Помощь в учёбе, очень быстро...
Работаем вместе до победы

Взаимодействие поли (ADP-рибоза) полимераз 1 и 2 с ДНК-интермедиатами эксцизионной репарации оснований

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

PARP1 более эффективно узнает АР-сайты в составе кластерных повреждений, (АР-сайт расположен напротив одного из его аналогов — остаток диэтиленгликоля, декандиола-1,10, или З-гидрокси-2-гидроксиметилтетрагидрофурана) по сравнению с одиночными АР-сайтами, что выражается в большем уровне сшивок ДНК-белок и в большем уровне ингибирования активности АРЕ1. Для PARP2 избирательность во взаимодействии… Читать ещё >

Содержание

  • Список сокращений
  • Глава 1. Литературный обзор
    • 1. 1. Поли (АОР-рибозил)ирование и метаболизм поли (АОР-рибозы)
    • 1. 2. Семейство PARP
      • 1. 2. 1. PARP, активность которых зависит от повреждений ДНК
      • 1. 2. 2. Танкиразы
      • 1. 2. 3. Белки PARP, содержащие цинковые пальцы СССН-типа
      • 1. 2. 4. PARP, содержащие макродомен
      • 1. 2. 5. Другие представители семейства PARP
    • 1. 3. Особенности структурной организации PARP
    • 1. 4. Роль PARP2 в репарации ДНК
    • 1. 5. Роль PARP2 в сохранении целостности гетерохроматина
      • 1. 5. 1. Роль PARP2 в сохранении целостности центромерного 30 гетерохроматина
      • 1. 5. 2. Роль PARP2 в сохранении целостности теломерного 31 гетерохроматина
      • 1. 5. 3. Роль PARP2 в сохранении целостности факультативного 31 гетерохроматина
    • 1. 6. Специфические функции PARP2 в процессе дифференцировки
      • 1. 6. 1. PARP2 участвует в контроле дифференцировки половых 33 клеток самцов
      • 1. 6. 2. PARP2 принимает участие в контроле дифференцировки и 34 морфогенеза
      • 1. 6. 3. PARP2 необходима для нормального развития Т- 34 лимфоцитов
    • 1. 7. Роль PARP2 в воспалительном ответе
    • 1. 8. Перспективы ингибирования PARP
    • 1. 9. Апуриновые/апиримидиновые сайты в составе кластерных 40 повреждений ДНК и их репарация

Взаимодействие поли (ADP-рибоза) полимераз 1 и 2 с ДНК-интермедиатами эксцизионной репарации оснований (реферат, курсовая, диплом, контрольная)

Геном живых организмов постоянно находится под воздействием многочисленных повреждающих экзогенных и эндогенных агентов [1]. Стабильность клеточного генома во многом обусловлена существованием систем репарации повреждений. Дефекты в системах репарации являются источником множества болезней человека и могут определять предрасположенность к раковым заболеваниям, раннему старению, дефектам роста, нейродегенеративным заболеваниям и изменениям иммунных функций организма [2]. Считается, что в клетках эукариот существует пять основных способов восстановления целостности структуры ДНК: прямая репарация, гомологичная рекомбинационная репарация ДНК, негомологичное соединение двухцепочечных концов ДНК, эксцизионная репарация нуклеотидов и эксцизионная репарация оснований [3, 4]. Каждый путь репарации ДНК направлен на исправление определенных типов повреждений. Эксцизионная репарация оснований (BER) — один из основных путей репарации ДНК задействованный в исправлении наиболее часто встречающихся повреждений ДНК — AP-сайтов и повреждений, не вызывающих значительных искажений структуры двойной спирали ДНК, таких как окисленные, дезаминированные или алкилированные азотистые основания. Процесс репарации ДНК по пути BER можно разделить на несколько этапов: инициация репарации гидролизом N-гликозидной связи между поврежденным азотистым основанием и сахарофосфатомрасщепление AP-сайта с последующей застройкой «бреши» ДНК-полимеразой и лигирование разрыва ДНК на заключительном этапе. Для обеспечения функционирования системы репарации требуется точная регуляция каждого из этапов. Несмотря на многочисленные исследования процессов репарации, можно утверждать, что механизмы регуляции и факторы, ответственные за эффективную репарацию повреждений, установлены не полностью.

В репарации кластерных повреждений ДНК, в которых разрывы, окисленные основания и AP-сайты сгруппированы в пределах одного-двух витков спирали ДНК и могут находиться в противоположных цепях ДНК, также задействованы белки системы BER, как и в случае изолированных повреждений. Репарация кластерных повреждений требует точной регуляции репарации отдельных повреждений из-за риска образования двухцепочечных разрывов ДНК. In vitro с использованием очищенных белков BER и ядерных экстрактов показано, что в ходе репарации кластерных повреждений могут возникать двухцепочечные разрывы [5], которые наиболее токсичны для клетки. При этом наличие в составе кластеров разрывов и AP-сайтов, расположенных в противоположных цепях ДНК, повышает вероятность образования двухцепочечных разрывов [5].

Одним из ключевых регуляторов ВЕК является РА11Р1. PAR. P1 — ядерный фермент, вовлеченный в процессы детекции разрывов ДНК, возникающих как непосредственно под действием ионизирующей радиации, так и опосредованно, вследствие ферментативного расщепления поврежденной ДНК (АР-сайты, окисленные или алкилированные основания) [6]. При взаимодействии с поврежденной ДНК РАкР! синтезирует поли (АОР-рибозу), ковалентно присоединенную к белкам-акцепторам (в качестве белка-акцептора может выступать другая молекула PARP1) [7 — 11]. Автополи (АОР-рибозил)ироваие PARP1, предположительно, выполняет сигнальную функцию для активации системы репарации и регуляторную функцию в ходе репарации. PARP1 также принимает участие в регуляции репарации при переходе клетки к апоптозу, она подвергается расщеплению каспазами с образованием фрагмента, предположительно необходимого для остановки репарационных процессов [12, 13].

Кроме PARP1, функцию регулятора BER может выполнять PARP2 — ее ближайший гомолог. PARP2 исследована значительно менее детально, чем PARP1, и большая часть данных получена с использованием культур клеток или на модельных животных. Необходимость PARP2 для эффективного протекания BER была показана ранее [14], но механизмы ее вовлечения в этот процесс и роль остаются невыясненными. Поэтому представляло большой интерес провести сравнительный анализ влияния PARP1 и PARP2 на белки BER с использованием ДНК, имитирующими интермедиаты этого процесса.

При исследовании белок-белковых и белок-нуклеиновых взаимодействий широко используются методы рентгеноструктурного анализа, сайт-направленного мутагенеза и иммунологической идентификации белков в составе комплексов с ДНК. Сложность и динамичность комплексов репарации ДНК накладывают определенные ограничения на использование методов рентгеноструктурного анализа и сайт-направленного мутагенеза. Применимость иммунологических подходов тоже оказывается весьма ограниченной, поскольку нельзя утверждать, что идентифицированы все ферменты и факторы эксцизионной репарации оснований. В связи с этим для изучения таких надмолекулярных ансамблей как комплексы репарации ДНК развиваются и широко используются методы направленной химической модификации. Одним из наиболее перспективных подходов исследования белок-нуклеиновых взаимодействий оказалась аффинная модификация, в частности, с использованием модельных ДНК, содержащих апуриновые/апиримидиновые сайты (АР-ДНК). Альдегидная форма дезоксирибозы АР-сайта способна образовывать основания Шиффа с первичными аминогруппами белков, которые фактически являются сшивками «нулевой длины», позволяющими выявлять непосредственные контакты белка с ДНК. Восстановление основания Шиффа боргидридом приводит к формированию стабильных продуктов, что позволяет использовать АР-ДНК для исследования взаимодействия белков с ними.

Целью данной работы являлся сравнительный анализ влияния PARP1 и PARP2 на процессинг ДНК, имитирующих интермедиаты BER.

В ходе исследования планировалось решить следующие задачи:

• изучить специфичность взаимодействия PARP2 с ДНК, имитирующими интермедиаты репарации;

• провести сравнительный анализ параметров взаимодействия PARP1 и PARP2 с некоторыми белками BER;

• в экстрактах клеток человека провести поиск белков, специфически взаимодействующих с апуриновыми/апиримидиновыми сайтами;

• провести сравнительный анализ характеристик взаимодействия PARP1 и PARP2 с АР-ДНК с использованием аффинной модификации, функциональных тестов и других методов;

• изучить взаимодействие PARP1 с АР-ДНК, содержащими напротив АР-сайта дезоксиаденозин или аналоги AP-сайта (остатки диэтиленгликоля, декандиола-1,10, З-гидрокси-2-гидроксиметилтетрагидрофурана), как моделями кластерных повреждений ДНК.

130 выводы.

1. В экстрактах клеток млекопитающих обнаружен белок, взаимодействующий с апуриновыми/апиримидиновыми (АР-) сайтами с образованием сшивок, опосредованных формированием основания Шиффа. Методом масс-спектрометрического анализа этот белок идентифицирован как поли (АОР-рибоза)полимераза 1 (PARP1).

2. Показано, что при взаимодействии поли (АОР-рибоза)полимеразы 2 (PARP2) с ДНК-структурами, имитирующими интермедиаты некоторых процессов метаболизма ДНК, корреляция между эффективностью автополи (АОР-рибозил)ирования и сродством к ДНК отсутствует.

3. Сравнительный анализ функционального взаимодействия PARP1 и PARP2 с несколькими белками эксцизионной репарации оснований (BER) выявил, что:

• обе PARP ингибируют ДНК-полимеразную активность ДНК-полимеразы р, эндонуклеазную активность флэпэндонуклеазы 1 (FEN1) и АР-эндонуклеазную активность апуриновой/апиримидиновой эндонуклеазы 1 (АРЕ1) — FEN1 ингибирует активность PARP1, но стимулирует активность PARP2;

• ингибиторное влияние на активность ферментов системы BER у PARP2 в целом ниже, чем у PARP1;

• PARP2 ингибирует активность PARP1;

• в условиях поли (АВР-рибозил)ирования ингибиторное влияние PARP2 на активность ферментов BER уменьшается в значительно меньшей степени по сравнению с эффектами, обусловленными PARP1.

4. Рекомбинантные PARP1 и PARP2, взаимодействуя с АР-сайтами (интактными и расщепленными), образуют стабильные аддукты. При этом PARP1 в отличие от PARP2, проявляет значимую АР-лиазную активность, и оба белка обладают слабой 5'-дезоксирибозофосфатлиазной активностью.

5. PARP1 более эффективно узнает АР-сайты в составе кластерных повреждений, (АР-сайт расположен напротив одного из его аналогов — остаток диэтиленгликоля, декандиола-1,10, или З-гидрокси-2-гидроксиметилтетрагидрофурана) по сравнению с одиночными АР-сайтами, что выражается в большем уровне сшивок ДНК-белок и в большем уровне ингибирования активности АРЕ1. Для PARP2 избирательность во взаимодействии с АР-сайтами в составе кластеров не выявлена.

Показать весь текст

Список литературы

  1. Lindahl, Т. Instability and decay of the primary structure of DNA / T. Lindahl // Nature1993.-V. 362.-P. 709−715.
  2. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer / J. H. Hoeijmakers // Nature. 2001. — V. 411. — P. 366−374.
  3. Scharer, O. D. Chemistry and Biology of DNA Repair / O. D. Scharer // Angew. Chem. Int. Ed. 2003. — V. 42. — P. 2946 2974.
  4. Wood, R. D. Human DNA repair genes / R. D. Wood, M. Mitchell, J. Sgouros, T.1.ndahl // Science. 2001. — V. 291. — P. 1284 1289.
  5. Yang, N. Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks / N. Yang, H. Galick, S. S. Wallace // DNA Repair. 2004. — V. 3. — P. 1323−34.
  6. Hassa, P. O. Nuclear ADP-ribosylation reactions in mammalian cells: Where are we today and where are we going? / P. O. Hassa, S. S. Haenni, M. Elser, M. O. Hottiger // Microbiol. Mol. Biol. Rev. 2006. — V. 70. — P. 789−829.
  7. Althaus, F. R. Poly ADP-ribosylation: a DNA break signal mechanism / F. R. Althaus, H. E. Kleczowska, M. Malanga, C. R. Muntener, J. M. Pleschke, M. Ebner, B. Auer // Mol. Cell Biochem. 1999. — V. 193. — P. 5−11.
  8. Huang, K. Analysis of nucleotide sequence-dependent DNA binding of poly (ADP-ribose) polymerase in a purified system / K. Huang, W. E. Tidyman, K. U. Le, E. Kirsten, E. Kun, C. P. Ordahl // Biochemistry. 2004. — V. 43. — P. 217−223.
  9. Lonskaya, I. Regulation of poly (ADP-ribose) polymerase-1 by DNA structure-specific binding / I. Lonskaya, V. N. Potaman, L. S. Shlyakhtenko, E. A. Oussatcheva, Y. L. Lyubchenko, V. A. Soldatenkov // J. Biol. Chem. 2005. — V. 280. — P. 17 076−17 083.
  10. Potaman, V. N. Specific binding of poly (ADP-ribose) polymerase-1 to cruciform hairpins / V. N. Potaman, L. S. Shlyakhtenko, E. A. Oussatcheva, Y. L. Lyubchenko, V. A. Soldatenkov // J. Mol. Biol. 2005. — V. 348. — P. 609−615.
  11. Virag, L. The therapeutic potential of poly (ADP-ribose) polymerase inhibitors / L. Virag, C. Szabo // Pharmacol Rev. 2002. — V. 54. — P. 375−429.
  12. Ivana-Scovassi, A. Modulation of poly (ADPribosylation) in apoptotic cells / A. Ivana-Scovassi, M. Diederich // Biochem. Pharmacol. 2004. V. 68. — P. 1041−1047.
  13. Berger, F. The new life of a centenarian: signalling functions of NAD (P) / F. Berger, M. H. Ramirez-Hernandez, M. Ziegler // Trends Biochem. 2004. — V. 29. — P. 111−118.
  14. Oka, S. Identification and characterization of a mammalian 39-kDa poly (ADPribose)glycohydrolase / S. Oka, J. Kato, J. Moss // J. Biol. Chem. 2006. — V. 281.-P. 705−713.
  15. Miwa, M. PolyADP-ribosylation and cancer / M. Miwa, M. Matsutani // Cancer Sci. -2007.-V. 98.-P. 1528−1535.
  16. Isabelle, M. Investigation of PARP1, PARP-2, and PARGinteractomes by affinity-purification massspectrometry / M. Isabelle, X. Moreel, J. P. Gagne, M. Rouleau, C. Ethier, P. Gagne, M. J. Hendzel, G. G. Poirier // Proteome Science 2010. — V. 8. — P. 22.
  17. Hanai, S. Loss of poly (ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster / S. Hanai, M. Kanai, S. Ohashi, K.
  18. Okamoto, M. Yamada, H. Takahashi, M. Miwa // Proc. Natl Acad. Sci. USA 2004. -V. 101.-P. 82−86.
  19. Schreiber, V. Poly (ADP-ribose): novel functions for an old molecule / V. Schreiber, F. Dantzer, J.-C. Ame, G. De Murcia // Nat. Rev. Mol. Cell Biol. 2006. — V. 7. — P. 517 528.
  20. Ame, J.-C. The PARP superfamily / J.-C. Ame, C. Spenlehauer, G. de Murcia // Bioessays. 2004. — V. 26. — P. 882−893.
  21. Otto, H. In silico characterization of the family of PARPlike poly (ADP-ribosyl)transferases (pARTs) / H. Otto, P. A. Reche, F. Bazan, K. Dittmar, F. Haag, F. Koch-Nolte // BMC Genomics 2005. — V. 6. — P. 139.
  22. Ma, Q. TCDD-inducible poly (ADP-ribose) polymerase: a novel response to 2,3,7,8-tetrachlorodibenzo-p-dioxin / Q. Ma, K. T. Baldwin, A. J. Renzelli, A. McDaniel, L. Dong // Biochem. Biophys. Res. Commun. 2001. — V. 289. — P. 499−506.
  23. Wang, Z. Q. PARP is important for genomic stability but dispensable in apoptosis / Z. Q. Wang, L. Stingl, C. Morrison, M. Jantsch, M. Los, K. Schulze-Osthoff, E. F. Wagner // Genes Dev. 1997. — V. 11. — P. 2347−2358.
  24. Jagtap, P. Poly (ADP-ribose) polymerase and the therapeutic effects of its inhibitors / P. Jagtap, C. Szabo // Nature Rev. Drug Discov. 2005. — V. 4. — P. 421-^40.
  25. Chalmers, A. PARP-1, PARP-2, and the cellular response to low doses of ionizing radiation / A. Chalmers, P. Johnston, M. Woodcock, M. Joiner, B. Marples // Int. J. Radiat. Oncol. Biol. Phys. 2004. — V. 58. — P. 410−419.
  26. Trucco, C. DNA repair defect in poly (ADP-ribose) polymerase-deficient cell lines / C. Trucco, F. J. Oliver, G. de Murcia, J. M. de Murcia // Nucleic Acids Res. 1998. — V. 26. — P. 2644−2649.
  27. Fisher, A. E. Poly (ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly (ADP-ribose) glycohydrolase / A. E. Fisher, H. Hochegger, S. Takeda, K. W. Caldecott // Mol. Cell. Biol. 2007. — V. 27. — P. 5597−5605.
  28. Mortusewicz, O. Feedback-regulated poly (ADPribosyl) ation by PARP-1 is required for rapid response to DNA damage in living cells / O. Mortusewicz, J.-C. Ame, V. Schreiber, H. Leonhardt // Nucleic Acids Res. 2007. — V. 35. — P. 7665−7675.
  29. Okano, S. Spatial and temporal cellular responses to single-strand breaks in human cells / S. Okano, L. Lan, K. W. Caldecott, T. Mori, A. Yasui // Mol. Cell. Biol. 2003. — V. 23.-P. 3974−3981.
  30. Lan, L. In situ analysis of repair processes for oxidative DNA damage in mammalian cells / L. Lan, S. Nakajima, Y. Oohata, M. Takao, S. Okano, M. Masutani, S. H. Wilson, A. Yasui // Proc. Natl. Acad. Sci. USA-2004.-V. 101.-P. 13 738−13 743.
  31. Huber, A. PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development / A. Huber, P. Bai, J. M. de Murcia, G. de Murcia // DNA Repair (Amst.) 2004. — V. 3. — P. 1103−110.
  32. Gomez, M. PARP-1 is a TRF2-associated poly (ADP-ribose) polymerase and protects eroded telomeres / M. Gomez, J. Wu, V. Schreiber, J. Dunlap, F. Dantzer, Y. Wang, Y. Liu // Mol. Biol. Cell 2006. — V. 17. — P. 1686−1696.
  33. Kofler, J. Differential effect of PARP-2 deletion on brain injury after focal and global cerebral ischemia / J. Kofler, T. Otsuka, Z. Zhang, R. Noppens, M. R. Grafe, D. W. Koh,
  34. V. L. Dawson, J. M. de Murcia, P. D. Hum, R. J. Traystman // J. Cereb. Blood Flow Metab. 2006. — V. 26. — P. 135−141.
  35. Rulten, S. L. PARP-3 and APLF function together to accelerate nonhomologous end-joining / S. L. Rulten, A. E. Fisher, I. Robert, M. C. Zuma, M. Rouleau, L. Ju, G. Poirier, B. Reina-San-Martin, K. W. Caldecott // Mol. Cell 2011. — V. 41. — P. 33−45.
  36. Smith, S. Tankyrase, a poly (ADP-ribose) polymerase at human telomeres / S. Smith, I. Giriat, A. Schmitt, T. de Lange // Science 1998. — V. 282. — P. 1484−1487.
  37. Sbodio, J. I. Tankyrase-2 oligomerizes with tankyrase-1 and binds to both TRF1 (telomere-repeat-binding factor 1) and IRAP (insulinresponsive aminopeptidase) / J. I. Sbodio, H. F. Lodish, N. W. Chi // Biochem. J. 2002. V. 361. — P. 45159.
  38. Dynek, J. N. Resolution of sister telomere association is required for progression through mitosis / J. N. Dynek, S. Smith // Science 2004. — V. 304. — P. 97−100
  39. Chang, P. Tankyrase-1 polymerization of poly (ADP-ribose) is required for spindle structure and function / P. Chang, M. Coughlin, T. J. Mitchison // Nature Cell Biol. -2005.-V. 7.-P. 1133−1139.
  40. Hsiao, S. J. Tankyrase 2 poly (ADP-ribose) polymerase domain-deleted mice exhibit growth defects but have normal telomere length and capping / S. J. Hsiao, M. F. Poitras, B. D. Cook, Y. Liu, S. Smith // Mol. Cell. Biol. 2006. — V. 26. — P. 2044−2054.
  41. Chiang, Y. J. Generation and characterization of telomere length maintenance in tankyrase 2-deficient mice / Y. J. Chiang, M. L. Nguyen, S. Gurunathan, P. Kaminker, L. Tessarollo, J. Campisi, R.J. Hodes // Mol. Cell. Biol. 2006. — V. 26. — P. 20 372 043.
  42. Matsuo, R. Identification and cataloging of genes induced by long-lasting long-term potentiation in awake rats / R. Matsuo, A. Murayama, Y. Saitoh, Y. Sakaki, K. Inokuchi //J. Neurochem. 2000. — V. 74. — P. 2239−2249.
  43. Gao, G. Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein / G. Gao, X. Guo, S. P. Goff// Science 2002. — V. 297. — P. 1703−1706.
  44. Guo, X. The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs / X. Guo, J. W. Carroll, M. R. Macdonald, S. P. Goff, G. Gao // J. Virol. 2004. — V. 78. — P. 12 781−12 787.
  45. Ladurner, A. G. Inactivating chromosomes: a macro domain that minimizes transcription / A. G. Ladurner // Mol. Cell 2003. — V. 12. — P. 1−3.
  46. Karras, G. I. The macro domain is an ADP-ribose binding module / G. I. Karras, G. Kustatscher, H. R. Buhecha, M. D. Allen, C. Pugieux, F. Sait, M. Bycroft, A. G. Ladurner // EMBO J. 2005. — V. 24. — P. 1911−1920.
  47. Goenka, S. Selective potentiation of Stat-dependent gene expression by collaborator of Stat6 (CoaSt6), a transcriptional cofactor / S. Goenka, M. Boothby // Proc. Natl Acad. Sci. USA-2006.-V. 103.-P. 4210−4215.
  48. Aguiar, R. C. BAL is a novel risk-related gene in diffuse large B-cell lymphomas that enhances cellular migration / R. C. Aguiar, Y. Yakushijin, S. Kharbanda, R. Salgia, J. A. Fletcher, M. A. Shipp / Blood 2000. — V. 96. — P. 4328-^1334.
  49. Kickhoefer, V. A. The 193-kD vault protein, VPARP, is a novel poly (ADP-ribose) polymerase / V. A. Kickhoefer, A. C. Siva, N. L. Kedersha, E. M. Inman, C. Ruland, M. Streuli, L.H. Rome // J. Cell Biol. 1999. — V. 146. — P. 917−928.
  50. Raval-Fernandes, S. Increased susceptibility of vault poly (ADPribose) polymerase-deficient mice to carcinogeninduced tumorigenesis / S. Raval-Fernandes, V. A. Kickhoefer, C. Kitchen, L. H. Rome // Cancer Res. 2005. — V. 65. — P. 8846−8852.
  51. Chou, H. Y. Cdk-dependent activation of poly (ADP-ribose) polymerase member 10 (PARP-10) / H. Y. Chou, H. T. Chou, S. C. Lee // J. Biol. Chem. 2006. — V. 281. — P. 15 201−15 207.
  52. Johansson, M. A human poly (ADP-ribose) polymerase gene family (ADPRTL): cDNA cloning of two novel poly (ADP-ribose) polymerase homologues / M. Johansson // Genomics 1999. — V. 57. — P. 442−445.
  53. Pion, E. DNA-induced dimerization of poly (ADP-ribose) polymerase-1 triggers its activation / E. Pion, G. M. Ullmann, J.-C. Ame, D. Gerard, G. de Murcia, E. Bombarda // Biochemistry 2005. — V. 44. — P. 14 670−14 681.
  54. Haenni, S. S. Identification of lysines 36 and 37 of PARP-2 as targets for acetylation and auto-ADP-ribosylation / S. S. Haenni, P. O. Hassa, M. Altmeyer, M. Fey, R. Imhof, M. O. Hottiger // Int. J. Biochem. Cell Biol. 2008. — V. 40. — P. 2274−2283.
  55. Langelier, M. F. A third zinc-binding domain of human PARP-1 coordinates DNA-dependent enzyme activation / M. F. Langelier, K. M. Servent, E. E. Rogers, J. M. Pascal // J. Biol. Chem. 2008. — V. 283. — P. 4105114.
  56. Ruf, A. Structure of the catalytic fragment of poly (ADribose) polymerase from chicken / A. Ruf, J. M. De Murcia, G. de Murcia, G. E. Schulz // Proc. Natl. Acad. Sci. U.S.A. -1996.-V. 93.-P. 7481−7485.
  57. Oliver, A. W. Crystal structure of the catalytic fragment of murine poly (ADP-ribose) polymerase-2 / A. W. Oliver, J.-C. Ame, S. M. Roe, V. Good, G. de Murcia, L. H. Pearl // Nucleic Acids Res. 2004. — V. 32. — P. 456−464.
  58. Tong, W. M. Poly (ADP-ribose) polymerase-1 plays a role in suppressing mammary tumourigenesis in mice / W. M. Tong, Y. G. Yang, W. H. Cao, D. Galendo, L. Frappart, Y. Shen, Z. Q. Wang // Oncogene 2007. — V. 26. — P. 3857−3867.
  59. Lengauer, C. Genetic instabilities in human cancers / C. Lengauer, K. W. Kinzler, B. Vogelstein // Nature 1998. — V. 396. — P. 643−649.
  60. Bauer P. I. Macromolecular association of ADP-ribosyltransferase and its correlation with enzymic activity / P. I. Bauer, K. G. Buki, A. Hakam, E. Kun // Biochem. J. 1990. V. 270.-P. 17 26.
  61. Mendoza-Alvarez, H. Poly (ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular / H. Mendoza-Alvarez, R. Alvarez-Gonzalez // J. Biol. Chem. 1993. — V. 268. — P. 22 575 22 580.
  62. Sung, J. S. Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA / J. S. Sung, B. Demple // FEBS J. 2006. — V. 273. — P. 1620−1629.
  63. Wang, M. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways / M. Wang, W. Wu, W. Wu, B. Rosidi, L. Zhang, H. Wang, G. Iliakis // Nucleic Acids Res. 2006. — V. 34. — P. 6170−6182.
  64. Audebert, M. Involvement of poly (ADP-ribose)polymerase-l and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining / M. Audebert, B. Salles, P. Calsou // J. Biol. Chem. 2004. — V. 279. — P. 55 117−55 126.
  65. Rosidi, B. Histone HI functions as a stimulatory factor in backup pathways of NHEJ / B. Rosidi, M. Wang, W. Wu, A. Sharma, H. Wang, G. Iliakis // Nucleic Acids Res. 2008. -V. 36.-P. 1610−1623.
  66. Li, B. Identification and biochemical characterization of a Werner’s syndrome protein complex with Ku70/80 and poly (ADPribose)polymerase-l / B. Li, S. Navarro, N. Kasahara, L. Comai // J. Biol. Chem. 2004. — V. 279. — P. 13 659−13 667.
  67. Galande, S. Poly (ADP-ribose)polymerase and Ku autoantigen form a complex and synergistically bind to matrix attachment sequences / S. Galande, T. Kohwi-Shigematsu // J. Biol. Chem. 1999. — V. 274. — P. 20 521−20 528.
  68. Gulston, M. Processing of clustered DNA damage generates additional doublestrand breaks in mammalian cells post-irradiation / M. Gulston, C. de Lara, T. Jenner, E. Davis, P. O’Neill // Nucleic Acids Res. 2004. — V. 32. — P. 1602−1609.
  69. Mladenov, E. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways / E. Mladenov, G. Iliakis // Mutat. Res.-2011.-V. 711.-P. 61−72.
  70. Robert, I. Parpl facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination / I. Robert, F. Dantzer, B. Reina-San-Martin // J. Exp. Med. 2009. — V. 206. — P. 1047−1056.
  71. Hakem, R. DNA-damage repair- the good, the bad, and the ugly / R. Hakem // EMBO J. 2008. — V. 27. — P. 589−605.
  72. Jackson, S. P. The DNA-damage response in human biology and disease / S. P. Jackson, J. Bartek // Nature 2009. — V. 461. — P. 1071−1078.
  73. Meder, V. S. PARP-1 and PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli / V. S. Meder, M. Boeglin, G. de Murcia, V. Schreiber // J. Cell. Sci. 2005. — V. 118. — P. 211−222.
  74. Borggrefe, T. A B-cell-specific DNA recombination complex / T. Borggrefe, M. Wabl, A. T. Akhmedov, R. Jessberger // J. Biol. Chem. 1998. — V. 273. — P. 1 702 517 035.
  75. Ramsamooj, P. Modification of nucleolar protein B23 after exposure to ionizing radiation / P. Ramsamooj, V. Notario, A. Dritschilo // Radiat. Res. 1995. — V. 143. — P. 158−164.
  76. Marples, B. Is low-dose hyper-radiosensitivity a measure of G2-phase cell radiosensitivity? / B. Marples // Cancer Metastasis Rev. 2004. — V. 23. — P. 197−207.
  77. Saxena, A. Centromere proteins Cenpa, Cenpb, and Bub3 interact with poly (ADP-ribose) polymerase-1 protein and are poly (ADP-ribosyl)ated / A. Saxena, R. Saffery, L. H. Wong, P. Kalitsis, K. H. Choo // J. Biol. Chem. 2002. — V. 277. — P. 26 921−26 926.
  78. Blasco, M. A. The epigenetic regulation of mammalian telomeres / M. A. Blasco // Nat. Rev. Genet. 2007. — V. 8. — P. 299−309.
  79. Wright, W. E. Telomere-binding factors and general DNA repair / W. E. Wright, J. W. Shay // Nat. Genet. 2005. — V. 37. — P. 116−118.
  80. Griffith, J. D. Mammalian telomeres end in a large duplex loop / J. D. Griffith, L. Comeau, S. Rosenfield, R. M. Stansel, A. Bianchi, H. Moss, T. de Lange // Cell 1999. -V. 97.-P. 503−514.
  81. Cook, B. D. Role for the related poly (ADP-Ribose)polymerases tankyrase 1 and 2 at human telomeres / B. D. Cook, J. N. Dynek, W. Chang, G. Shostak, S. Smith // Mol. Cell. Biol. 2002. — V. 22. — P. 332−342.
  82. Brown, C. J. A stain upon the silence: genes escaping X inactivation / C. J. Brown, J. M. Greally // Trends Genet. 2003. — V. 19. — P. 432−438.
  83. Tramontano, F. Differential contribution of poly (ADPR)polymerase-l and 2 (PARP-1 and 2) to the poly (ADPribosyl)ation reaction in rat primary spermatocytes / F. Tramontano, M. Malanga, P. Quesada // Mol. Hum. Reprod. 2007. — V. 13. — P. 821 828.
  84. Maeda, Y. PARP-2 interacts with TTF-1 and regulates expression of surfactant protein-B / Y. Maeda, T. C. Hunter, D. E. Loudy, V. Dave, V. Schreiber, J. A. Whitsett // J. Biol. Chem. 2006. — V. 281. — P. 9600−9606.
  85. Strasser, A. The role of BH3-only proteins in the immune system / A. Strasser // Nat. Rev. Immunol. 2005. — V. 5. — P. 189−200.
  86. Xi H. Sustained early growth response gene 3 expression inhibits the survival of CD4/CD8 double-positive thymocytes / H. Xi, G. J. Kersh // J. Immunol. 2004. — V. 173.-P. 340−348.
  87. , B. W. (ADP-ribose)n participates in DNA excision repair / B. W. Durkacz, O. Omidiji, D. A. Gray, S. Shall // Nature 1980. — V. 283. — P. 593−596.
  88. Ferraris, D. V. Evolution of Poly (ADP-ribose) Polymerase-1 (PARP-1) Inhibitors. From Concept to Clinic / D. V. Ferraris // J. Med. Chem. 2010. — V. 53. — P. 45 614 584.
  89. Rouleau, M. PARP inhibition: PARP1 and beyond / M. Rouleau, A. Patel, M. J. Hendzel, S. H. Kaufmann, G. G. Poirier // Nat. Rev. Cancer 2010. — V. 10. — P. 293 301.
  90. Banerjee, S. Making the best of PARP inhibitors in ovarian cancer / S. Banerjee, S.B. Kaye, A. Ashworth // Nat. Rev. Clin. Oncol. 2010. — V. 9. P. 508−519
  91. Edwards, S. L. Resistance to therapy caused by intragenic deletion in BRCA2 / S. L. Edwards, R. Brough, C. J. Lord, R. Natrajan, R. Vatcheva, D. A. Levine, J. Boyd, J. S. Reis-Filho, A. Ashworth // Nature 2008. — V. 451. — P. 1111−1115.
  92. Kaelin, W. G. The concept of synthetic lethality in the context of anticancer therapy / W. G. Kaelin // Nat. Rev. Cancer. 2005. — V. 5. — P. 689−698.
  93. Sandhu, S. K. Poly (ADP-ribose) polymerase inhibitors in cancer treatment: A clinical perspective / S. K. Sandhu, T. A. Yap, J. S. de Bono // Eur. J. Cancer 2010. -V. 46. — P. 9−20.
  94. Hutchinson, L. Targeted therapies: PARP inhibitor olaparib is safe and effective in patients with BRCA1 and BRCA2 mutations / L. Hutchinson // Nat. Rev. Clin. Oncol. -2010. V. 7. P. 549.
  95. Mendes-Pereira, A. M. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors / A. M. Mendes-Pereira, S. A. Martin, R. Brough, A. McCarthy, J. R.
  96. Taylor, J. S. Kim, T. Waldman, C. J. Lord, A. Ashworth // EMBO Mol. Med. 2009. -V. l.-P. 315−322.
  97. Liang, H. Iniparib, a PARP1 inhibitor for the potential treatment of cancer, including triple-negative breast cancer / H. Liang, A. R. Tan // IDrugs 2010. — V. 13. -P. 646−656.
  98. Wilson 3rd, D. M. Life without DNA repair / D. M. Wilson 3rd, L. H. Thompson //Proc. Natl. Acad. Sci. USA 1997,-V. 94.-P. 12 754−12 757.
  99. McCullough A. K. Initiation of base excision repair: glycosylase mechanisms and structures / A. K. McCullough, M. L. Dodson, R. S. Lloyd // Annu. Rev. Biochem. -1999.-V. 68.-P. 255−285.
  100. Atamna, H. A method for detecting abasic sites in living cells: age-dependent changes in base excision repair / H. Atamna, I. Cheung, B. N. Ames // Proc. Natl. Acad. Sci. USA 2000. — V. 97. — P. 686−691.
  101. Burrows, C. J. Oxidative nucleobase modifications leading to strand scission / C. J. Burrows, J. G. Muller // Chem. Rev. 1998. — V. 98. — P. 1109−1152.
  102. Loeb, L. A. Mutagenesis by apurinic/apyrimidinic sites / L. A. Loeb, B. D. Preston // Annu. Rev. Genet. 1986. — V. 20. — P. 201−230.
  103. Demple, B. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes / B. Demple, T. Herman, D. S. Chen // Proc. Natl. Acad. Sci. USA 1991. — V. 88. — P. 11 450−11 454.
  104. Krokan, H. E. Base excision repair of DNA in mammalian cells / H. E. Krokan, H. Nilsen, F. Skorpen, M. Otterlei, G. Slupphaug // FEBS Lett. 2000. — V. 476. — P. 73−77.
  105. David, S. S. Chemistry of Glycosylases and Endonucleases Involved in Base-Excision Repair / S. S. David, S. D. Williams // Chem. Rev. 1998. — V. 98. — P. 12 211 262.
  106. Piersen, C. E. AP lyases and dRPases: commonality of mechanism / C. E. Piersen, A. K. McCullough, R. S. Lloyd // Mutat. Res. 2000. — V. 459. — P. 43−53.
  107. Zharkov, D. O. MutY DNA glycosylase: base release and intermediate complex formation / D. O. Zharkov, A. P. Grollman // Biochemistry. 1998. — V. 37. — P. 1 238 412 394.
  108. Nazarkina, Z. K. XRCC1 interactions with base excision repair DNA intermediates / Z. K. Nazarkina, S. N. Khodyreva, S. Marsin, O. I. Lavrik, J. P. Radicella // DNA Repair (Amst). 2007. — V. 6. — P. 254−264.
  109. Ilina, E. S. Ku antigen interacts with abasie sites / E. S. Ilina, O. I. Lavrik, S. N. Khodyreva // Biochim. Biophys. Acta. 2008. — V. 1784. — P. 1777−1785.
  110. Hegde V. Human ribosomal protein S3 interacts with DNA base excision repair proteins hAPE/Ref-1 and hOGGl / V. Hegde, M. Wang, W. A. Deutsch // Biochemistry. -2004. -V. 43. -P. 14 211−14 217.
  111. Roberts, S. A. Ku is a 5'-dRP/AP lyase that excises nucleotide damage near broken ends / S. A. Roberts, N. Strande, M. D. Burkhalter, C. Strom, J. M. Havener, P. Hasty, D. A. Ramsden //Nature -2010. V. 464. — P. 1214 — 1217.
  112. Krishnakumar, R. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets / R. Krishnakumar, W. L. Kraus // Mol. Cell. 2010. — V. 39. — P. 8−24.
  113. Seeberg, E. The base excision repair pathway / E. Seeberg, L. Eide, M. Bjoras // Trends Biochem Sci. 1995. — V.20. — P. 391−397.
  114. SchSrer, O. D. Recent progress in the biology, chemistry and structural biology of DNA glycosylases/O. D. Scharer, J. Jiricny//Bioessays.-2001.- V. 23.-P. 270−281.
  115. Hitomi, K. The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair / K. Hitomi, S. Iwai, J. A. Tainer // DNA Repair (Amst). 2007. — V. — 6. — P. 410−428.
  116. Wilson, S. H. Passing the baton in base excision repair / S. H. Wilson, T. A. Kunkel // Nat. Struct. Biol. 2000. — V. 7. — P. 176−178.
  117. Wallace, S. S. Enzymatic processing of radiation-induced free radical damage in DNA / S. S. Wallace // Radiat. Res. 1998. — V. 150. — P. 60−79.
  118. Lebedeva, N. A. AP-site cleavage activity of tyrosyl-DNA phosphodiesterase 1 / N. A. Lebedeva, N. I. Rechkunova, 0. I. Lavrik // FEBS Lett. 2011. — V. 585. — P. 683−686.
  119. Lebedeva, N. A. Tyrosyl-DNA phosphodiesterase 1 initiates repair of apurinic/apyrimidinic sites / N. A. Lebedeva, N. I. Rechkunova, S. F. El-Khamisy, O. I. Lavrik//Biochimie-2012. V. 94.-P. 1749−1753.
  120. Sattler, U. Long-patch DNA repair synthesis during base excision repair in mammalian cells / U. Sattler, P. Frit, B. Salles, P. Calsou // EMBO Rep. 2003. — V. 4. — P. 363−367.
  121. Frosina, G. J. Two pathways for base excision repair in mammalian cells / G. Frosina, P. Fortini, O. Rossi, F. Carrozzino, G. Raspaglio, L. S. Cox, D. P. Lane, A. Abbondandolo, E. Dogliotti // Biol Chem. 1996. -V. 271. — P. 9573−9578.
  122. Klungland, A. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1) / A. Klungland, T. Lindahl // EMBO J. 1997. — V. 16. — P. 3341−3348.
  123. Dianov, G. L. Role of DNA polymerase beta in the excision step of long patch mammalian base excision repair / G. L. Dianov, R. Prasad, S. H. Wilson, V. A. Bohr // J. Biol. Chem. 1999.-V. 274.-P. 13 741−13 743.
  124. Fortini, P. Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells / P. Fortini, B. Pascucci, E. Parlanti, R. W. Sobol, S. H. Wilson, E. Dogliotti // Biochemistry. 1998. — V. 37. — P. 3575−3580.
  125. Stucki, M. Mammalian base excision repair by DNA polymerases delta and epsilon / M. Stucki, B. Pascucci, E. Parlanti, P. Fortini, S. H. Wilson, U. Hubscher, E. Dogliotti // Oncogene. 1998. — V. 17. — P. 835−843.
  126. Prasad, R. FEN1 stimulation of DNA polymerase beta mediates an excision step in mammalian long patch base excision repair / R. Prasad, G. L. Dianov, V. A. Bohr, S. H. Wilson // J. Biol. Chem. 2000. — V. 275. — P. 4460−4466.
  127. Fan, J. Protein-protein interactions and posttranslational modifications in mammalian base excision repair / J. Fan, D. M. Wilson 3rd // Free Radic Biol Med. -2005.-V. 38.-P. 1121−1138.
  128. Daviet, S. Major oxidative products of cytosine are substrates for the nucleotide incision repair pathway / S. Daviet, S. Couve-Privat, L. Gros, K. Shinozuka, H. Ide, M. Saparbaev, A. A. Ishchenko // DNA Repair (Amst). 2007. — V. 6. — P. 8−18.
  129. Gros, L. The major human AP endonuclease (Apel) is involved in the nucleotide incision repair pathway / L. Gros, A. A. Ishchenko, H. Ide, R. H. Elder, M. K. Saparbaev // Nucleic Acids Res. 2004. — V. 32. — P. 73−81.
  130. Ishchenko, A. A. Uncoupling of the base excision and nucleotide incision repair pathways reveals their respective biological roles / A. A. Ishchenko, E. Deprez, A.
  131. , J. С. Brochon, P. Tauc, M. K. Saparbaev // Proc. Natl. Acad. Sci. U.S.A. -2006. V. 103. — P. 2564−2569.
  132. Tsao, D. Induction and processing of oxidative clustered DNA lesions in 56Fe-ion-irradiated human monocytes / D. Tsao, P. Kalogerinis, I. Tabrizi, M. Dingfelder, R. D. Stewart, A. G. Georgakilas // Radiat. Res. 2007. — V. 168. — P. 87−97.
  133. Georgakilas, A. G. Processing of bistranded abasic DNA clusters in gamma-irradiated human hematopoietic cells / A. G. Georgakilas, P. V. Bennett, D. M. Wilson 3rd, В. M. Sutherland // Nucleic Acids Res. 2004. — V. 32. — P. 5609−5620.
  134. David-Cordonnier M. H. Efficiency of incision of an AP site within clustered DNA damage by the major human AP endonuclease / M. H. David-Cordonnier, S. M. Cunniffe, I. D. Hickson, P. O’Neill // Biochemistry. 2002. — V. 41. — P. 634−642.
  135. Budworth, H. Repair of tandem base lesions in DNA by human cell extracts generates persisting single-strand breaks / H. Budworth, G. Matthewman, P. O’Neill, G.L. Dianov // J. Mol. Biol. 2005. — V. 351. — P. 1020−1029.
  136. Hashimoto, M. A possible role of Ku in mediating sequential repair of closely opposed lesions / M. Hashimoto, C. D. Donald, S. M. Yannone, D. J. Chen, R. Roy, Y. W. Kow // J. Biol. Chem. 2001. — V. 276. — P. 12 827−12 831.
  137. Mourgues, S. Base excision repair processing of abasic site/single-strand break lesions within clustered damage sites associated with XRCC1 deficiency / S. Mourgues, M. E. Lomax, P. O’Neill // Nucleic Acids Res. 2007. — V. 35. — P. 7676−7687.
  138. , N.A. АР endonuclease 1 has no biologically significant 3(')-→5(')-exonuclease activity / N. A. Lebedeva, S.N. Khodyreva, A. Favre, О. I. Lavrik // Biochem. Biophys. Res. Commun. 2003. — V. 300. — P. 182−187.
  139. , M. В. Поли(АОР-рибоза)полимераза-1 регулятор белково-нуклеиновых взаимодействий в процессах, возникающих при генотоксическом воздействии / М. В. Суханова, О. И. Лаврик, С. Н. Ходырева // Молекулярная биология — 2004. — Т. 38. — С. 834−847.
  140. Giner, Н. Overproduction and large-scale purification of the human poly (ADP-ribose) polymerase using a baculovirus expression system / H. Giner, F. Simonin, G. de Murcia, J. M. De Murcia // Gene. 1992. — V. 114. — P. 279−283.
  141. Biade, S. Impairment of proliferating cell nuclear antigen-dependent apurinic/apyrimidinic site repair on linear DNA / S. Biade, R. W. Sobol, S. H. Wilson, Y. Matsumoto // J. Biol. Chem. 1998. — V. 273. — P. 898 — 902.
  142. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 / U. K. Laemmli // Nature 1970. — V. 227. — P. 680−685.
  143. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding / M. M. Bradford // Anal. Biochem. 1976. — V. 72. — P. 248−254.
  144. , E. С. Идентификация Ки80-субъединицы Ku-антигена как белка, взаимодействующего с апуриновыми/апиримидиновыми сайтами / Е. С. Ильина, О. И. Лаврик, С. Н. Ходырева // ДАН 2009. — Т. 424. — С. 411 -414.
  145. Gullo, С. The biology of Ku and its potential oncogenic role in cancer / C. Gullo, M. Au, G. Feng, G. Teoh // Biochim. Biophys. Acta. 2006. — V. 1765. — P. 223−234.
  146. Sukhanova, M. Poly (ADP-ribose) polymerase 1 regulates activity of DNA polymerase beta in long patch base excision repair / M. Sukhanova, S. Khodyreva, O. Lavrik // Mutat. Res. 2010. — V. 685. — P. 80−89.
  147. Satoh, M. S. NAD (+)-dependent repair of damaged DNA by human cell extracts / M.S. Satoh, G. G. Poirier, T. Lindahl // J. Biol. Chem. 1993. — V. 268. — P. 5480−5487.
  148. Grin, I. R. Deoxyribophosphate lyase activity of mammalian endonuclease VIII-like proteins /1. R. Grin, S. N. Khodyreva, G. A. Nevinsky, D. O. Zharkov // FEBS Lett.- 2006. V. 580. — P. 4916922.
  149. , D. M. 3rd The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA / D. M. Wilson 3rd, D. Barsky // Mutat. Res. 2001. — V. 485. — P. 283−307.
  150. Almeida, K. H. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification / K. H. Almeida, R. W. Sobol // DNA Repair (Amst) 2007. — V. 6. — P. 695−711.
  151. Cistulli, C. AP endonuclease and poly (ADP-ribose) polymerase-1 interact with the same base excision repair intermediate / C. Cistulli, O. I. Lavrik, R. Prasad, E. Hou, S. H. Wilson // DNA Repair (Amst) 2004. — V. 3. — P. 581−591.
  152. Yelamos, J. Toward specific functions of poly (ADP-ribose) polymerase-2 / J. Yelamos, V. Schreiber, F. Dantzer//Trends Mol. Med. 2008. — V. 14. — P. 169−178.
  153. Yakubov, L. Oligodeoxynucleotides interact with recombinant CD4 at multiple sites / L. Yakubov, Z. Khaled, L. M. Zhang, A. Truneh, V. Vlassov, C. A. Stein // J. Biol. Chem. 1993. — V. 268. — P. 18 818−18 823.
  154. Bailly, V. Escherichia coli endonuclease III is not an endonuclease but a betaelimination catalyst / V. Bailly, W. G. Verly // Biochem J. 1987. — V. 242. — P. 565 572.
  155. Liuzzi, M. A new approach to the study of the base-excision repair pathway using methoxyamine / M. Liuzzi, M. Talpaert-Borle // J. Biol. Chem. 1985. -V. 260. — P. 5252−5258.
  156. Bennett, S. E. Characterization of the aldehyde reactive probe reaction with AP-sites in DNA: influence of AP-lyase on adduct stability / S. E. Bennett, J. Kitner // Nucleosides Nucleotides Nucleic Acids 2006. — V. 25. — P. 823−842.
  157. Prasad, R. Human DNA polymerase beta deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism / R. Prasad, W. A. Beard, P. R. Strauss, S. H. Wilson //J. Biol. Chem. 1998. — V. 273. — P. 15 263−15 270.
  158. Osheroff, W. P. The fidelity of DNA polymerase beta during distributive and processive DNA synthesis / W. P. Osheroff, H. K. Jung, W. A. Beard, S. H. Wilson, T. A. Kunkel //J. Biol. Chem. 1999. — V. 274. — P. 3642−3650.
  159. Chan, K. Overexpression of DNA polymerase beta results in an increased rate of frameshift mutations during base excision repair / K. Chan, S. Houlbrook, Q. M. Zhang, M. Harrison, I. D. Hickson, G. L. Dianov // Mutagenesis. 2007. — V. 22. — P. 183−188.
  160. Chaudhry, M. A. Reactivity of human apurinic/apyrimidinic endonuclease and Escherichia coli exonuclease III with bistranded abasic sites in DNA / M. A. Chaudhry, M. Weinfeld // J. Biol. Chem. 1997. — V. 272. — P. 15 650−15 655.
  161. McKenzie, J. A. Oligonucleotides with bistranded abasic sites interfere with substrate binding and catalysis by human apurinic/apyrimidinic endonuclease / J. A. McKenzie, P. R. Strauss // Biochemistry 2001. — V. 40. — P. 13 254−13 261.
  162. Chen, J. DNA oligonucleotides with A, T, G or С opposite, an abasic site: structure and dynamics / J. Chen, F. Y. Dupradeau, D. A. Case, C. J. Turner, J. Stubbe // Nucleic Acids Research. 2008. — V. 36. — P. 253−262.
  163. , H. С. Взаимодействие APEI и других репарационных белков с ДНК-дуплексами, имитирующими интермедиаты репарации и репликации ДНК /
  164. H. С. Дырхеева, С. H. Ходырева, О. И. Лаврик // Биохимия 2008. — Т. 73. — С. 322 335
  165. Peddi, S. R. The human apurinic/apyrimidinic endonuclease-1 suppresses activation of poly (adp-ribose) polymerase-1 induced by DNA single strand breaks / S. R. Peddi, R. Chattopadhyay, С. V. Naidu, T. Izumi // Toxicology. 2006. — V. 224. — P. 44−55.
  166. Kun, E. Regulation of the enzymatic catalysis of poly (ADP-ribose) polymerase by dsDNA, polyamines, Mg2+, Ca2+, histones HI and H3, and ATP / E. Kun, E. Kirsten, J. Mendeleyev, C. P. Ordahl // Biochemistry 2004. — V. 43. — P. 210−216.
  167. Woodhouse, В. C. Poly (ADP-ribose) polymerase-1 modulates DNA repair capacity and prevents formation of DNA double strand breaks / B.C. Woodhouse, I. I. Dianova, J. L. Parsons, G. L. Dianov // DNA Repair (Amst). 2008. — V. 7. — P. 932 -940.
  168. Pion, E. Poly (ADP-ribose) polymerase-1 dimerizes at a 5' recessed DNA end in vitro: a fluorescence study / E. Pion, E. Bombarda, P. Stiegler, G. M. Ullmann, Y. Mely, G. de Murcia, D. Gerard // Biochemistry 2003. — V. 42. — P. 12 409−12 417.
  169. Kim, M. Y. NAD±dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1 / M. Y. Kim, S. Mauro, N. Gevry, J. T. Lis, W. L. Kraus // Cell 2004. — V. 119. — P. 803−814.
  170. D’amours, D. Poly (ADP-ribosyl)ation reactions in the regulation of nuclear functions / D. D’amours, S. Desnoyers, 1. D’silva, G. G. Poirier // J. Biochem. 1999. -V. 342. — P. 249−268.
  171. Satoh, M. S. Role of poly (ADP-ribose) formation in DNA repair / M. S. Satoh, T. Lindahl // Nature 1992. — V. 356. — P. 356−358.
  172. Dantzer, F. Involvement of poly (ADP-ribose) polymerase in base excision repair / F. Dantzer, V. Schreiber, C. Niedergang, C. Trucco, E. Flatter, G. De La Rubia, J. Oliver, V. Rolli, J. M. de Murcia, G. de Murcia // Biochimie 1999. — V. 81. — P. 69−75.
  173. Rancourt, A. Delocalization of nucleolar poly (ADP-ribose) polymerase-1 to the nucleoplasm and its novel link to cellular sensitivity to DNA damage / A. Rancourt, M. S. Satoh // DNA Repair (Amst). 2009. — V. 8. — P. 286−297.
  174. Matsumoto, Y. Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair / Y. Matsumoto, K. Kim // Science 1995. — V. 269. — P. 699 702.
  175. Murante, R. S. Calf 5' to 3' exo/endonuclease must slide from a 5' end of the substrate to perform structure-specific cleavage / R. S. Murante, L. Rust, R. A. Bambara // J. Biol. Chem. 1995. — V. 270. — P. 30 377−30 383.
  176. Oei, S. L. ATP for the DNA ligation step in base excision repair is generated from poly (ADP-ribose) / S. L. Oei, M. Ziegler // J. Biol. Chem. 2000. — V. 275. — P. 2 323 423 239.
Заполнить форму текущей работой