Помощь в учёбе, очень быстро...
Работаем вместе до победы

Синтез и биологическая активность новых 1, 2, 4-триоксановых аналогов артемизинина

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Posner G. II., Park S. В., Gon/alez L. et al. Evidence for the importance of high-valent Fe=0 and of a diketone in the molecularmechanism of action of antimalarial trioxane analogs of artemisinin. //J. Am. Chem. Soc. 1996. — 118. — p. 3537−3538. Mirjalili В. F, Zolfigol M. Л., Bamoniri A., Zarei A. Silica sulfuric acid/potassium permanganate/wet S1O2 as an efficient heterogeneous method for the… Читать ещё >

Содержание

  • ввпдннин
  • 1. ЛИТНРЛТУР11ЫЙ ОВЗОР
    • 1. 1. Артемизинин
    • 1. 2. Полный и частичный сите? ар1емизинина
    • 1. 3. Сите* прои{водных и упрощенных аналогов артемизинина
    • 1. 4. Механизм аншмалярийною действия эндонероксидных пренарагов
    • 1. 5. Димерыи фимеры ар гемизинина, обладающие ашипролиферагивной активное 1ыо
  • 2. ХИМИЧЕСКАЯ ЧАС Г
    • 2. 1. Сишез новых 3-арилзамещенных 1,2,4-фиокеановых аналогов 83 аргемизинина е использованием грифенилфосфиююнида в качес I ве химическог о эквивален i, а сингле i ног о кислорода
    • 2. 2. Синтез диаегереомерно чистою, рацемическою 1,2,4фиоксановою димера, сходною с димерами природного артемизинина, обладающими антипролиферативной активностью
    • 2. 3. Синтез рацемических грициклических 1,2,4-фиоксанов, изомерных упрощенным аналогам артемизинина

    2.4 Сишез и индуцируемая Fe (II) деградация 3- 104 циклопропилзамещенпог о 1,2,4-гриоксано1юг о аналог, а артсмишнина как способ проверки истинности альтернативных механизмов антималярийною дейсгвия данною гина соединений.

    2.5 Синтез 12-беншлоксизамещенных 1,2,4-фиокеановых 110 аналогов аргемизинина с широким профилем линольносги

    2.6 Поиск оптимальною подхода к сише? у 3-(я- 120 карбоксифенил) шмещенных 1,2,4-гриоксанов для доклинического испытания на трызуггах

    2.7 Новые 1,2,4-триоксановые аналоги ар 1емишнина, содержащие 126 сульфидный и сульфоновый фрашешы при С-12. Сишез, ашималярийная акшвность и возможные

    выводы огносшельно механизма биоло1ического действия.

    ЭКС1 1НРИМП1 ГГАЛЫ 1АЯ ЧАСТЬ

    3.1 Реактивы, рас тори гели, аналшическая база

    3.2 Общие меюдики, используемые в работе

    3.3 Эксперимешальные процедуры к разделу 2.

    3.4 Экспериментальные процедуры к разделу 2.

    3.5 Эксперимешальные процедуры к разделу 2.

    3.6 Эксперимешальные процедуры к разделу 2.

    3.7 Эксперимешальные процедуры к разделу 2.

    3.8 Эксперимешальные процедуры к разделу 2.

    3.9 Экспериментальные процедуры к разделу 2.7 166 OCHOBI ЪШ РЕЗУЛЬТАТЫ РАБОТЫ И

    ВЫВОДЫ 169 ЛИ ГНРА’ГУРА

Синтез и биологическая активность новых 1, 2, 4-триоксановых аналогов артемизинина (реферат, курсовая, диплом, контрольная)

ОСНОВНЫЙ РЕЗУЛЬТАТЫ РАБО ТЫ И ВЫВОДЫ.

1. Опробирована меюдоло1ия синюза 1,2,4-фиоксановых аналоюв арюмизинина из енолэфирных ке гонов с использованием фифенилфосфиюзонида в качеспзе сишешческою эквивалента сингле тою кислорода. В рамках эюй методоло1ии нами были успешно сишезированы различные 3-арил замещенные фиоксаны, показавшие высокую ангималярийную активное ib на уровне природной) арюмизинина. Выделены и идешифицированы побочные продук1ы данной реакции: ожидаемый в рамках и шее того механизма а,|3-неиредельный альдегид, а также неожиданный 1,3-диоксолановый продукт, возможный механизм образования ко юрою предложен.

2. Показана возможность использования изомерных енолэфирных ке гонов в сишезе фиоксановых аналогов арюмизинина и разработан эффекшвный меюд синю га последних. Разрабо1аннмй нами синюшческий подход к «изомерным» 1,2,4-фиоксанам существенно расширяет круг сишешчески доступных новых фиоксановых сфукгур. Несмотря на нигкие значения ашималярийной активности, наблюдаемые для данных (впервые сишезированных) соединений, полученные регульты открывают возможности для установления отдельных взаимоотношений «сгрук1ура-ак1ивнос1Ь» в ряду «изомерных» фиоксанов, которые Moiyi бьпь совершенно иными, чем для ряда «нормальных» 1,2,4-триоксанов, исследовавшихся ранее.

3. Разработан меюд сишеза Сз-Сз'-(/7-фенилиден)-связанною 1,2,4-триоксановою димера, обладающею заметной ашималярийной активностью. Установлено, чю получение двух фиоксановых единиц перегруппировкой 1,2-диоксегановою ишермедиата возможно внутри одной молекулярной структуры. Разработанный меюд сишеза позволяет получагь ашииролиферашиные димеры подобной структуры путем варьирования шпа и размеров «межфиокеановою» связующею фрагмент.

4. Разработны сишешческие подходы к новым 1,2,4-фиоксановым аналогам аргемизинина, сгрукгура коюрых нозволяег варьировагь свойство липофилыюсги. Полученные данные имеюг значение для построения георегической модели, предсказывающей взаимосвязь между липофилыюсгыо и ашималярийной активностью для широкого круга 1,2,4-гриоксановых аггалогов аргемизинина.

5. Проведена разработка улучшенною меюда сишеза одною из 1,2,4-триоксановых аналогов артемизинина исходя из коммерчески доступных циклотексанона и арилбромида (5 сгадий, общим выходом 9,3%), в котором синтетический путь был сокращен на 2 стдии, а суммарный выход увеличен в 2 раза, но сравнению с ранее известным методом. Разработанный метод отличается oi ранее извесшого использованием кислорода воздуха в качестве источника синглешого кислорода и отсутствием не улавливаемых юксичных отходов.

6. Разработана новая ситпегическая схема, позволяющая получать принципиально новый тип структур: С|2-сульфиди сульфонзамещенные 1,2,4-фиоксановые аналоги аргемизинина. Сишез данных соединений был проведен в диастереомерпо чисюй форме, после разделения С^-эгтимеров меюдом ВЭЖХ.

1. TDR News (News from the WHO Division of Control of Tropical Diseases) — 1994.-46.-p. 5.

2. Oaks S. C., Jr., Mitchell V. S., Pearson, G. W., Carpenter, С. C., eds. Malaria: obstacles and opportunities. Washington, DC: National Academy Press, 1991.

3. Ziffer, II.- Ilighet, R. J.- Klayman, D. L. Artemisinin: an endoperoxidic antimalarial from Artemisia annua L. // Prog. Chem. Org. Nat. Prod. 1997. — 72, № 1 — p. 121.

4. Miller L II., Warrell D. A. Malaria. // Tropical and geographical medicine. K. S. Warren and A. A. F. Mahmoud, eds. New York: McGraw-Hill, 1990.

5. Luo X.-D., Ni M.Y., Fan J.-F., et al. Structure and reactions of arteannuin. // Acta Chim. Sinica. 1979. — 37, № 2. — p. 129.

6. Posner G. 11. Antimalarial peroxides in the qinghaosu (artemisinin) and ying/haosu families. // Hxp. Opin, Ther. Patents. 1998. — 8, № 7. — p. 1487−1493.

7. Posner G. П., Parker M. II., Northrop J., et al. Orally active, hydrolytically stable, semisynthetic, antimalarial trioxanes in the artemisinin family. //J. Med. Chem. 1999. — 42, № 2, p. 300−304.

8. Jung M., Lee S. Stability of acetal and non acetal-type analogs of artemisinin in simulated stomach acid. // Bioorg. Med. Chem. Lett. -1998.-8, № 5, p. 1003−1006.

9. Pu Y. M., Ziffer II. Synthesis and antimalarial activities of 12.beta.-allyldeoxoartemisinin and its derivatives. // J. Med. Chem. 1995. — 38, № 5.-p. 613−616.

10. Cumming J. N., Ploypradith P., Posner G. II. Antimalarial activity of artemisinin (qinghaosu) and related trioxanes: mechanism (s) of action. // Advances in Pharmacology. 1997. — 37. — pp. 253−297.

11. Паi. 5 578 637 США. Methods for inhibition or killing cancer cells using an endoperoxide / Lai II. C., Singh N. P. Опубл. 26.11.1996.

12. Schmid G., Hofheinz W. Total synthesis of qinghaosu. // J. Am. Chem. Soc. 1983. — 105, № 5, p. 624−625.

13. Schulte К. II., Ohloff G. // Ilelv. Chim. Acta. 1967. — 50. — p. 153.

14. McCullough K. J. Synthesis and use of cclie peroxides, i, Contemp. Org. Synth. 1995. — 2, № 3. — p. 225.

15. Buchi G., Wuest 11. // J. Am. Chem. Soc. 1977. 99. — p. 294.

16. Greene T. W., Wuts P. G. M. Protective groups in organic synthesis. 3rd lid. N. Y.: Wiley-Interscience, 1999.

17. Corey L.J., Suggs W. Pyridinium chlorochromate. An efficient reagent for oxidation of primary and secondary alcohols to carbonyl compounds. // Tetrahedron Lett. 1975. — 31, № 15. -p. 2647−2650.

18. Michael J. S., Dewar M. J. S., 'Ihiel W. MINDO/3 study of the addition of singlet oxygen (1 .DHLTA.g02) to 1,3-butadiene. // J. Am. Chem. Soc. 1977. — 99, № 7 — p. 2338−2339.

19. Xu X. X., Zhu J., Huang D. Z., Zhou W. S. Total synthesis of arteannuin and deoxyarteannuin. //Tetrahedron. 1986. — 42. — p. 819 828.

20. Avery M. A., Chong W. К. M., Jennings-White C. Stereoselective total synthesis of (f)-artemisinin, the antimalarial constituent of Artemisia annua L. // Am. Chem. Soc. 1992. — 114. — p. 974−979.

21. Caine, D.- Procter, K.- Cassell, A. A facile synthesis of (-)-R-5-methyl-2-cyclohexen-l-one and related 2-substituted enones from (+)-pulegone. J. Org. Chem. — 1984. — 49. — p. 2647−2648.

22. Shapiro R. I I., Lipton M.F., Kolonko K.J. et al. Tosylhydra/ones and alkyllithium reagents: more on the regiospecificity of the reaction and the trapping of three intermediates. //Tetrahedron Lett. 1975. — p. 18 111 814.

23. Ravindranathan Т., Kumar M. Л., Menon R. В., I liremath S. V. Stereoselective synthesis of artemisinin. //Tetrahedron Lett.- 1990. -31. -p. 755−758.

24. Ilaynes R. K., Vonwiller S. C. From qinghao, marvelous herb of antiquity, to the antimalarial trioxane quinghaosu. Some remarkable new chemistry. // Лее. Chem. Res. 1997. — 30. — p. 73−79.

25. Zaman S. S., Sharma R. P. Some aspects of the chemistry and biological activity of artemisinin and related antimalarials. // Heterocycles.- 1991.-32.-p. 1593−1638.

26. Xu X.-X., Zhu J., Huang D.-A., Zhou W.-S. 'I he stereocontrolled synthesis of arteannuin and deoxyarteannuin from arteannuic acid. // Acta Chem. Sinica. 1983. — 41. — p. 574.

27. Roth R. J., Acton N. A Simple conversion of artemisinic acid into artemisinin.//J. Nat. Prod. 1989. — 52. — p. 1183.

28. Roth R. J., Acton N. A facile semisynthesis of antimalarial drug qinghaosu //J. Chem. ltd. 1991. — 68.-p. 613.

29. Vroman J. A., Alvim-Gaston M., Avery M. A. Current progress in the chemistry, medicinal chemistry, and drug design of artemisinin based antimalarials.//Curr. Pharm. Design. 1999.-5.-p. 101−138.

30. Jung M., Lee K., Kim II., Park M. Recent advances in artemisinin and its derivatives as antimalarial and antitumor agents. // Curr. Med. Chem. -2004. 11.-p. 1265−1284.

31. Maggs J. L., Batty К. Т., Ilett K. F. et al. // Br. J. Clin. Pharmacol. -1998.-39.-p. 1533 1537.

32. Woo S. 11., Parker M. 11., Ploypradith P. et al. Direct conversion of pyranose anomeric OII-> F -> R in the artemisinin family of antimalarial trioxanes. //Tetrahedron Lett. 1998. — 39. — p. 1533 — 1536.

33. Matsumoto Т., Hosoya Т., Suzuki K. Improvement in O—>C-glycoside rearrangement approach to C-aryl glycosides: use of 1 -O-acetylsugar as stable but efficient glycosyl donor. // Tetrahedron Lett. 1990. 31.-p. 4629−4632.

34. O’Neil P. M., Miller A., Ward S. A. et al. Application of the TMSOTf-AgClO, activator system to the synthesis of novel, potent, C-10 phenoxy derivatives of dihydroartemisinin. //Tetrahedron Lett. 1999.40.-p. 9129−9132.

35. O’Neil P. M., Miller A., Bisop L. P. D. et al. Synthesis, antimalarial activity, biomimetic iron (U) chemistry, and in vivo metabolism of novel, potent С-10-phenoxy derivatives of dihydroartemisinin. // J. Med. Chem. -2001.-44.-p. 58−67.

36. Ma J., Katz It., Kyle D. П., Ziffer II. Syntheses and antimalarial activities of 10-substituted deoxoartemisinins. // J. Med. Chem. 2000. -43.-p. 4228−4236.

37. Burton J. W., Clark J. S., Derrer S. et al. Synthesis of medium ring ethers. 5. 'I he synthesis of (J)-laurencin. // J. Am. Chem. Soc. 1997.32.-p. 7483−7498.

38. Jung M., Freitas А. С. C., McChensey J. D.- HlSohly II. N. A practical and general synthesis of (+)-carboxyalkylartemisinins. // I Ieterocycles. 1994. — 39. — p. 23 — 29.

39. Ilaynes R. K., Vonwiller S. C. Efficient preparation of novel quinghaosu (artemisinin) derivatives: conversion of qinghao (artemisinic) acid into deoxoqinghaosu derivatives and 5-carba-4-deoxoartesunic acid. // Synlett. 1992. -p. 481−483.

40. Jung M., Lee S. A concise synthesis of novel aromatic analogs of artemisinin. //1 Ieterocycles. 1997. — 45. — p. 1055−1058.

41. Jung M., Lee S. An efficient synthesis of novel spirodeoxoartemisinin with 2-pyrazoline ring. // I Ieterocycles. 1997. -45.-p. 1907;1911.

42. Paitayatat S., Tarnchompoo В., Thebtaranonth Y., Yuthavong Y. Correlation of antimalarial activity of artemisinin derivatives with bindingaffinity with ferroprotoporphyrin IX. // J. Med. Chem. 1997. — 40. — p. 633−638.

43. Avery M. A., Fan P., Karle J. M. et al. Replacement of the nonperoxidic trioxane oxygen atom of artemisinin by carbon: total synthesis of (+)-13-carbaartemisinin and related structures. //Tetrahedron Lett. 1995.-36.-p. 3965−3968.

44. Ohsugia S.-I., Nishidea K., Oonob K. et al. New odorless method for the Corey-Kim and Swern oxidations utilizing dodecyl methyl sulfide (Dod-S-Me). // 'Tetrahedron. 2003. — 59. — p. 8393−8398.

45. I leathcock С. II., Hllis J. E., McMurry J. E., Coppolino A. Acid-catalyzed robinson annelations. // 'Tetrahedron Lett. 1971. — 12. — p. 4995−4996.

46. G. II. Posner An Introduction to synthesis using organocopper reagents. New York: Wiley, 1980.

47. Ploypradith, P. Development of artemisinin and its structurally simplified trioxane derivatives as antimalarial drugs. // Acta Trop. 2004. -89.-p. 329−342.

48. Corey E. J., Mehrotra M. M., Khan A. U. Generation of 'Ag 02 from triethylsilane and o/one. // J. Am. Chem. Soc. 1986. — 108. — p. 24 722 473.

49. Posner G. II., Webb K. S., Nelson W. M. et al. A new oxidizing reagent: triethylsilyl hydrotrioxide. // J. Org. Chem. 1989. — 54. — p. 3252−3254.

50. Synglet oxygen. Wassermann, II. F., Murray, R. W., Eds. New York: Academic Press, 1979.

51. Jefford С. W., Velarde J., Bernardinelli G. Synthesis of tricyclic arteannuin-like compounds. Tetrahedron Lett. — 1989. — 30. — p. 44 854 488.

52. Posner G. II., Oh С. II., Milhous W. K. Olefin oxidative cleavage and dioxetane formation using triethylsilyl hydrotrioxide: applications to preparation of potent antimalarial 1,2,4-trioxanes. // Tetrahedron Lett. -1991.-32.-p. 4235−4238.

53. Posner G. II., Oh С. II., Gerena L., Milhous W. K. Synthesis and antimalarial activities of structurally simplified 1,2,4-trioxanes related to artemisinin //1 Ieteroatom Chemistry. 1995. — 6. — p. 105−116.

54. Oh С. II., Wang D., Gumming J. N., Posner G. II. Antimalarial 1,2,4-trioxanes related to artemisinin: rules for assignment of relative stereochemistry in diversely substituted analogs. // Spectroscopy Lett. -1997.-30.-p. 241−255.

55. Posner G. II., Oh С. II., Gerena L., Milhous W. K. Extraordinarily potent antimalarial compounds: new, structurally simple, easily synthesized, tricyclic 1,2,4-trioxanes. // J. Med. Chem. 1992. — 35. — p. 2459−2467.

56. Posner G. II., McGarvey D. J., Oh С. II. et al. Structure-activity relationships of lactone ring-opened analogs of the antimalarial 1,2,4-trioxane artemisinin. // J. Med. Chem. 1995. — 38. — p. 607−612.

57. Oh С. II., Kang J. II., Posner G. II. A short synthesis of 6,9-desmethyldeoxoartemisinin and its isomer. // Bull. Korean Chem. Soc. -1996. 17.-p. 581−582.

58. Oh С. II., Posner G. II. Syntheses and iron (II) induced reactions of phenyl-substituted 1,2,4-trioxanes. // Bull. Korean Chem. Soc. 1997. -18.-p. 644−648.

59. Abraham R. J., Fisher J., Loftus P. Introduction to NMR Spectroscopy. Chichester, UK: John Wiley, 1990. — Chapter 3, Section 5.

60. Posner G. II., Cumming J. N., Woo S.-II. et al. Orally active antimalarial 3-substituted trioxanes: new synthetic methodology and biological evaluation. // J. Med. Chem. 1998. — 41. — p. 940−951.

61. Cumming J. N., Wang D., Park S. B. et al. Design, synthesis, derivati/ation, and structure-activity relationships of simplified, tricyclic, 1,2,4-trioxane alcohol analogues of the antimalarial artemisinin. // J. Med. Chem. 1998.-41.-p. 952−964.

62. Posner G. 11., Wang D., Gonzalez L. et al. Mechanism-based design of simple, symmetrical, easily prepared, potent antimalarial endoperoxides. //Tetrahedron Lett. 1996. — 37. — p. 815−818.

63. Posner G. 11., Gonzalez L., Cumming J. N. et al. Synthesis and antimalarial activity of heteroatom-containing bicyclic endoperoxides. //Tetrahedron. 1997. — 53. — p. 37−50.

64. Takashi Y., Okitsu O., Ando M., Miyashi T. Hlectron-transfer induced intramolecular |2 -t 2. cyloaddition of 2,6-Diarylhepta-l, 6-dienes Tetrahedron Lett. 1994. — 35. — p. 3953−3956.

65. Tebbe F. N., Parshall G. W., Reddy G. S. Olefin homologation with titanium methylene compounds. // J. Am. Chem. Soc. 1978. — 100. — p. 3611−3613.

66. Desjardins R. I:., Canfield C. J., Ilaynes J. D., Chulay J. D. Quantitative assessment of antimalarial activity in vitro by asemiautomated microdilution technique. // Antimicrob. Agents Chemother. 1979. — 16. — p. 710−718.

67. Milhous W. K., Weatherly N. F., Bowdre J. II., Desjardins R. E. // Antimicrob. Agents Chemother. 1985. — 27. — p. 525−531.

68. Posner G. П., Tao X., Cumming J. N. et al. Antimalarial^ potent, easily prepared, fluorinated endoperoxides. // Tetrahedron Lett. 1996. -37.-p. 7225−7228.

69. Adam W., Balci M. Photooxegynation of 1,3,5-cyclopentatriene: isolation and characterization of endoperoxides. // J. Am. Chem. Soc. -1979.-101. 7537−7541.

70. Posner G. II., O’Dowd II., Ploypradith P. et al. Antimalarial cyclic peroxy ketals. // J. Med. Chem. 1998. — 41. — p. 2164−2167.

71. Posner G. II., O’Dowd II. An antimalarially active cyclic peroxy ketal. //1 Ieterocycles. 1998. — 47. — p. 643−646.

72. Ricard R., Sauvage P., Wan C. S. K. et al. Photochemical enoli/ation of P-alkyl «^-unsaturated ketones. J. Org. Chem. 1986. -51.-p. 62−67.

73. Snider В. В., Shi Z. Total synthesis of (±)-chondrillin, (i)-plakorin, and related peroxy ketals. // J. Am. Chem. Soc. 1992. — 114. — p. 17 901 800.

74. Snider В. В., Shi Z., O’Neill S. V. et al. Stereochemical dependence of base-cataly/ed cleavage of cyclic peroxy ketals. // J. Org. Chem. -1994. -59.-p. 1726−1729.

75. Bachi M. D., Korshin H. K. Thiol-oxygen cooxidation of monotrpenes. synthesis of endoperoxides structurally related to antimalarial yingzhaosu A. // Synlett. 1998. — p. 122−124.

76. Bachi M. D., Korshin H. H., Ploypradith P. et al. Synthesis and in vitro antimalarial activity of sulfone endoperoxides. // Bioorg. Med. Chem. Lett. -1998. 8. — p. 903−908.

77. Posner G. II., O’Dowd II., Caferro T. et al. Antimalarial sulfone trioxanes. // Tetrahedron Lett. 1998. — 39. — p. 2273−2276.

78. Posner G. 11., Maxwell J. P., O’Dowd 11, et al. Antimalarial sulfide, sulfone, and sulfonamide trioxanes. // Bioorg. Med. Chem. 2000. — 8. -p. 1361−1370.

79. Bartlett P. D., Chu II.-K. Mechanism of the direct reaction of phosphite o/onides with olefins. // J. Org. Chem. 1980. — 45. — p. 30 003 004.

80. Bartlett P. D., Mendenhall G. D., Durham D. L. Controlled generation of singlet oxygen at low temperature from triphenyl phosphite ozonide. // J. Org. Chem. 1980. — 45. — p. 4269−4271.

81. Mendenhall G. D., Priddy D. B. A reexamination of the o/one-triphenyl phosphite system. The origin of triphenyl phosphate at low temperatures. // J. Org. Chem. 1999. — 64. — p. 5783−5786.

82. Lee I. S., HI Sohly II. N., Croom E. M., Ilufford C. D. Microbial metabolism studies of the antimalarial sesquiterpene artemisinin. // J. Nat. Prod. 1989.-52.-p. 337−341.

83. Vennerstrom J. L., Eaton J. W. Oxidants, oxidant Drugs, and malaria. J. Med. Chem. 1988. — 31. — p. 1269−1277.

84. Posner G. II., Oh С. II. A regiospecifically oxyge-18 labeled 1,2,4-trioxane: A simple chemical model system to probe the mechanism (s) of the antimalarial activity of artemisinin (qinghaosu). // J. Am. Chem. Soc. 1992.-114.-p. 8328−8329.

85. Posner G. II., Park S. В., Gon/alez L. et al. Evidence for the importance of high-valent Fe=0 and of a diketone in the molecularmechanism of action of antimalarial trioxane analogs of artemisinin. //J. Am. Chem. Soc. 1996. — 118. — p. 3537−3538.

86. Robert A., Meunier B. Characterization of the first covalent adduct between artemisinin and a heme model // J. Am. Chem. Soc. 1997. -119.-p. 5968−5969.

87. Robert A., Meunier B. Is alkylation the main mechanism of action of the antimalarial drug artemisinin? // Chem. Soc. Rev. 1998. — 27. — p. 273−279.

88. Posner G. 11., Cumming J. N., Ploypradith P., Oh С. 11. Evidence for Fe (IV)=0 in the molecular mechanism of action of the trioxane antimalarial artemisinin. // J. Am. Chem. Soc. 1995. — 117. — p. 58 855 886.

89. Bharel S., Vishwakarma R. A., Jain S. K. Artemisinin mediated alteration of haemin to a 5-meso oxidation product: relevance to mechanism of action. // J. Chem. Soc. Perkin Trans. 1. 1998. — p. 21 632 166.

90. Wu W.-M., Yao Z.-J., Wu Y.-L. et al. Ferrous ion induced cleavage of the peroxy bond in qinghaosu and its derivatives and the DNA damage associated with this process. //Chem. Commun. 1996. — p. 2213−2214.

91. Sadava D., Phillips Т., Lin C., Kane S. E. Transferrin overcomes drug resistance to artemisinin in human small cell lung carcinoma cells. // Cancer Lett. 2002. — 179. — p. 151 -156.

92. Lai II. C., Singh N. P. Selective cancer cell cytotoxicity from exposure to dihydroartemisinin and holotransferrin. Cancer Lett. 1995. -91. — p. 41−46.

93. I lai. 5 578 637 США. Methods of inhibition or Killing Cancer Cells Using an Hndoperoxide. / Lai 11. C., Singh, N. P. Опубл. 08.09.1996.

94. Woerdenbag, II. J. et al. Cytotoxicity of artemisinin-related endoperoxides to HAT cells. // J. Nat. Prod. 1993. — 56. — p. 849−856.

95. Posner G. II., Nelson T. D., Guton K. Z., Kensler, T. W. New vitamin D3 derivatives with unexpected antiproliferative activity: 1-(hydroxymethyl)-25-hydroxyvitamin D3 homologs. // J. Med. Chem. -1992.-35.-p. 3280−3287.

96. Posner G. 11., Ploypradith P., I Iapangama W. et al. Trioxane dimers have potent antimalarial, antiproliferative, and antitumor activities in vitro. // Bioorg. Med. Chem. 1997. — 5. — p. 1257−1265.

97. Posner G. II., Ploypradith P., Parker M. II. et al. Antimalatial, antiproliferative, and antitumor activities of artemisinin-derived, chemically robust, trioxane dimers. // J. Med. Chem. 1999. 42. — p. 4275−4280.

98. Jung M., Lee S., I lam J. et al. Antitumor activity of novel deoxoartemisinin monomers, dimers, and trimer. // J. Med. Chem. 2003. 46. p. 987−994.

99. Posner G. II., Paik I.-II., Sur S. et al. Orally active, antimalarial, anticancer, artemisinin-derived trioxane dimers with high stability and efficacy. //J. Med. Chem. 2003. — 46. — p. 1060−1065.

100. Jeyadevan J. P., Bray P. G., Chadwick J. et al. Antimalarial and antitumor evaluation of novel C-10 non-acetal dimers of 10P-(2-hydroxyethyl)deoxoartemisinin. // J. Med. Chem. 2004. — 47. — p. 12 901 298.

101. Stork G., Bri//olara A., Landesman II. et al. 'I he enamine alkylation and acylation of carbonyl compounds. // J. Am. Chem. Soc. -1963.-85.-p. 207−222.

102. Ilam/aoui M., Provot O., Camu/t-Dedenis B. et al. Wittig reaction: a new route to a-methoxyketones. application to the synthesis of simplified analogs of artemisinin. // Tetrahedron Lett. 1998. — 39. — p. 4029−4030.

103. Wang X., Rabbat P., O’Shea P. et al. Selective monolithiation of 2,5-dibromopyridine with butyllithium. // Tetrahedron Lett. 2000. — 41. -p. 4335−4338.

104. Tanino K., Katoh 'I'., Kuwajima I. A highly selective one-carbon ring enlargement reaction directed by silicon. // Tetrahedron Lett. 1988. 29. p. 1815−1818.

105. Ley S. V., Norman J., Griffith W. P., Marsden S. P. Tetrapropylammonium perruthenate, Pr4NTRuO, 'ГРЛР: a catalytic oxidant for organic synthesis. // Synthesis. 1994. — p. 639−657.

106. Mascarenas J.-L., Perez-Sestelo J., Castedo L., Mourino Л. Л short, flexible route to vitamin D metabolites and their side chain analogues. // Tetrahedron 1, ett. 1991. 32. — p. 2813−2816.

107. Ilaynes R. K., Vonwiller S. C. The behaviour of qinghaosu (artemisinin) in the presence of non-heme iron (II) and (III). //Tetrahedron Lett. 1996.-37.-p. 257−260.

108. Fadel A., Salaun J., Conia J. M. Small ring compounds — XLI: cyclobutene cycloadditionssynthesis and reactivity in the bicyclo2.2.0.hexan-2-one series. // Tetrahedron. 1983. — 39. — p. 15 671 574.

109. Международный naieni W00059501. Synthesis and activity of water-soluble trioxanes as potent and safe antimalarial agents. / Posner G. II., Parker, M. II., Krasavin M., Shapiro Т. A. Опубл. 06.06.2000.

110. I lai. 6 136 847 США. Water-soluble trioxanes as potent and safe antimalarial agents. / Posner G. 11., Parker M. H., Krasavin M., Shapiro T. А.-Опубл. 16.08.2000.

111. Posner G. II., Weitzberg M., Nelson W. M. et al. 1,2-Dioxetanes from vinyl aromatics. // J. Am. Chem. Soc. 1987. — 109. — p. 278−279.

112. Carless II. A. J., Billinge J. R., Oak O. Z. Photochemical routes from arenes to inositol intermediates: the photo-oxidation of substituted cis-cyclohexa-3,5-diene-l, 2-diols. // Tetrahedron Lett. 1989. — 30. — p. 3113−3116.

113. Mirjalili В. F, Zolfigol M. Л., Bamoniri A., Zarei A. Silica sulfuric acid/potassium permanganate/wet S1O2 as an efficient heterogeneous method for the oxidation of alcohols under mild conditions. // Bull. Korean Chem. Soc. 2003. — 24. — p. 400−402.

114. Avery M. A., Mehrota S., Bonk J. D. et al. Structure-activity relationships of the antimalarial agent artemisinin. 4. effect of substitution at C-3. // J. Med. Chem. 1996. — 39. — p. 2900−2906.

115. Posner G. II., Jeon II. В., Parker M. II. et al. Antimalarial simplified 3-aryltrioxanes: synthesis and preclinical efllcacy/toxicity testing in rodents. // J. Med. Chem. 2001. — 44. — p. 3054−3058.

116. Trabanco A. A., Montalban A. G., Rumbles G. et al. A seco-porphyrazine: superb sensitizer for synglet oxygen generation and endoperoxide synthesis. // Synlett. 2000. — 7. — p. 1010−1012.

117. Wang D. Ph. D. thesis. The Johns I lopkins University, 1996.

118. McDougal P. G., Rico J. G., Oh Y. I., Condon B. D. A convenient procedure for the monosilylation of symmetric l, n-diols. // J. Org. Chem. 1986.-51.-p. 3388−3390.

119. Ploypradith P. Ph. D. thesis. The Johns I lopkins University, 1999. -p. 157.

Показать весь текст
Заполнить форму текущей работой