впервые предложен метод допирования МНТ солями бария для увеличения автоэмиссии электронов.

Практическая значимость работы.

Предложены методики получения многостенных, одностенных и двустенных нанотрубок методом электродугового синтеза и методики их очистки.

Разработаны катализаторы для синтеза ОНТ с преимущественными диаметрами ~ 1.35 и~1.5 нм.

Разработана методика модифицирования МНТ для использования в качестве эмиттеров электронов.

Апробация работы.

Результаты проведенных исследований доложены на Международных конференциях и семинарах:

— «Фуллерены и атомные кластеры» — IWFAC2001 и IWFAC'2003, Санкт-Петербург;

— «Водородное материаловедение и химия углеродных наноматериалов» — ICHMS'2001, Алушта и ICHMS'2003, Судак, Украина;

— «Фуллерены и фуллереноподобные материалы» — 2002, 2004, Минск, Беларусь;

— «Углерод: фундаментальные проблемы науки, материаловедение, технология» — 2002, 2003, 2004, Москва;

— «Metal Hydrogen Systems: Fundamental and Application» — 2002,

Annecy, France;

— ISTC Scientific Advisory Committee Seminar «Nanotechnologies in the area of physics, chemistry and biotechnology» — 2002, Санкт-Петербург;

— «Растровая электронная микроскопия» — 2000, 2004, Черноголовка;

— «Безопасность и экономика водородного транспорта» — 2001, 2003, Саров;

— на семинаре Углеродного общества России — 2004, Москва, РХТУ;

— на семинарах ИПХФ РАН.

Основные результаты диссертации опубликованы в следующих работах:

1. Шульга Ю. М., Морозов Ю. Г., Тарасов Б. П., Криничная Е. П., Мурадян В. Е., Моравская Т. М., Образцова Е. Д., Дементьев А. П., Спектор В. Н., Шульга Н. Ю. Магнитные свойства порошков, образующихся при электродуговом распылении графит-кобальт-никелевых электродов. Альтернативная энергетика и экология 2000, № 1, 37−48.

2. Шульга Ю. М., Тарасов Б. П., Криничная Е. П., Мурадян В. Е., Морозов Ю. Г., Шульга Н. Ю. Магнитные свойства наноматериалов, образующихся при электродуговом распылении графит-кобальт-никелевых электродов. Сб. науч. трудов «Фуллерены и фуллереноподобные структуры». Минск: БГУ 2000, 41−48.

3. Зверева Г. И., Крестинин A.B., Мурадян В. Е., Тарасов Б. П., Фурсиков П. В., Захаров Д. Н. О применении термогравиметрии к оценке весового содержания однослойных углеродных нанотрубок в дисперсных продуктах электродугового синтеза. Сб. науч. трудов «Фуллерены и фуллереноподобные структуры». Минск: БГУ 2000, 77−82.

4. Захаров Д. Н., Киселев H.A., Крестинин A.B., Криничная Е. П., Моравский А. П., Мурадян В. Е. Углеродные нанотрубки с двойными стенками: условия получения и структура. Тезисы докладов XVIII

Российской конференции по электронной микроскопии. Черноголовка 2000, 76.

5. Hutchison J.L., Kiselev N.A., Krinichnaya Е.Р., Krestinin A.V., Loutfy R.O., Morawsky A.P., Muradyan V.E., Obraztsova E.D., Sloan J., Terekhov S.V., Zakharov D.N. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 2001, 39(5), 761−770.

6. Muradyan V.E., Shulga N.Yu., Domashnev I.A., Tarasov B.P., Kolesnikova A.M., Krinichnaya E.P., Fursikov P.V., Shulga Yu.M. Interlayer distances in multiwall carbon nanotubes. Abstracts of Invited Lectures and Contributed Papers of the 5-th Biennial International Workshop «Fullerenes and Atomic Clusters». St. Petersburg 2001, 95.

7. Tarasov B.P., Shul’ga Yu.M., Muradyan V.E., Krinichnaya E.P., Goldshleger N.F., Golodkov O.N., Fokin V.N., Efimov O.N., Zaginaichenko S.Yu., Schur D.V., Maehlen J.P., Hauback B.C., Yartys V.A. Carbon nanostructures for hydrogen storage. Abstracts of Invited Lectures and Contributed Papers of the 5-th Biennial International Workshop «Fullerenes and Atomic Clusters». St. Petersburg 2001, 279.

8. Мурадян B.E., Тарасов Б. П., Шульга Ю. М., Рябенко А. Г., Фурсиков П. В., Куюнко Н. С., Моравский А. П., Терехов С. В., Бокова С. Н., Образцова Е. Д., Загинайченко С. Ю., Щур Д. В. Электродуговой синтез углеродных нанотрубок. Труды VII Международной конференции «Водородное материаловедение и химия гидридов металлов». Алушта 2001,548−551.

9. Шульга Ю. М., Домашнев И. А., Тарасов Б. П., Колесникова A.M., Криничная Е. П., Мурадян В. Е., Шульга Н. Ю. Межслоевые расстояния в многослойных углеродных нанотрубках. Альтернативная энергетика и экология 2002, № 1, 70−72.

Ю.Шульга Ю. М., Морозов Ю. Г., Мурадян В. Е., Тарасов Б. П., Шульга Н. Ю. Структура и магнитные свойства продуктов электродугового распыления графит-никель-иттриевых электродов. Альтернативная энергетика и экология 2002, № 4, 49−51.

11 .Тарасов Б. П., Мурадян В. Е., Шульга Ю. М., Куюнко Н. С., Мартыненко В. М., Румынская З. А., Ефимов О. Н. Исследование продуктов электродугового испарения металл-графитовых электродов. Альтернативная энергетика и экология 2002, № 6, 4−11.

12.Тарасов Б. П., Мурадян В. Е., Шульга Ю. М., Криничная Е. П., Куюнко Н. С. Исследование одностенных нанотрубок, полученных испарением графита с Co-Ni и YNi2- Сб. тезисов докладов II Международного симпозиума «Фуллерены и фуллереноподобные структуры в конденсированных средах». Минск: БГУ 2002, 24−25.

13.Шульга Ю. М., Тарасов Б. П., Мартыненко В. М., Мурадян В. Е., Образцова Е. Д., Щур Д. В. Термодесорбция с углеродного материала, обогащенного одностенными нанотрубками. Сб. тезисов докладов II Международного симпозиума «Фуллерены и фуллереноподобные структуры в конденсированных средах». Минск: БГУ 2002, 107.

14.Мурадян В. Е., Криничная Е. П., Моравский А. П., Тарасов Б. П. Электродуговая установка для синтеза углеродных нанотрубок. Сб. тезисов докладов II Международного симпозиума «Фуллерены и фуллереноподобные структуры в конденсированных средах». Минск: БГУ 2002,212−213.

15.Tarasov В.Р., Efimov O.N., Muradyan V.E., Shul’ga Yu. M., Kuyunko N.S., Krinichnaya E.P., Volfkovich Yu.M., Obraztsova E.D., Schur D.V., Maehlen J.P., Yartys V.A., Lai H.J. Carbon nanotubes: synthesis, purification and properties. Abstracts of Fifth ISTC Scientific Advisory Committee Seminar «Nanotechnologies in the area of physics, chemistry and biotechnology». St. Petersburg 2002, 53.

16.Tarasov B.P., Muradyan V.E., Shul’ga Yu.M., Fokin V.N., Maehlen J.P., Yartys V.A., Gunnaes A.E., Hauback B.C. Catalytic arc synthesis of hydrogen-sorbing single-wall nanotubes. Abstracts of Int. Symp. on Metal Hydrogen Systems: Fundamental and Application. Annecy — France 2002, 81.

17.Киселева Т. Ю., Новакова А. А., Тарасов Б. П., Мурадян B.E., Володин A.A. Диагностика продуктов электродугового синтеза углеродных нанотрубок на катализаторах Fe и Fe-Ni методом мессбауэровской спектроскопии. Тезисы докладов 1-ой Международной конференции «Углерод: фундаментальные проблемы науки, материаловедение, технология». Москва: МГУ 2002, 110.

18.Тарасов Б. П., Мурадян В. Е., Криничная Е. П., Шульга Ю. М., Куюнко Н. С., Образцова Е. Д., Щур Д. В., Maehlen J.P., Yartys V.A., Lai H.J. Электродуговой синтез одностенных углеродных нанотрубок. Тезисы докладов 1-ой Международной конференции «Углерод: фундаментальные проблемы науки, материаловедение, технология». Москва: МГУ 2002, 193.

19.Tarasov В.P., Muradyan V.E., Shul’ga Yu.M., Krinichnaya E.P., Kuyunko N.S., Efimov O.N., Obraztsova E.D., Schur D.V., Maehlen J.P., Yartys V.A., Lai H.J. Synthesis of carbon nanostructures by arc evaporation of graphite rods with Co-Ni and YNi2 catalysts. Carbon 2003, 41(7), 1357−1364.

20.Tarasov B.P., Maelen J.P., Lototsky M.V., Muradyan V.E., Yartys V.A. Hydrogen sorption properties of arc generated single-wall carbon nanotubes. Journal of Alloys and Compounds 2003, 356, 510−514.

21.Новакова A.A., Киселева Т. Ю., Тарасов Б. П., Мурадян В. Е. Мессбауэровское исследование продуктов электродугового испарения железо-графитового электрода. Перспективные материалы 2003, № 4, 87−92.

22.Muradyan V.E., Kuyunko N.S., Volodin А.А., Fursikov P.V., Tarasov B.P. Bimetallic synergism in arc synthesis of carbon nanotubes. Abstracts of

Invited Lectures and Contributed Papers of the 6-th Biennial International Workshop «Fullerenes and Atomic Clusters». St. Petersburg 2003, 61.

23.Tarasov B.P., Muradyan V.E., Kuyunko N.S., Volodin A.A., Fursikov P.V., Fokin V.N., Rumynskaya Z.A., Shul’ga Yu.M., Efimov O.N. New catalytic systems for the synthesis of carbon nanostructures. Abstracts of Invited Lectures and Contributed Papers of the 6-th Biennial International Workshop «Fullerenes and Atomic Clusters». St. Petersburg 2003, 63.

24.Новакова A.A., Киселева Т. Ю., Ильина Ю. В., Тарасов Б. П., Мурадян В. Е. Углеродные наноструктуры, полученные на Fe-Ni катализаторе. Тезисы докладов 2 Международного симпозиума «Безопасность и экономика водородного транспорта». Саров 2003, 133.

25.Тарасов Б. П., Фокин В. Н., Мурадян В. Е., Фурсиков П. В., Володин А. А., Ефимов О. Н. Синтез углеродных наноструктур с использованием гидридов интерметаллических соединений. Тезисы докладов 2 Международного симпозиума «Безопасность и экономика водородного транспорта». Саров 2003, 134−135.

26.Мурадян В. Е., Куюнко Н. С., Фурсиков П. В., Шульга Ю. М., Тарасов Б. П. Электродуговой синтез углеродных одностенных нанотрубок с применением сплавов никеля с иттрием. Труды VIII Международной конференции «Водородное материаловедение и химия углеродных наноматериалов». Судак 2003, 404−407.

27.Киселева Т. Ю., Новакова А. А., Ильина Ю. В., Тарасов Б. П., Мурадян В. Е. Мессбауэровское исследование углеродных наноструктур, полученных на Fe-Ni катализаторе. Труды VIII Международной конференции «Водородное материаловедение и химия углеродных наноматериалов». Судак 2003, 662−665.

28.Никольский К. Н., Батурин А. С., Бормашов B.C., Ершов А. С., Загинайченко С. Ю., Квачева Л. Д., Курносов Д. А., Мурадян В. Е., Рогозинский А. А., Симановскнй А. П., Чесов Р. Г., Шешин Е. П., Шульга

Ю.М., Щур Д. В. Автоэмиссионные исследования углеродных нанотрубок, допированных различными металлами. Труды VIII Международной конференции «Водородное материаловедение и химия углеродных наноматериалов». Судак 2003, 822−825.

29.Тарасов Б. П., Фокин В. Н., Мурадян В. Е., Бубнов В. П., Кареев И. Е., Володин А. А., Фурсиков П. В., Жогова К. Б., Щур Д. В. Синтез углеродных наноструктур с использованием гидридов металлов и интерметаллических соединений. Тезисы докладов 2-ой Международной конференции «Углерод: фундаментальные проблемы науки, материаловедение, технология». Москва: МГУ 2003,209.

3 О. Киселева Т. Ю., Новакова А. А., Тарасов Б. П., Мурадян В. Е. Исследование микроструктуры углеродного наноматериала, полученного на Fe-Ni катализаторе. Поверхность. Рентгеновские, синхротронные и нейтронные исследования 2004, № 3, 70−73.

31.Новакова А. А., Киселева Т. Ю., Ильина Ю. В., Тарасов Б. П., Мурадян В. Е. Углеродные наноструктуры, полученные на Fe-Ni катализаторе. Альтернативная энергетика и экология 2004, № 3, 37−43.

32.Nikolski K.N., Baturin A.S., Bormashov V.S., Ershov A.S., Kvacheva L.D., Kurnosov D.A., Muradyan V.E., Rogozinskiy A.A., Schur D.V., Sheshin E.P., Simanovskiy A.P., Shulga Yu.M., Tchesov R.G., Zaginaichenko S.Yu. Field emission investigation of carbon nanotubes doped by different metals. T.N. Veziroglu et al. (eds.) Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Science Series, Kluwer Academic Publishers, 2004, 172(11), 123−130.

33.Kiseleva T.Yu., Novakova A.A., Tarasov B.P., Muradyan V.E. Mossbauer study of carbon nanostructures obtained on Fe-Ni catalyst. T.N. Veziroglu et al. (eds.) Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Science Series, Kluwer Academic Publishers, 2004, 172(11), 153−158.

34.Leonowicz M., Shulga Yu.M., Muradyan V.E., Wozniak M., Wei Xie. Characterization of nanoparticles processed by arc-discharge between carbon electrodes containing catalyst. T.N. Veziroglu et al. (eds.) Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Science Series, Kluwer Academic Publishers, 2004, 172(11), 193−202.

35.Ильина Ю. В., Киселева Т. Ю., Новакова A.A., Тарасов Б. П., Мурадян В. Е. Исследование эффективности Fe-Ni катализатора для получения оптимального выхода одностенных углеродных нанотрубок. Сб. материалов III Международного симпозиума «Фуллерены и фуллереноподобные структуры в конденсированных средах». Минск: ИТМО 2004, 64−65.

36.Мурадян В. Е., Шульга Ю. М., Куюнко Н. С., Торбов В. И., Кнерельман Е. И., Давыдова Г. И., Тарасов Б. П., Полякова Н. В. Электродуговой синтез и фторирование многостенных нанотрубок. Сб. материалов III Международного симпозиума «Фуллерены и фуллереноподобные структуры в конденсированных средах». Минск: ИТМО 2004, 130.

37.Мурадян В. Е., Шульга Ю. М., Куюнко Н. С., Торбов В. И., Кнерельман Е. И., Давыдова Г. И., Тарасов Б. П., Полякова Н. В. Синтез и исследование фторированных многостенных нанотрубок. Тезисы докладов 3-ой Международной конференции «Углерод: фундаментальные проблемы науки, материаловедение, технология». Москва: МГУ 2004, 170.

Объем и структура диссертации.

Общий объем диссертации 160 страниц. Диссертация состоит из введения, литературного обзора, экспериментальной части, обсуждения результатов, выводов и списка литературы (192 наименования). В диссертации 67 рисунков и 16 таблиц.

Выводы

1. С использованием результатов проведенных физико-химических исследований определены оптимальные условия электродугового синтеза углеродных многостенных нанотрубок с выходом 24 мае. %: давление гелия — 500 Topp, плотность тока — 175 А/см, напряжение — 22.8−23.0 В, диаметр графитовых стержней — 10 мм.

2. Различными методами физико-химического анализа подробно изучены продукты испарения металл-графитовых электродов, включающих биметаллические системы: 3Co/Ni, Ni-Fe и Y-Ni. Показано, что в них наряду с одностенными нанотрубками (ОНТ) содержатся аморфная сажа, фуллерены, металлические и графитоподобные частицы. Выход ОНТ при использовании системы Ni-Fe уменьшается в ряду: 3Ni/Fe"Ni/Fe>Ni>Ni/3Fe. Показано, что выход ОНТ при использовании системы Y-Ni существенно выше, чем в случае использования катализаторов из смеси металлов группы железа.

3. Впервые на примере интерметаллических соединений YNI2, YNI3 и Y2NI7 показано, что водородное диспергирование может быть использовано для приготовления катализаторов синтеза ОНТ. Установлено, что при использовании интерметаллида YNi2 в качестве катализатора можно получать ОНТ с выходом 30−50 мае. % в «воротниковой» саже и 10−15 мае. % в «пристеночной» саже.

4. Показано, что, меняя катализатор, можно синтезировать ОНТ с разными диаметрами: для УМ2-катализатора получены ОНТ со средним диаметром ~1.50 нм, для ЗСо/Ni —1.35 нм, для Ni/Fe —1.42 нм и для 3Ni/Fe

—1.30 нм. Установлено повышение водородсорбционной емкости ОНТ, полученных с У№ 2-катализатором по сравнению с ЗСо/№-системой (~3.5 и -3.0 мае. %, соответственно).

5. Впервые получены двустенные нанотрубки с диаметрами от 1.9 до 5 нм испарением графита со смесью Ni, Со, Fe и S (2.6, 0.7, 1.45 и 0.75 ат. %) в среде Аг-Н2 (175 + 175 Topp).

6. Разработаны методики модифицирования многостенных нанотрубок. Газофазным фторированием получены производные с содержанием фтора от 10 до 55 мае. %. Допирование нанотрубок барием позволило более чем на 30% понизить рабочее напряжение автоэмиссионного катода на их основе. т т щ т

Показать весь текст

Список литературы

  1. Kroto H.W., Heath J.R., O’Brien S.C., Curl R.F., Smalley R.E. C60 -Buckminsterfullerene. Nature 1985, 318, 162.
  2. Kratschmer W., Lamb L.D., Fostiropulos K., Huffman D.R. Solid C60: a new form of carbon. Nature 1990, 347, 354.
  3. Iijima S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56.
  4. Ebbesen T.W., Hiura H., Fujita J. et al. Patterns in the bulk growth of carbon nanotubes. Chem. Phys. Lett. 1993, 209, 83.
  5. Iijima S., Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993,363, 603.
  6. Bethune D.S., Kiang C.H., de Vries M.S. et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605.
  7. Ajayan P.M., Iijima S. Capillarity-induced filling of carbon nanotubes. Nature 1993,361,333.
  8. Ajayan P.M., Ebbesen T.W., Ichihashi T. et al. Opening carbon nanotubes with oxygen and implications for filling. Nature 1993, 362, 522.
  9. Dujardin E., Ebbesen T.W., Hiura H., Tanigaki K. Capillarity and wetting of carbon nanotubes. Science 1994,265, 1850.
  10. Ajayan P.M., Stephan O., Redlich Ph., Colliex C. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature 1995, 375, 564.
  11. Ajayan P.M., Redlich Ph., Ruhle M. Structure of carbon nanotube-based nanocomposites. J. of Microscopy 1997, 185, 275.
  12. Loiseau A., Pascard H. Synthesis of long carbon nanotubes filled with Se, S, Sb and Ge by the arc method. Chem. Phys. Lett. 1996, 256,246.
  13. Saito R, Fujita M., Dresselhaus G., Dresselhaus M.S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 1992, 60, 2204.
  14. Charlier J.-C., Michenaud J.-P. Energetics of multilayered carbon tubules. Phys. Rev. Lett. 1993, 70, 1858.
  15. White C.T., Robertson D.H., Mintmire J.W. Helical and rotational symmetries of nanoscale graphitic tubules. Phys. Rev. B 1993, 47, 5485.
  16. Mintmire J.W., Robertson D.H., Dunlap B.I. et al. In Electrical, optical, and magnetic properties of organic solid state materials (Eds. L.Y. Chiang et al.) MRS Symp. Proc. 1992, 247, 339.
  17. Hamada N., Sawada S., Oshiyama A. New one-dimensional conductors: graphitic microtubules. Phys. Rev. Lett. 1992, 68, 1579.
  18. Mintmire J.W., Dunlap B.I., White C.T. Are fullerene tubules metallic? Phys. Rev. Lett. 1992, 68,631.
  19. Tanaka K., Okahara K., Okada M. et al. Electronic properties of bucky-tube model. Chem. Phys. Lett. 1992,191, 469.
  20. Harigaya K. From C6o to a fullerene tube: Systematic analysis of lattice and electronic structures by the extended Su-Schrieffer-Heeger model. Phys. Rev. B1992, 45, 12 071.
  21. Zhang X.F., Zhang X.B., Van Tendeloo G. et al. Carbon nano-tubes- their formation process and observation by electron microscopy. J. Cryst. Growth1993, 130,368.
  22. Chico L., Crespi V.H., Benedict L.X. et al. Pure carbon nanoscale devices: nanotube heterojunctions. Phys. Rev. Lett. 1996, 76, 971.
  23. Saito R., Dresselhaus G., Dresselhaus M.S. Tunneling conductance of connected carbon nanotubes. Phys. Rev. B 1996, 53, 2044.
  24. Thess A., Lee R., Nikolaev P. et al. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483.
  25. Tans S.J., Verschueren A.R.M., Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49.
  26. Wei B.Q., Vajtai R., Ajayan P.M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 2001, 79, 1172.
  27. Phaedon Avouris, Director of IBM’s Center for Nanoscale Science and Technology. Лекция в Мичиганском Университете, США 2000. http://pa.msu.edu/cmp/csc/ntproperties.
  28. Frank S., Poncharal P., Wang Z.L., de Heer W.A. Carbon nanotube quantum resistors. Science 1998, 280, 1744.
  29. De Heer W.A., Chauvet О., Baumgartner G. et al. Physical properties of aligned carbon nanotube films. In Fullerenes and fullerene nanostructures (Eds. H. Kuzmany et al.). Singapore: World Scientific, 1996, 215.
  30. Rinzler A.G., Hafner J.H., Nikolaev P. et al. Unraveling nanotubes: field emission from an atomic wire. Science 1995, 269, 1550.
  31. Choi W.B., Chung D.S., Kang J.H. et al. Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 1999, 75, 3129.
  32. Dillon A.C., Jones K. M, Bekkendahl T.A. et al. Storage of hydrogen in singlewalled carbon nanotubes. Nature 1997, 386, 377.
  33. Liu C., Fan Y.Y., Liu M. et al. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 1999, 286, 1127.
  34. Heben M.J., Dillon A.C., Gennett T. et al. Single-wall carbon nanotubes: the materials and their hydrogen storage properties. Proc. Int. Symp. Metal-hydrogen Systems, Noosa, Australia, 2000.
  35. Dillon A.C., Heben M.J. Hydrogen storage using carbon adsorbents: past, present and future. Appl. Phys. A 2001, 72, 133.
  36. Kuznetsova A., Mawhinney D.B., Naumenko V. et al. Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports. Chern. Phys. Lett. 2000,321, 292.
  37. Mawhinney D.B., Naumenko V., Kuznetsova A. et al. Surface defect site density on single walled carbon nanotubes by titration. Chem. Phys. Lett. 2000, 324,213.
  38. Д.Ю., Семенов В. П., Дубовкин Н. Ф., Смирнова JI.H. Водород. Свойства, получение, хранение, транспортирование, применение: Справ, изд. под ред. Д. Ю. Гамбурга, Н. Ф. Дубовкина, М.: Химия, 1989, 672 с.
  39. Dai H.J., Hafner J.H., Rinzler A.G. et al. Nanotubes as nanoprobes in scanning probe microscopy. Nature 1996, 384, 147.
  40. Yu M.-F., Files B.S., Arepalli S., Ruoff R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84, 5552.
  41. Dujardin E., Ebbesen T.W., Krishnan A. et al. Young’s modulus of singlewalled nanotubes. Phys. Rev. В 1998, 58, 14 013.
  42. Hone J. Phonons and thermal properties of carbon nanotubes. Topics in Applied Physics 2001, 80, 273.
  43. Hone J., Whitney M., Zettle A. Thermal conductivity of single-walled carbon nanotubes. Synthetic Metals 1999, 103, 2498.
  44. Che J., Cagin Т., Goddard III W.A. Thermal conductivity of carbon nanotubes. http://www.foresight.org/Conferences/MNT7/Papers/Che/index.html.
  45. Berber S., Kwon Y.-K., Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613.
  46. Biercuk M.J., Llaguno M.C., Radosavljevic M. et al. Carbon nanotube composites for thermal management. Appl. Phys. Lett. 2002, 80, 2767.
  47. Gao В., Bower C., Lorentzen J.D. et al. Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem. Phys. Lett. 2000, 327, 69.
  48. Ma R., Wei B., Xu C. et al. Development of supercapacitors based on carbon nanotubes. Science in China (Series E) 2000, 43, 178.
  49. Tsang S.C. et al. In Fullerenes andfullerene nanostructures (Eds. H. Kuzmany et al.). Singapore: World Scientific, 1996, p. 250.
  50. Li Z.G., Fagan P.F. Report ICEM-13, Paris 1994.
  51. Planeix J.M. Coustel N., Coq B. et al. Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 1994, 116, 7935.
  52. Feng S.Q., Yu D.P., Hu G. et al. The HREM observation of cross-sectional structure of carbon nanotubes. J. Phys. Chem. Sol. 1997, 58, 1887.
  53. Dresselhaus M.S., Dresselhaus G., Saito R. Carbon fibers based on C6o and their symmetry. Phys. Rev. B 1992, 45, 6234.
  54. Kiselev N.A., Moravsky A.P., Ormont A.B., Zakharov D.N. SEM and HREM study of internal structure of nanotube rich carbon arc cathodic deposits. Carbon 1999, 37, 1093.
  55. Gamaly E.G., Ebbessen T.W. Mechanism of carbon nanotube formation in the arc discharge. Phys. Rev. B 1995, 52, 2083.
  56. Ebbesen T.W. Carbon nanotubes. Ann. Rev. Mater. Sci. 1994, 24, 235.
  57. Mordkovich V.Z., Baxendale M., Yoshimura S., Chang R.P.H. Intercalation into carbon nanotubes. Carbon 1996, 34, 1301.
  58. Jin Z.-X., Xu G.Q., Goh S.H. A preferentially ordered accumulation of bromine on multi-wall carbon nanotubes. Carbon 2000, 38 1135.
  59. Ebbesen T.W., Ajayan P.M. Large-scale synthesis of carbon nanotubes. Nature 1992,358,220.
  60. Ando Y., Iijima S. Preparation of carbon nanotubes by arc-discharge evaporation. Jpn. J. Appl. Phys. 1993,32, LI07.
  61. Zhao X., Ohkohchi M., Wang M. et al. Preparation of high-grade carbon nanotubes by hydrogen arc discharge. Carbon 1997,35, 775.
  62. О.А., Сухинин Г. И. Динамика углеродных кластеров при производстве фуллеренов. Письма в ЖТФ 1995, 21, 50.
  63. В.Д., Смягликов И. П., Золотовский А. И. Исследование дугового разряда в процессе синтеза фуллеренов. Инженерно-физический журнал 1998, 71, 669.
  64. Colbert D.T., Zhang J., McClure S.M. et al. Growth and sintering of fullerene nanotubes. Science 1994, 266, 1218.
  65. Cadek M., Murphy R., McCarthy B. et al. Optimisation of the arc-discharge production of multi-walled carbon nanotubes. Carbon 2002, 40, 923.
  66. Holzer W., Penzkofer A., Gong S.H. et al. Laser action in poly (m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene). Adv. Mater. 1996, 8,974.
  67. Coleman J.N., O’Brien D.F., Dalton A.B. et al. Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes. J. Chem. Phys. 2000, 113, 9788.
  68. Ando Y. Carbon nanotubes at as-grown top surface of columnar carbon deposit. Jpn. J- Appl. Phys. 1993, 32, LI342.
  69. Sekar C., Subramanian C. Purification and characterization of buckminsterfullerene, nanotubes and their by-products. Vacuum 1996, 47, 1289.
  70. Tsang S.C., Harris P.J.F., Green M.L.H. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature 1993,362, 520.
  71. Tsang S.C., Chen Y.K., Harris P.J.F. et al. A simple chemical method of opening and filling carbon nanotubes. Nature 1994, 372, 159.
  72. Hiura H., Ebbesen T.W., Tanigaki K. Opening and purification of carbon nanotubes in high yields. Adv. Mater. 1995, 7, 275.
  73. Chen Y.J., Green M.L.H., Griffin J.L. et al. Purification and opening of carbon nanotubes via bromination. Adv. Mater. 1996, 8, 1012.
  74. Kosaka M., Ebbesen T.W., Hiura H. et al. Electron spin resonance of carbon nanotubes. Chem. Phys. Lett. 1994, 225, 161.
  75. Ikazaki F., Oshima S., Uchida K. et al. Chemical purification of carbon nanotubes by use of graphite intercalation compounds. Carbon 1994, 32, 1539.
  76. Bonard J.M., Stora T., Salvetat J.P. et al. Purification and size-selection of carbon nanotubes. Adv. Mater. 1997, 9, 827.
  77. Yamamoto K., Akita S., Nakayama Y. Orientation of carbon nanotubes using electrophoresis. Jpn. J. Appl. Phys. 1996, 35, L917.
  78. Bandow S. Magnetic properties of nested carbon nanostructures studied by electron spin resonance and magnetic susceptibility measurements. J. Appl. Phys. 1996, 80, 1020.
  79. Tanaka K., Sato T., Yamabe T. et al. Electronic properties of carbon nanotubes. Chem. Phys. Lett. 1994, 223, 65.
  80. Robertson D.H., Brenner D.W., Mintmire J.W. Energetics of nanoscale* graphitic tubules. Phys. Rev. B 1992, 45, 12 592.
  81. Saito R., Fujita M., Dresselhaus G., Dresselhaus M.S. Electronic structure of graphene tubules based on C60. Phys. Rev. B 1992, 46, 1804.
  82. Dresselhaus M.S., Dresselhaus G., Eklund P.C. Science of fiillerenes and carbon nanotubes. San Diego: Academic Press, 1996, 965 p.
  83. Saito R., Dresselhaus G., Dresselhaus M.S. Physical properties of carbon nanotubes. London: Imperial College Press, 1998, 272 p.
  84. Tanaka K., Yamabe T., Fukui K. The science and technology of carbon nanotubes. Amsterdam: Elsevier, 1999, 200 p.
  85. Harris P.J.F. Carbon nanotubes and related structures. New materials for the Twenty-first Century. Cambredge, 1999, 336 p.
  86. Science and application of nanotubes. Eds. by Tomanek D. and Enbody R.J. New York: Kluwer Academic, 2000, 406 p.
  87. Dresselhaus M.S., Dresselhaus G., Avouris P. Carbon nanotubes: synthesis, structure, properties and applications. Topics in Applied Physics 2001, 80, 1.
  88. Seraphin S., Zhou D. Single-walled carbon nanotubes produced at high-yield by mixed catalysts. Appl. Phys. Lett. 1994, 64, 2087.
  89. Saito Y., Koyama Т., Kawabata K. Growth of single-layer carbon tubes assisted with iron-group metal catalysts in carbon arc. Z Phys. D 1997, 40, 421.
  90. Journet C., Maser W.K., Bernier P. et al. Large-scale production of singlewalled carbon nanotubes by the electric-arc technique. Nature 1997, 388, 756.
  91. Maser W.K., Bernier P., Lambert J.M. et al. Elaboration and characterization of various carbon nanostructures. Synt. Met. 1996, 81, 243.
  92. Shi Z., Lian Y., Liao F. et al. Purification of single-wall carbon nanotubes. Solid State Commun. 1999,112, 35.
  93. Liu В., Wagberg Т., Olsson E. et al. Synthesis and characterization of singlewalled nanotubes produced with Ce/Ni as catalysts. Chem. Phys. Lett. 2000, 320, 365.
  94. Saito Y., Tani Y., Miyagawa N. et al. High yield of single-wall carbon nanotubes by arc discharge using Rh-Pt mixed catalysts. Chem. Phys. Lett. 1998, 294, 593.
  95. Matsuo H., Takikawa H., Iijima H., Sakakibara T. Trans. IEE Jpn. 1994, 114 A, 867.
  96. В.И., Щур Д.В., Тарасов Б. П., Шульга Ю. М. и др. Фуллерены -основа материалов будущего. Киев: АДЕФ-Украина, 2001, 148 с.
  97. Э.Г. Методы получения углеродных нанотрубок. Успехи химии 2000, 69,41.
  98. Terrones М., Hsu W.K., Kroto H.W., Walter D.R.M. Nanotubes: A revolution in materials science and electronics. Top. Curr. Chem. 1999,199, 189.
  99. Journet C., Bernier P. Production of carbon nanotubes. Appl Phys. A 1998, 67, 1.
  100. Dillon A., Gennett T., Jones K. et al. A simple and complete purification of single-walled carbon nanotube materials. Adv. Mater. 1999, 16, 1354.
  101. Rinzler A.G., Liu J., Dai H. et al. Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. A 1998, 67, 29.
  102. Bandow S., Asaka S., Zhao X., Ando Y. Purification and magnetic properties of carbon nanotubes. Appl. Phys. A 1998, 67, 23.
  103. Zimmerman J.L., Bradley R.K., Huffman C.B. et al. Gas-phase purification of single-wall carbon nanotubes. Chem. Mater. 2000, 12, 1361.
  104. Chiang I.W., Brinson B.E., Smalley R.E. et al. Purification and characterization of single-wall carbon nanotubes. J. Phys. Chem. B 2001, 105,1157.
  105. Bandow S., Rao A.M., Williams K.A. et al. Purification of single-wall carbon nanotubes by microfiltration. J. Phys. Chem. B 1997,101, 8839.
  106. Shelimov K.B., Esenaliev R.O., Rinzler A.G.et al. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem. Phys. Lett. 1998, 282, 429.
  107. Duesberg G.S., Burghard M., Muster J. et al. Separation of carbon nanotubes by size exclusion chromatography, Chem. Commun. 1998,435.
  108. Huang H., Kajiura H., Yamada A., Ata M. Purification and alignment of arc-synthesis single-walled carbon nanotube bundles. Chem. Phys. Lett. 2002, 356 567.
  109. Huang H.J., Yang S.H. Toward efficient synthesis of endohedral metallofullerenes by arc discharge of carbon rods containing encapsulated rare earth carbides and ultrasonic soxhlet extraction. Chem. Mater. 2000,12,2715.
  110. Kim P., Odom T.W., Huang J.-L., Lieber C.M. Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states. Phys. Rev. Lett. 1999, 82, 1225.
  111. Odom T.W., Huang J.-L., Kim P., Lieber C.M. Structure and electronic properties of carbon nanotubes. J. Phys. Chem. B 2000,104, 2794.
  112. Palser A.H.R. Interlayer interactions in graphite and carbon nanotubes. Phys. Chem. Chem. Phys. 1999,1, 4459.
  113. Saito R., Matsuo R., Kimura T. et al. Anomalous potential barrier of doublewall carbon nanotube. Chem. Phys. Lett. 2001, 348, 187.
  114. Flahaut E., Peigney A., Laurent Ch., Rousset A. Synthesis of single-walled carbon nanotube-Co-MgO composite powders and extraction of the nanotubes. J. Mater. Chem. 2000,10, 249.
  115. Bacsa R.R., Laurent Ch., Peigney A. et al. High specific surface area carbonnanotubes from catalytic chemical vapor deposition process. Chem. Phys. Lett. 2000, 323, 566.
  116. Patil K.C. Bull. Mater. Sci. 1993, 16, 533.
  117. Chen P., Zhang H.-B., Lin G.-D. et al. Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni-MgO catalyst. Carbon 1997, 35, 1495.
  118. Li W.Z., Wen J.G., Sennett M., Ren Z.F. Clean double-walled carbon nanotubes synthesized by CVD. Chem. Phys. Lett. 2003, 368, 299.
  119. Bandow S., Takizawa M., Hirahara K. et al. Raman scattering study of double-wall carbon nanotubes derived from the chains in single-wall carbon nanotubes. Chem. Phys. Lett. 2001, 337, 48.
  120. Smith B.W., Monthioux M., Luzzi D.E. Encapsulated C6o in carbon nanotubes. Nature 1998, 396, 323.
  121. Hirahara K., Suenaga K., Bandow S. et al. One-dimensional metal 1 о full erene crystal generated inside single-walled carbon nanotubes. Phys. Rev. Lett. 2000, 85, 5384.
  122. Lowell S., Shields J.E. Power surface area and porosity. London, New York: Chapman and Hall, 1984, 234 p.
  123. Экспериментальные методы исследования катализа / Под ред. Р.Андерсона. Москва: Мир, 1972, 480 с.
  124. Koch A.S., Khemani К.С., Wudl F. Preparation of fullerenes with a simple benchtop reactor. J. Org. Chem. 1991, 56, 4543.
  125. Pradeep Т., Rao C.N.R. Preparation of buckminsterfullerene, Сбо- Mat. Res. Bull. 1991,26, 1101.
  126. Haufler R.E., Conseicao J., Chibante L.P.F. et al. Efficient production of C6o (Buckminsterfullerene), СбоНзб, and the solvated buckide ion. J. Phys. Chem. 1990, 94, 8634.
  127. Cox D.M., Behal S., Disco M. et al. Characterization of C60 and C70 clusters. J. Am. Chem. Soc. 1991,113, 2940.
  128. Seraphin S., Zhou D., Jiao J. et al. Effect of processing conditions on the morphology of carbon nanotubes. Carbon 1993, 31, 685.
  129. В.П., Краинский И. С., Лаухина Е. Э., Ягубский Э. Б. Получение сажи с высоким содержанием фуллеренов Сбо и С70 методом электрической дуги. Изв. АН. Сер. хим. 1994, 805.
  130. Smalley R.E. From dopyballs to nanowires. Material Science and Engineering 1993, В19, 1.
  131. Ramirez A.P., Haddon R.C., Zhou O. et al. Magnetic susceptibility of molecular carbon: nanotubes and fullerite. Science 1994, 265, 84.
  132. Wang X.K., Lin X.W., Song S.N. et al. Properties of buckytubes and derivatives. Carbon 1995, 33, 949. л 138. Saito Y., Yoshikawa Т., Bandow S. et al. Interlayer spacings in carbonnanotubes. Phys. Rev. В 1993, 48, 1907.
  133. Kuzmany H., Plank W., Hulman M. et al. Determination of SWCNT diameters from the Raman response of the radial breathing mode. Eur. Phys. J. В 2001, 22, 307.
  134. Ю.М., Морозов Ю. Г., Тарасов Б. П., Криничная Е. П., Мурадян В. Е. и др. Магнитные свойства порошков, образующихся при электродуговом распылении графит-кобальт-никелевых электродов. Альтернативная энергетика и экология 2000 (1), 37.
  135. Nagano Y., Gouali M., Monjushiro H. et al. Air oxidation of carbon soot generated by laser ablation. Carbon 1999, 37, 1509.
  136. Nemanich R.J., Solin S.A. First- and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. В 1979, 20, 392.
  137. Hiura H., Ebbesen T.W., Tanigaki K. Raman studies of carbon nanotubes. Chem. Phys. Lett. 1993, 202, 509.
  138. Obraztsova E.D., Yurov V.Yu., Shevluga V.M. et al. Structural investigations of close-packed single-wall carbon nanotube material. NanoStructured Materials 1999, 11, 295.
  139. Fang S.L., Rao A.M., Eklund P.C. et al. Raman scattering study of coalesced single walled carbon nanotubes. J. Mater. Res. 1998,13, 2405.
  140. C.B. Магнетизм. Москва: Наука, 1971, 1032 с.
  141. Shi Z., Lian Y., Zhou X. et al. Mass-production of single-wall carbon nanotubes by arc discharge method. Carbon 1999, 37, 1449.
  142. Tarasov B.P. Ultradispersed hydrogen-sorbing metals and intermetallic compounds: preparation and properties. Альтернативная энергетика и экология 2000 (1), 26.
  143. К. Интерметаллические соединения редкоземельных элементов. Москва: Мир, 1974, с. 224.
  144. Картотека JCPDS International Centre for Diffraction Data, 04−0850 (1995).
  145. Hansen M., Anderko K. Constitution of Binary Alloys, vol. I. New-York, Toronto, London: McGraw-Hill Book Сотр., 1958.
  146. Seraphin S. Single-walled tubes and encapsulation of nanocrystals into carbon clusters. J. Electrochem. Soc., 1995,142,290.
  147. Т.Ю., Новакова А. А., Тарасов Б. П., Мурадян B.E. Исследование микроструктуры углеродного наноматериала, полученногона Fe-Ni катализаторе. Поверхность. Рентгеновские, синхротронные и нейтронные исследования 2004 (3), 70.
  148. Gavillet J., Loiseau A., Journet С. et al. Root-growth mechanism for singlewall carbon nanotubes. Phys. Rev. Lett. 2001, 87, 275 504.
  149. Saito Y., Nishikubo K., Kawabata K., Matsumoto T. Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. J. Appl. Phys. 1996, 80, 3062.
  150. Yudasaka M., Kasuya Y., Kokai F. et al. Causes of different catalytic activities of metals in formation of single-wall carbon nanotubes. Appl. Phys. A 2002, 74, 377.
  151. Huang Z.P., Wang D.Z., Wen J.G. et al. Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes. Appl. Phys. A 2002, 74, 387.
  152. Ino H., Moriya T., Fujita F.E. et al. Moessbauer effect during the tempering of iron-carbon martensite. J. Phys. Soc. Japan 1968, 25, 88.
  153. Ю.В., Суздалев И. П., Аренд P.A. ФТТ1972,14, 3344.
  154. Shihjo T., Itoh F., Takaki H. et al. 57Fe Moessbauer effect in Fe2B, FeB and Fe3C. J. Phys. Soc. Jpn. 1964,19, 1252.
  155. Oda K., Fujimura H., Ito K. et al. Hyperfine Interact. 1990, 54, 853.
  156. Bauer-Grosse E., Le Caer G. Structural evolution of sputtered amorphous Fe,./:* films for 0.19 < 0.49. Phil. Mag. В 1987, 56,485.
  157. Vol’pin M.E., Novikov Yu.N., Lapkina N.D. et al. Lamellar compounds of graphite with transition metals. Graphite as a ligand. J. Amer. Chem. Soc. 1975, 97, 3366.
  158. Hihara T., Onodera H., Sumiyama K. et al. Magnetic properties of iron in nanocapsules. Jpn. J. Appl Phys. 1994, 33, L24.
  159. Umemoto M., Todalka Y., Takahashi T. et al. Proceeding of ISMANAM-2003 in J. Mater. Sei. Forum, Seoul, Korea, 2003.
  160. В.Е., Тарасов Б. П., Шульга Ю. М. и др. Электродуговой синтез углеродных нанотрубок. Тезисы докладов Международной конференции «Водородное материаловедение и химия гидридов металлов». Алушта, Украина, 2001,550.
  161. Shimizu М., Kobayshi Н. Mossbauer spectra in Fe-Ni invar alloys. J. Phys. Soc.Jpn. 1984,53,2111.
  162. А.А., Киселева Т. Ю., Тарасов Б. П., Мурадян B.E. Мессбауэровское исследование продуктов электродугового испарения железо-графитового электрода. Перспективные материалы 2003 (4), 87.
  163. Chahine R., Bose Т.К. Low pressure adsorption storage of hydrogen. Int. J. Hydrogen Energy 1994,19, 161.
  164. Ye Y., Ahn C.C., Witham C. et al. Hydrogen adsorption and cohesive, energy of single-walled carbon nanotubes. Appl. Phys. Lett. 1999, 74, 2307.
  165. Liu C., Cong H.T., Li F. et al. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method. Carbon 1999,37, 1865.
  166. Kasuya A., Sasaki Y., Saito Y. et al. Evidence for size-dependent discrete dispersions in single-wall nanotubes. Phys. Rev. Lett. 1997, 78, 4434.
  167. Tuinstra F, Koenig J.L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126.
  168. Zhao X., Ando Y. Raman spectra and X-ray diffraction patterns of carbon nanotubes prepared by hydrogen arc discharge. Jpn. J. Appl. Phys. 1998, 37, 4846.
  169. Rao A.M., Richter E., Bandow S. et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 1997, 275, 187.
  170. Kiang C.-H., Goddart III W.A., Beyer R. et al. Catalytic synthesis of single-layer carbon nanotubes with a wide range of diameters. J. Phys. Chem. 1994, 98, 6612.
  171. Abrahamson J. Graphite sublimation temperatures, carbon arcs and crystallite erosion. Carbon 1974,12, 111.
  172. Kratschmer W., Fostiropoulos K., Huffman D. R The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C6o molecule. Chem. Phys. Lett. 1990, 170, 167.
  173. Bhyrappa P., Penicaud A., Kawamoto M. et al. Improved chromatographic-separation and purification of C-60 and C-70 fullerenes. J. Chem. Soc. Chem. Commun. 1992, 936.
  174. Vassallo A.M., Palmisano A.J., Pang L.S.K. et al. Improved separation of fullerene-60 and -70. J. Chem. Soc. Chem. Commun. 1992, 60.
  175. Scrivens W.A., Bedworth P.V., Tour J.M. Purification of gram quantities of C6o- A new inexpensive and facile method. J. Am. Chem. Soc. 1992,114, 7917.
  176. K., Hosoya K., Araki T., Tanaka N. 2-(l-pyrenyl)ethyl.silyl silica packing material for liquid-chromatographic separation of fullerenes. J. Org. Chem. 1993,58,282.
  177. Gumanov L.L., Korsunsky B.L., Derkacheva V.M. et al. Separation of C-60and C-70 fullerenes on silica modified with phthalocyanines. Mendeleev Commun. 1996, 1.
  178. Hare J.P., Kroto H.W., Taylor R. Preparation and UV/visible spectra of fullerenes C60 and C70. Chem. Phys. Lett. 1991, 177, 394.
  179. Moravsky A.P., Fursikov P.V., Kiryakov N., Ryabenko A.G. UV-VIS molar absorption coefficients for fullerenes C6o and C7o- Molecular Materials 1996, 7, 241.
  180. А.С., Полякова Н. В., Юрковский И. М. и др. Изменение структуры углеродного волокна в процессе его фторирования. Неорганические материалы 1979,15, 1206.
  181. Yudanov N.F., Okotrub A.V., Shubin Yu.V. et al. Fluorination of arc-produced carbon material containing multiwall nanotubes. Chem. Mater. 2002, 14, 1472.
  182. Saito Y., Uemura S. Field emission from carbon nanotubes and its application to electron sources. Carbon 2000,38, 169.
  183. Baturin A.S., Nikol’ski K.N., Sharov V.B. et al. Alkali and rare metal doping of carbon materials to improve their field emission properties. Abstracts of IIth Inter. Symp. on Intercalation Compounds (ISIC), Moscow, Russia, 2001, 77.
  184. Chen Y.K., Chu A., Cook J. et al. Synthesis of carbon nanotubes containing metal oxides and metals of the d-block and f-block transition metals and related studies. J. Mater. Chem. 1997, 7, 545.
Заполнить форму текущей работой