Помощь в учёбе, очень быстро...
Работаем вместе до победы

Регуляция экспрессии генов гуанилспецифичных рибонуклеаз Bacillus intermedius и Bacillus pumilus

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Научная новизна работы. К началу настоящей работы публикации по биосинтезу рибонуклеаз бацилл были посвящены изучению регуляции синтеза ферментов факторами внешней среды. Новизна данной работы заключается в качественно новом уровне изучения регуляторных механизмов биосинтеза бациллярных рибонуклеаз. Впервые регуляция синтеза рибонуклеаз B. intermedius и B. pumilus экзогенным фосфатом была… Читать ещё >

Содержание

  • ОБЗОР ЛИТЕРАТУРЫ
  • 1. Сравнительная характеристика внеклеточных гуанилспецифичныхрибонуклеаз B. intermedius, B. pumilus, B. amyloliquefaciens
    • 1. 1. Физико-химические свойства и структура белков
    • 1. 2. Биосинтез рибонуклеаз. Клонирование генов
  • 2. Механизмы фосфатной регуляции у бактерий
    • 2. 1. РНО регулон у Escherichia col
    • 2. 2. РНО регулон у Bacillus subtilis

Регуляция экспрессии генов гуанилспецифичных рибонуклеаз Bacillus intermedius и Bacillus pumilus (реферат, курсовая, диплом, контрольная)

Актуальность проблемы. Интерес к ферментам нуклеинового обмена обусловлен исключительной важностью нуклеиновых кислот, играющих ключевую роль в процессах воспроизведения и реализации генетической информации. Важнейшим семейством ферментов нуклеинового обмена являются рибонуклеазы, катализирующие расщепление фосфодиэфирных связей в РНК. Рибонуклеазы как эукариотического, так и микробного происхождения являются объектом пристального изучения вследствие проявления ими многообразных биологических эффектов, таких как стимуляция роста клеток прои эукариот (Колпаков и др., 1992; 1996), пролиферация кровеносных сосудов (Shapiro et al., 1986; Saxena et al., 1992), мутагенные и антимутагенные свойства (Ilinskaya et al., 1995), мембранотропное, антивирусное и противоопухолевое действие (Куриненко и др., 1988). РНКазы используются в молекулярной биологии в качестве инструментов для изучения структуры РНК и в последние годы находят все новые применения в медицине. Открыта возможность синтеза на основе РНКаз эффективных конъюгатов для воздействия на опухолевые клетки (Zewe et al., 1997; Piccoli et al., 1999; Rybak, 1999), на основе ингибиторов РНКаз создаются препараты для лечения аллергий (Hatzelmann et al., 1995; Bufe et al., 1996), активаторы РНКаз используются при терапии вирусных инфекций (Liu and Altman, 1995). Разрабатываются диагностические методы, основанные на анализе содержания в организме определенных видов РНКаз (Schein, 1997). Чрезвычайно привлекательной в плане разработки терапевтических препаратов представляется идея создания конъюгатов РНКаз, обладающих специфичностью к определенному типу РНК (Nakai et al., 1994; Giles et al., 1995,1998; Robbins et al, 1998).

В последние годы достигнуты значительные успехи в изучении внеклеточных РНКаз микроорганизмов, которые выполняют различные 4 метаболические и регуляторные функции. Объектом нашего исследования явились циклизующие гуанилспецифичные рибонуклеазы бацилл. К настоящему времени гуанилспецифичные рибонуклеазы выделены из семи видов бацилл — B. amyloliquefaciens (Hartley et al., 1963; Hartley and Barker, 1972), B. intermedius (Лещинская и др., 1974; Голубенко и др., 1979), B. pumilus (Струминская и др., 1992), B. thuringiensis (Дементьев и др., 1992), В. circulons (Дементьев и др., 1993), B. coagulans (Шляпников и Дементьев, 1993), B. polymyxa (Дементьев и др., 1996). Подробно изучены физико-химические и каталитические свойства ферментов, установлены их аминокислотные последовательности. Успешно развиваются структурно-функциональные исследования этой группы ферментов. Гены некоторых из этих РНКаз клонированы и секвенированы (Paddon and Hartley, 1985; Shulga et al., 1992; Znamenskaya et al., 1995), что создает предпосылки для изучения механизмов регуляции биосинтеза ферментов на молекулярном уровне.

Синтез ферментов деградации, в том числе различных фосфогидролаз, можно рассматривать как один из способов адаптации бактерий к условиям окружающей среды. Поэтому установление молекулярных механизмов регуляции их синтеза вносит существенный вклад в понимание этой общебиологической проблемы. Внеклеточные ферменты бацилл имеют большое экономическое значение (Ferrari et al., 1993). В этой связи исследования механизмов регуляции синтеза ферментов необходимы и для решения практических проблем, в частности, для повышения выхода ферментов путем клонирования целевых генов. Все изложенное свидетельствует об актуальности данной работы, направленной на изучение механизмов регуляции биосинтеза внеклеточных рибонуклеаз бацилл. 5.

Цель и задачи исследования

: Целью данной работы было выяснение молекулярных механизмов регуляции экспрессии генов гуанилспецифичных рибонуклеаз, синтезируемых Bacillus intermedius и Bacillus pumilus. В работе решались следующие задачи:

1. Анализ структуры промоторов генов рибонуклеаз В. intermedius и В. pumilus и сравнение с промоторами генов B. subtilis и E.coli.

2.Изучение экспрессии генов рибонуклеаз B. intermedius и B. pumilus в рекомбинантных штаммах Е. coli.

3.Получение плазмид с полными генами рибонуклеаз B. intermedius и B. pumilus для их экспрессии в клетках B. subtilis, и характеристика рекомбинантных штаммов B. subtilis, несущих эти плазмиды.

4.Изучение экспрессии генов рибонуклеаз B. intermedius и B. pumilus в клетках B.subtilis.

5.У становление роли регуляторных белков PhoP и PhoR в регуляции экспрессии генов рибонуклеаз B. intermedius и B. pumilus в рекомбинантных штаммах B.subtilis.

Научная новизна работы. К началу настоящей работы публикации по биосинтезу рибонуклеаз бацилл были посвящены изучению регуляции синтеза ферментов факторами внешней среды. Новизна данной работы заключается в качественно новом уровне изучения регуляторных механизмов биосинтеза бациллярных рибонуклеаз. Впервые регуляция синтеза рибонуклеаз B. intermedius и B. pumilus экзогенным фосфатом была подтверждена на молекулярном уровне. С использованием мутантных штаммов B. subtilis с делециями генов, кодирующих регуляторные белки РНО регулона, установлено, что синтез рибонуклеаз B. intermedius и B. pumilus в клетках B. subtilis регулируется на уровне транскрипции белками двухкомпонентной системы трансдукции сигнала PhoP-PhoR. До наших исследований было известно, что данная система вовлечена в регуляцию синтеза только тех ферментов, которые непосредственно обеспечивают 6 бактериальную клетку фосфором. Нами впервые показано, что синтез рибонуклеазы — фермента, который не освобождает неорганический фосфат, а лишь вызывает деполимеризацию РНК, регулируется той же регуляторной системой. Кроме того, показано, что тип регуляции, установленный для белков фосфорного обмена B. subtilis, распространяется на биосинтез фосфогидролаз у других видов бацилл.

Практическая ценность работы. Получены рекомбинантные продуценты рибонуклеаз B. intermedius и B. pumilus, с высоким уровнем синтеза ферментов, созданные на основе штаммов B. subtilis и плазмид, несущих полные гены рибонуклеаз. Оптимизирована питательная среда, обеспечивающая высокий уровень продукции этих РНКаз рекомбинантными штаммами B. subtilis, которая может быть использована для препаративного получения ферментов. Предложена синтетическая среда для изучения регулируемого фосфатом биосинтеза рибонуклеаз бацилл. Выявленные в работе закономерности важны для общего понимания механизмов функционирования регуляторных систем бациллярной клетки.

Апробация работы. Основные положения диссертационной работы были доложены на VIII Европейском конгрессе по биотехнологии (Будапешт, Венгрия, 1997), VIII конференции «Новые направления в биотехнологии» (Москва, 1998), XI Всероссийской конференции «Ферменты микроорганизмов» (Казань, 1998), XII форуме прикладной биотехнологии (Брюгге, Бельгия, 1998), V Международной конференции «Рибонуклеазы: структура и функции» (США, 1999).

Публикации. По материалам диссертации опубликовано 9 работ.

ОБЗОР ЛИТЕРАТУРЫ.

ВЫВОДЫ:

1. Получены рекомбинантные штаммы B. subtilis, несущие плазмиды с полными генами гуанилспецифичных рибонуклеаз B. intermedius и B.pumilus. Созданные на базе вектора pUBllO и плазмид с полными генами биназы и РНКазы Bp, состыкованными с геном внутриклеточного ингибиторабарстара, плазмиды pMZ55 и pMZ56 обеспечивали эффективную экспрессию генов этих рибонуклеаз в клетках B.subtilis.

2. Изучена экспрессия генов биназы и РНКазы Bp при культивировании рекомбинантных штаммов B. subtilis на комплексной и синтетической средах. Показано, что на обеих средах синтез ферментов происходит в стадию замедления роста и коррелирует с истощением запасов фосфора в среде.

3. Промоторы генов рибонуклеаз B. intermedius и B. pumilus имеют нуклеотидные последовательности на 50% гомологичные сайту связывания белка-регулятора PhoB с промоторами генов РНО регулона E. coli, тем не менее, подавляемая фосфатом экспрессия генов биназы и РНКазы Bp в рекомбинантных штаммах E. coli не опосредована белками PhoB и PhoR двухкомпонентной системы трансдукции сигнала РНО регулона.

4. Выявлено, что промоторы генов биназы и РНКазы Bp содержат тандемные прямые повторы гексануклеотидов, характерные для участка связывания белка-регулятора PhoP с промоторами генов РНО регулона B.subtilis. С использованием штаммов B. subtilis, дефектных по регуляторным белкам РНО регулона показано, что экспрессия генов этих РНКаз в клетках B. subtilis регулируется на уровне транскрипции белками двухкомпонентной системы трансдукции сигнала PhoP-PhoR РНО регулона.

5. Впервые показано, что механизм регуляции, характерный для щелочной фосфатазы и других белков фосфорного обмена B. subtilis,.

106 используется и для регуляции рибонуклеазы — фермента, который не приводит к непосредственному высвобождению неорганического фосфата.

6.Полученные данные свидетельствуют о том, что регуляторные пути, обеспечивающие экспрессию генов B. subtilis, продукты которых вовлечены в ассимиляцию фосфорсодержащих соединений, распространены и у других представителей рода Bacillus, в частности у B. intermedius и B.pumilus.

Заключение

.

Гуанилспецифичные рибонуклеазы, секретируемые B. intermedius, B. pumilus и B. amyloliquefaciens, достаточно хорошо изучены охарактеризованы их физико-химические свойства, установлена первичная и пространственная структура. Однако исследования по биосинтезу этих внеклеточных ферментов ограничены лишь изучением регуляции факторами внешней среды. Несмотря на то, что эти ферменты входят в структурно-гомологичное семейство бациллярных рибонуклеаз, механизмы регуляции синтеза этих ферментов,—1ГО=вщщшому-, различны? Уетаневленег-чтесинтез.

Г|.

1 тй< рибонуклеаз В. ШегтесИш и В. ритИш подвержен регуляции экзоге^*31 фосфатом, тогда как биоситез РНКазы В. атуЬИдие/аЫет осуществлю независимо от концентрации фосфора в среде. Гены этих рибону*с-г1 клонированы и секвенированы, что создает предпосылки для изу*1 механизмов регуляции биосинтеза ферментов на молекулярном уровне. В условиях дефицита неорганического фосфата в еДе цов микроорганизмы экспрессируют гены РНО регулона. Продукты этих участвуют в метаболизме фосфорсодержащих соединений и поз£*~^ клетке быстро адаптироваться к условиям фосфатного дефицита. ЭксггР этих генов регулируется двухкомпонентной системой трансдукции о РЬоВ-РЬоК. К настоящему времени системы РНО регулона обнару^ представителей различных таксономических групп, включая археба^ У р

Это позволяет рассматривать РНО регулон как универсальный ме^ дьКУ обеспечивающий ответ клетки на дефицит экзогенного фосфатат. Псх36^ синтез рибонуклеаз В. ШегтесИш и В. ритИш регулируется неорган!*" *^" 0 фосфатом мы предположили, что его регуляция может осуществлю типу белков РНО регулона. Проверке этого предположения посвяще работа.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.

1. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ Штаммы бактерий, которые были использованы в работе, приведены в таблице 3.

Показать весь текст

Список литературы

  1. E.B. Руководство по химическому анализу почв. — М.: Изд-воМГУ. — 1970. -218с.
  2. Г. А., Дудкин С. М., Каминир Л. Б., Северин Е. С., Голубенко И. А. Первичная структура рибонуклеазы Bacillus intermedius 7Р //Биоорг. химия. 1979.- Т.5, N2. — С. 187−202.
  3. Г. Е., Варламов В. П. Выделение внутриклеточных ингибиторов бактериальных РНКаз на колонке с иммобилизованной РНКазой Bacillus intermedius //Прикл. биохимия и микробиология. 1994. — Т.30. -С.379−383.
  4. Л.А., Знаменская Л. В., Лещинская И. Б. Влияние актиномицина Д на биосинтез рибонуклеаз спорообразующих бактерий //Антибиотики и химиотерапия. 1997. — Т.42, N11.- С. 15−21.
  5. Методы общей бактериологии. /Под ред. Герхардта Ф. и др., в 3-х томах. М: Мир. 1983. — С.324−350.
  6. Клонирование ДНК. Методы. /Под ред. Гловера Д. М.: Мир. 1988. — 538с.
  7. A.A. Межвидовые структурные различия внеклеточных рибонуклеаз бацилл: Автореф. дис.канд. биол. наук. М., 1993. — 24с.
  8. Н.Д. Основы физиологии микробов. М.: Изд-во АН СССР. 1963. -245с.
  9. М.Я., Яковлев Г. И. Топохимические аспекты субстратной специфичности рибонуклеаз //Итоги науки и техники. Серия биологическая химия. 1986. — Т.22. — 177с.
  10. Л.В., Федорова Н. Д., Передемчук М. Ю., Рябченко Н. Ф., Шульга A.A., Кирпичников М. П. Клонирование гена внеклеточной РНКазы B.thuringiensis var. subtoxicus //Биотехнология. 1994. — Т.2.-С.9−11.
  11. А.И., Куприянова Ф. Г. Влияние экзогенных РНКаз на размножение дрожжей Candida tropicalis //Микробиология. 1992. -Т.61, N6. — С.969−974.
  12. А.И., Куприянова-Ашина Ф.Г., Горская Е. М. Изменение некоторых биологических свойств лактобацилл под влиянием экзогенной рибонуклеазы //Антибиотики и химиотерапия. -1996. Т.41, N10. — С. 16−18
  13. С.И., Знаменская Л. В. Комплекс программ «ВЮРТ» для оптимизации в биологических исследованиях //Биологические науки -1992.-N2. -С.15−18.
  14. .М., Собчук Л. И. Экспериментальное исследование противоопухолевой эффективности РНКазы Bacillus intermedins //Эксперим. онкология. 1988. — Т. 10, N6. — С.54−57.
  15. Современные методы изучения нуклеиновых кислот и нуклеаз микроорганизмов /Под ред Лещинской И. Б. Казань: Изд.КГУ.-1980−118с.
  16. И.Б., Балабан Н. П., Шарипова Ф. Р., Знаменская Л. В. Способ получения внеклеточной щелочной рибонуклеазы Bacillus intermedins 7Р //Патент Российской Федерации N 1 314 670, 19 января 1993 г.
  17. И.Б., Булгакова Р. Ш., Балабан Н. П., Егорова Г. С. Препаративное получение рибонуклеазы В.intermedins //Прикладная биохимия и микробиология. -1974. -Т. 10, N2. -С.242−247.109
  18. И.Б., Сайманова Р. А., Булгакова Р. Ш., Капранова М. Н., Голубенко И. А. Штамм бактерий В .intermedins 7Р продуцент щелочной внеклеточной рибонуклеазы — Авт.св.СССР N587156. Опубл. 05.01.78. Бюл. Ш
  19. В.И. Многофакторный эксперимент в биологии. М.: Изд-во МГУ. 1980.-278с.
  20. Т., Фрич Э., Сэмбрук Дж. Молекулярное клонирование. М.: Мир. 1984. 394с.
  21. С.В., Лауринавичюс К. С. Несмеянова М.А. Катаболизм метилфосфоновой кислоты и его физиологическая регуляция у Escherichia coli //Микробиология 1996 — Т. 65 — С.481−487.
  22. М.А., Богданов А. А., М.А. Прокофьев. Щелочная фосфатаза, связанная с рибосомами из E. coli //Биохимия. 1966. — Т.ЗО. — С.463−470.
  23. М.А., Дмитриев А. Д., Кулаев И. С. Регуляция экзогенным ортофосфатом ферментов фосфорного обмена и уровня полифосфатов у Escherichia coliK12 //Микробиология. 1974 -Т.43, N2. — С.227−234.
  24. Н.К., Ивайловский В. Л., Дементьев А. А., Моисеев Г. П., Федосов Ю. А., Яковлев Г. И. Внеклеточная рибонуклеаза из Bacillus pumilus //Биологические науки. 1992. — N2. -С.41−44.
  25. Н.Д., Шульга А. А., Передемчук М. Ю., Кожаринова Л. В., Голышин П. Н., Рябченко Н. Ф., Кирпичников М. П. Клонирование гена внеклеточной РНКазы Bacillus circulans //Мол. биология. 1994. — Т.28., N3 — С.468−472
  26. Иммунологические методы. /Под ред. Г. Фримеля, М: Медицина. 1987. — С.77−82.
  27. Шляпников С. В, Дементьев А. А. Аминокислотная последовательность и каталитические свойства внеклеточной рибонуклеазы Bacillus coagulans II ДАН РАН. 1993.- Т.332, № 3. — С. 382−384.
  28. Г. И., Чепурнова Н. К., Моисеев Г. П., Бочаров А. Л., Лопатнев С. В. Специфичность РНКазы Bacillus intermedius 7Р в реакциях расщепления полинуклеотидов //Биоорг. химия. 1987.- Т. 13, N3. — С. 338−343.
  29. Aiba H., Nakasai F., Mizushima S., Mizuno T. Phosphorylation of a bacterial activator, OmpR, by a protein kinase EnvZ results in stimulation of its DNA binding ability //J.Biochem. 1989. — V.106. — P.5−7
  30. Altschul, S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. //Nucleic Acids Res. 1997. — V.25. — P.3389−3402
  31. Amemura M., Makino K., Shinagawa H., Kobayashi A. and Nakata A. Nucleotide sequence of the genes involved in phosphate transport and regulation of the phosphate regulon in E. coli //J.Mol.Biol. 1985. — V.184. -P.241−250.1.l
  32. Anba J, Bidaud M, Vasil ML, Lazdunski A. Nucleotide sequence of the Pseudomonas aeruginosa phoB gene, the regulatory gene for the phosphate regulon. //?Bacterid. 1990. -V.172. — P.4685−4689.
  33. Anfmsen C.B., Redfield R.R., Choate W.I., Page J. and Carrol W.R. Studies of cross structure, cross-linkage and terminal sequences in ribonuclease. //J.Biol.Chem. 1954. — V.207. — P.201−210.
  34. Ansari A.Z., Bradner J.E., O’Halloran T.V. DNA-bend modulation in a repressor-to-activator switching mechanism //Nature-1995.-V.374.-P.371−375
  35. Antelmann H., Bernhardt J., Schmid R., Mach H., Volker U. and Hecker M. First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. //Electrophoresis. 1997. -V.18. — P. 1451−1463.
  36. Asayama M., Yamamoto A., Kobayashi Y. Dimer form of phosphorylated SpoOA, a transcriptional regulator, stimulates the spoOF transcription at the initiation of sporulation in Bacillus subtilis //J.Mol.Biol. 1995.-V.250.-P.11−23
  37. Bardin S. D, Finan TM. Regulation of phosphate assimilation in Rhizobium (Sinorhizobium) meliloti. //Genetics. 1998. — V.148. — P.1689−1700.
  38. Birkey S.M., Liu W., Zhang X., Duggan M.F., Hulett F.M. PHO signal trunsduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator: Bacillus subtilis112
  39. PhoP directly regulates production of ResD //Mol.Microbiol. 1998.-V.30. -P.943−953
  40. Birnboim H.C., Doly J.A. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. //Nucl.Acids.Res. 1979. — V.7. — P.1513−1523.
  41. Bookstein C., Edwards C.W., Kapp N.V., Hulett F.M. The Bacillus subtilis 168 alkaline phosphatase III gene: impact of the phoAIII mutation on total alkaline phosphatase synthesis //J.Bacteriol.- 1990. V.172-P.3730−3737
  42. Boucher P.E., Murakami K., Ishihama A., Stabitz S. Nature of DNA-binding and RNA polymerase interactionof Bordetella pertussis BvgA transcriptional activator at the fha promoter //J.Bacteriol.-1997. -V.179. P. 1755−1763
  43. Brzoska P., M.Rimmele., Brzostek K. and Boos W. The PHO regulon dependent Ugp uptake system for glycerol-3-phosphate in Escherichia coli is trans inhibited by Pi // J.Bacteriol.-1994.-V. 176.-P. 15−20.
  44. Bufe A., Spangfort M.D., Kahlert H., Schlaak M., Becker W.M. The major birch pollen allergen, Bet vl, shows ribonuclease activity //Planta. 1996. -V.199. — P.413−415.
  45. Burbulys D., Trach K.A., Hoch J.A. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay //Cell 1991.-V.64.- P.545−552
  46. Bycroft M., Ludvigsen S., Fersht A.R., Poulsen F.M. Determination of the three-dimensional solution structure of barnase using nuclear magnetic resonance spectroscopy //Biochemistry. 1991. — V.30. — P.8697−8701.
  47. Chan F.Y. and Torriani A. PstB protein of the phosphate-specific transport system of E. coli is an ATPase. //J.Bacteriol. 1996. — V.178. — P.3974−3977
  48. Chesnut R.S., Bookstein C., Hulett F.M. Separate promoters direct expression of phoAIII, a member of Bacillus subtilis alkaline phosphatase multigene family during phosphate starvation and sporulation // Mol. Microbiol. 1991. — V.5.- P.2181−2190.
  49. Coward E., Drablos F. Detecting periodic patterns in biological sequences //Bioinformatics. 1998. — V.14. — P.498−507.113
  50. Crary S.M., Niranjanakumari S,. Fierke C.A. The protein component of Bacillus subtilis ribonuclease P increases catalytic efficiency by enhancing interactions with the 5' leader sequence of pre-tRNAAsp //Biochemistry. 1998. — V.37. — P.9409−9416.
  51. Dahn J.L., Wei B.Y., and R.J.Kadner. Protein phosphorylation affects binding of the Escherichia coli transcription activator UhpA to the uhpT promoter. //J.Biol.Chem. 1997. -V.272. — P. 1910−1919.
  52. Dubnau D. Genetic competence in Bacillus subtilis II Microbiol.Rev. 1991. -V.55. — P.395−424.
  53. Dutta R. and M.Inouye. Reverse phosphotranspher from OmpR to EnvZ in a kinase/phosphatase + mutant of EnvZ (EnvZ.N347D), a bifunctional signal trunsducer of Escherichia coli. II J.Biol.Chem. 1996. -V.271. — P. 1424−1429.
  54. Eder S., Liu W., Hulett F.M. Mutational analysis of the phoD promoter in Bacillus subtilis: implications for PhoP binding and promoter activation of Pho regulon promoters //J.Bacteriol. 1999. — V. 181. — P.2017−2025.
  55. Eder S., Shi L., Jensen K., Yamane K., Hulett F.M. A Bacillus subtilis secreted phosphodiesterase/alkaline phosphatase is the product of a Pho regulon gene, phoD //Microbiol. 1996. — V.142. — P.2041−2047.
  56. Eymann C., Mach H., Harwood C.R., Hecker M. Phosphate-starvation inducible proteins in B. subtilis: a two-dimensional gel electrophoresis study //Microbiol. 1996. — V.142. — P.3163−3170.114
  57. Ferrari E., Howard S., Hoch J.A. Effect of stage 0 sporulation mutations on subtilisin exspression //J.Bacteriol. 1986. — V.166. — P.173−179.
  58. Fiedler U., Weiss V. A common switch in activation of the response regulators NtrC and PhoB: phosphorylation induces dimerization of the receiver modules //EMBO J.-1995.-V.15.-P.3696−3705.
  59. Forinha M.A., Kropinski A.M. Construction of the broad-host-range plasmid vectors for easy visible selection and analysis of promoters //J.Bacteriol. 1990. -V.172. — P.3496−3499.
  60. Foster J.W., Spector M.P. Phosphate starvation regulon of Salmonella typhimurium //J.Bacteriol. 1986. — V.166. — P.666−669.
  61. Geissdorfer W, Ratajczak A., Hillen W. Transcription of ppk from Acinetobacter sp. strain ADP1, encoding a putative polyphosphate kinase, is induced by phosphate starvation //Appl.Environ.Microbiol. 1998. — V.64.-P.896−901
  62. Graves M.C., Rabinovitz J.C. In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. Evidence for extended promoter115elements in gram-positive organisms //J.Biol.Chem. 1986. — V.261. — P. 1 140 911 415
  63. Harlocker S.L., Bergstrom L., Inouye M. Tandem binding of six OmpR proteins to the ompF upstream regulatory sequence of Escherichia coli //J.Biol.Chem. 1995. — V.270. — P.26 849−26 856
  64. Hartley R.W. Barnase and Barstar. Expression of its cloned inhibitor permits expression of a cloned ribonuclease //J.Mol.Biol. 1988. — V. 202. — P.913−915.
  65. Hartley R.W. Directed mutagenesis and barnase-barstar recognition //Biochemistry. 1993. — V.32. — P.5978−5984.
  66. Hartley RW. Barnase and Barstar. In: Ribonucleases: Structures and Functions (G. D’Alessio and T.F. Riordan., Eds.). Academic Press. 1997. — P. 51−100.
  67. Hartley R.W., Barker E.A. Amino acid sequence of extracellular ribonuclease (barnase) of Bacillus amyloliquefaciens //Nature New Biology 1972. — V.235, N53. — P.15−16.
  68. Hartley R.W., Smeaton J.R. On the reaction between the extracellular ribonuclease of Bacillus amyloliquefaciens (barnase) and its intracellular inhibitor (barstar) //J.Biol.Chem. 1973. — V. 248. — P.5624−5626.
  69. Hartley R.W., Rushizky G.W., Greco A.E., Sober H.A. Studies on Bacillus subtilis ribonuclease. II. Molecular weight and physical homogeneity //Biochemistry. 1963. — V.2, N4. — P.794−797.
  70. Harwood C.R., Cutting S.M. Molecular biological methods in B.subtilis. Chichester: John Wiley. 1990. — 317p.
  71. Hatzelmann A, Tenor H., Schudt C. Differential effects of non-selective and selective phosphodiesterase inhibitors on human eosinophil functions. //J.Pharmacol. 1995. — V.114. — P.821−831.
  72. Helmann J.D. Compilation and analysis of Bacillus subtilis aA-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA //Nucleic Acids.Res.- 1995. V.23. — P.2351−2 360 116
  73. Henrich B., Backes H., Klein J.R., Plapp R. The promoter region of Escherichia coli pepD gene: deletion analysis and control by phosphate concentration //Mol.Gen.Genet. 1992. — V.232 — P. l 17−125.
  74. Huang K., Lan C., Igo M. Phosphorylation stimulates the cooperative DNA binding properties of the transcription factor OmpR. //Proc.Natl.Acad.Sci.USA. 1997. — Y.94. — P.2828−2832.
  75. Hulett F.M. The signal transduction network for PHO regulation in Bacillus subtilis //Mol.Microbiol. — 1996. -V.19. — P.933 — 939.
  76. Hulett F.M., Bookstein C., Jensen K. Evidence for two structural genes for alkaline phosphatase in Bacillus subtilis //J.Bacteriol. 1990.-V.72.-P.735−740.
  77. Hulett F.M., Jensen K. Critical roles of spoOA and spoOH in vegetative alkaline phosphatase production in Bacillus subtilis //J.Bacteriol. 1988. -V.170. — P.3765 — 3768.
  78. Hulett F.M., Lee J.K., Shi L., Sun G., Chesnut R., Sharkova E., Duggan M.F., Kapp N. Sequential action of two-component genetic switches regulates thepho regulon in Bacillus subtilis //J.Bacteriol.-1994a. -V.176.-P.1348−1358
  79. Jeffris G.D., Holtman W.F., Guse D. Rapid method for determining the activity of microorganisms on nucleic acids //?Bacteriol. -1957.-V.73. P.61−79
  80. Jensen K.K., Sharkova E., Duggan M.F., Qi Y., Koide A., Hoch J.A., Hulett F.M. Bacillus subtilis transcription regulator, SpoOA, decreases alkaline phosphatase levels induced by phosphate starvation //J.Bacteriol. 1993. -V.175. — P.3749 -3756.
  81. Jiang W., Metcalf W.W., Lee K.S., Wanner B.L. Molecular cloning, mapping and regulation of the pho regulon genes for phosphate breakdown by the phosphosphonatase pathway of Salmonella typhimurium LT2 //J.Bacteriol. 1995.-V.177.-P.6411−6421.
  82. Jones D.H., Howard B.H. A rapid method for site-specific mutagenesis and directional subcloning by using the polymerase chain reaction to generate recombinant circles. //Biotechniques. 1990. — V.8. — P.178 — 183.
  83. Kapp N.V., Edwards C.W., Chesnut R.S., Hulett F.M. The B. subtilis phoAIV gene: effects of in vitro inactivation on total alkaline phosphatase production //Gene. 1990. — V.96.- P.95−100.
  84. Kasahara M., Makino K., Amemura M., Nakata A., Shinagawa H. Dual regulation of the ugp operon by phosphate and carbon starvation at two interspaced promoters //J.Bacteriol. 1991. — V.173. — P.549−558.
  85. Kato J., Yamamoto T., Yamada K., Ohtake H. Cloning, sequence and characterization of the polyphosphate kinase-encoding gene (ppK) of Klebsiella aerogenes //Gene. 1993. — V.137. P. 237−242.
  86. Keggins K.M., Lovett P. S., Duvall E.J. Molecular cloning of genetically active fragments of Bacillus DNA in B. subtilis and properties of the vector Plasmid pUBl 10 //Proc.Natl.Acad.Sci.USA. 1978. — V.75, N3. — P. 1423−1427
  87. Kim S.K., Makino K., Amemura M., Shinagawa H. and A.Nakata. Molecular analysis of the phoH gene, belonging to the phosphate regulon of Escherichia coli II J.Bacteriol. 1993. — V.175. — P. 1316−1324.
  88. Kim S.K., Wilmes-Riesenberg M.R., Wanner B.L. Involvment of the sensor kinase EnvZ in the in vivo activation of the response-regulator PhoB by acetyl phosphate //Mol.Microbiol. 1996. — V.22. — P.135−147.
  89. Lang W.K., Glassey K., Archibald A.R. Influence of phosphate supply on teichoic acid and teichuronic acid content of B. subtilis cell walls //J.Bacteriol. 1982.-V.151.-P.367−375.
  90. Lee J., Hulett F.M. Nucleotide sequence of the phoP gene encoding PhoP, the response regulator of the phosphate regulon of Bacillus subtilis II Nucl. Acids Res. 1992. — V.20. — P.21.
  91. Liu F., Altman S. Inhibition of viral gene expression by the catalytic RNA subunit of RNase P from Escherichia coli //Genes.Dev.-1995.-V.9 -P.471−480 119
  92. Liu W., Eder S., Hulett F.M. Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP~P //J.Bacteriol. 1998a. — V.180. — P.753−758.
  93. Liu W., Hulett F.M. Bacillus subtilis PhoP binds to the phoB tandem promoter exclusively within the phosphate starvation-inducible promoter //J.Bacteriol. 1997. — V.179. — P.6302−6310.
  94. Liu W., Hulett F.M. Comparison of PhoP binding to the tuaA promoter with PhoP binding to other PHO regulon promoters establishes a Bacillus subtilis PHO core binding site //Microbiology. 1998. — V.144. — P.1443−1450
  95. Liu W., Qi Y., Hulett F.M. Sites internal to the coding regions of phoA and pstS bind PhoP and are required for full promoter activity //Mol.Microbiol. -1998b.-V.28.-P.119−130
  96. Magbanua J.P., Fujisawa K., Ogawa N., Oshima Y. The homeodomain protein Pho2p binds at an A/T-rich segment flanking the binding site of the basic-helix-loop-helix protein Pho4p in the yeast PHO promoters //Yeast. -1997.-V.14.-P. 1299−1308.
  97. Makino K., Amemura M., Kawamoto T., Kimura S., Shinagawa H., Nakata A. DNA binding of PhoB and its interaction with RNA polymerase. //J.Mol.Biol. 1996. — V.259. — P. 15−26.
  98. Makino K., Amemura M., Kawamoto T., Kimura S., Shinagawa H., Nakata A., Suzuki M. DNA binding of PhoB and its interaction with RNA polymerase //J.Mol.Biol. 1995. -V.259. — P. 15−26.
  99. Makino K., Amemura M., Kim S.K., Nakata A., Shinagawa H. Role of the sigma subunit of RNA polymerase in transcription activation by activator protein PhoB in Escherichia coli //Genes.Dev. 1993. — V.7. — P.149−160.
  100. Makino K., Kim S.K., Shinagawa H., Amemura M., Nakata A. Molecular analysis of the cryptic and functional phn operons for phosphonate use in Escherichia coli K-12 //J.Bacteriol. 1991. — V. 173. -P.2665−2672.
  101. Makino K., Shinagawa H., Amemura M., Nakata A. Nucleotide sequence of the phoB gene, the positive regulatory gene for the phosphate regulon of Escherichia coliK12 //J.Mol.Biol.-1986a.-V.190.-P.3 7−44.
  102. Makino K., Shinagawa H., Amemura M., Nakata A. Nucleotide sequence of the phoR gene, a regulatory gene for the phosphate regulon of Escherichia coli //J.Mol.Biol. 1986b. — V.192. — P.549−556.
  103. Makino K., Shinagawa H., Amemura M., Kawamoto T., Yamada M., Nakata A. Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins //J.Mol.Biol. -1989.-V.210. -P.551−559.
  104. Makino K., Shinagawa H., Amemura M., Kimura S., Nakata A. Regulation of the phosphate regulon of Escherichia coli: activation of the pstS transcription by PhoB proetein in vitro //J.Mol.Biol. 1988. — V.203. -P.85−95
  105. Makino K., Shinagawa H., Nakata A. Cloning and characterization of the alkaline phosphatase positive regulator gene (phoB) of Escherichia coli //Mol. Gen.Genet. 1982. — V. 187. — P. 181−186.
  106. Makino K., Shinagawa H., Nakata A. Regulation of the phosphate regulon of Escherichia coli K12. Regulation and role of the regulatory gene phoR //J.Mol.Biol. 1985. — V.184. — P.231−240.121
  107. Malvar T., Baum J.A. Tn5401 disruption of the spoOF gene, identified by direct chromosomal sequencing, results in CrylllA overproduction in
  108. B.thuringiensis //J.Bacteriol. 1994. — V.176. — P.4750−4753.
  109. Malvar T., Gawron-Burke C., Baum J.A. Overexpression of Bacillus. thuringiensis HknA, a histidine protein kinase homology, bypasses early Spo~ mutations that result in CrylllA overproduction //J.Bacteriol. 1994. -V.176-P.4742−4749
  110. Mantis N.J., Winans S.C. The chromosomal response regulatory gene chvl of Agrobacterium tumefaciens complements an Escherichia coli phoB mutation and is required for virulence //J.Bacteriol. 1993. — V. 175. — P.6626−6636
  111. Martinez-Hackert E., Stock A.M. Structural relationships in the OmpR family of winged-helix transcription factors //J.Mol.Biol. 1997. — V.269. -P.301−312
  112. Mauguen Y., Hartley R.W., Dodson E.J., Dodson G.G., Bricogne G., Chothia
  113. C., Jack A. Molecular structure of a new family of ribonucleases //Nature (London). 1982. — V.297. — P. 162−164.
  114. McCarter L.L., Silverman M. Phosphate regulation of gene expression in Vibrioparahaemolyticus //J.Bacteriol. 1987. — V.169. — P.3441−3449.
  115. McCleary W.R. The activation of PhoB by acetylphosphate //Mol.Microbiol. -1996.-V.20.-P.1155−1163
  116. McCleary W.R. and J.B. Stock. Acetyl phosphate and the activation of two-component response regulators //J.Biol.Chem.-1994.-V.269.-P.31 567−31 572.
  117. Mibus D.J., Mee B.J., McGregor K.F., Garbin C.D., Chang B.J. The identification of response regulators of Branhamella catarrhalis using PCR. //FEMS Immunol Med Microbiol. 1998. -V.22. — P.351−354.
  118. Miller J.H. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1972.122
  119. Minder A. C, Narberhaus F., Fischer H.M., Hennecke H. The Bradyrhizobium japonicum phoB gene is required for phosphate-limited growth but not for symbiotic nitrogen fixation. //FEMS Microbiol Lett. 1998. — V.161. — P.47−52
  120. Mossakovska D.E., Nyberg K., Fersht A.R. Kinetic characterization of the recombinant ribonuclease from B. amyloliquefaciens (barnase) and investigation of key residues in catalysis by site-directed mutagenesis //Biochemistry. 1989. -V.28. -P.3843−3850.
  121. Moszer, I., Glaser, P., Danchin A. SubtiList: a relational database for the Bacillus subtilis genome //Microbiology. 1995. V.141. — P.261−268.
  122. Muda M., N. Rao, Torriani A. Role of PhoU in phosphate transport and alkaline phosphatase regulation//J.Bacteriol. 1992. — V.174. — P.8057−8064.
  123. Nakai C., Konishi A., Komatsu Y., Inoue H., Ohtsuka E., Kanaya S. Sequence-specific cleavage of RNA by a hybrid ribonuclease H //FEBS Letters. 1994.-339.-P.67−72.
  124. Nakamura, A., Koide, Y., Miyazaki, H., Kitamura, A., Masaki, H., Beppu, T., Uozumi T. Gene cloning and characterization of a novel extracellular ribonuclease of Bacillus subtilis //Eur.J.Biochem. 1992. — V.209. -P. 121−127.
  125. Nakano M.M., Zuber P., Glaser P., Danchin A., Hulett F.M. Two-component regulatory proteins ResD-ResE are required for transcriptional activation of fnr upon oxygen limitation in Bacillus subtilis //J.Bacteriol. -1996. -V.178.-P.3796−3802.
  126. Paddon C.J., Hartley R.W. Cloning, sequencing and transcription of inactivated copy of B. amyloliquefaciens extracellular (barnase) //Gene. 1985. -V. 40.-P.231−239.124
  127. Paddon C.J., Hartley R.W. Expression of B. amyloliquefaciens extracellular ribonuclease (barnase) in Escherihia coli following an inactivating mutation //Gene. 1987. — V. 53. — P. 11−19.
  128. Perego M., Glaser P., Hoch J.A. Aspartyl-phosphate phosphatases deactivate the response regulator components of the sporulation signal transduction system in Bacillus subtilis //Mol.Microbiol 1996. — V.19. -P.l 151−1157.
  129. Perego M., Wu J.J., Spiegelman G.B., Hoch J.A. Mutational dissociation of the positive and negative regulatory properties of the SpoOA sporulation transcription factor of Bacillus subtilis //Gene 1991. -V.100. — P.207−212.
  130. Perez-Martin J., Rojo F., DeLorenzo V. Promoters responsive to DNA bending: a common theme in prokaryotic gene expression //Microbiol.Rev. -1994. V.58. — P.268−290.
  131. Piggot P.J., Moir A., Smith D.A. Advances in the genetics of Bacillus subtilis differentiation / In Levinson H.S., Sonenshein A.L., Tipper D.J. (Eds). Sporulation and germination American Society of Microbiology: Washington, D.C., 1981. — P.29 — 39.
  132. Porath J., Axen R., Ernback S. Chemical coupling of proteins to agarose. //Nature. 1967. — V.215. — P. 1491−1492.125
  133. Powell B.S., Rogowsky P.M., Kado C.I. VirG of Agrobacterium tumefaciens plasmid pTiC58 encodes a DNA-binding protein //Mol.Microbiol.-1989.-V.3 .-P.411−419
  134. Qi Y., Hulett F.M. Role of PhoP~P in transcriptional regulation of genes involved in cell wall anionic polymer biosynthesis in Bacillus subtilis II J.Bacteriol. 1998b. — V.180. — P.4007−4010.
  135. Qi Y., Kobayashi Y., Hulett F.M. The pst operon of Bacillus subtilis has a phosphate regulated promoter and is involved in phosphate transport but not in regulation of the pho regulon // J.Bacteriol. 1997. -V.179. — P.2534 — 2539
  136. Rao N.N., Torriani A. Utilization by Escherichia coli of a high-molecular-weight, linear polyphosphate: roles of phosphatases and pore proteins. //J.Bacteriol. 1988. -V.170. -P.5216−5223.
  137. Rao N.N., Torriani A. Molecular aspects of phosphate transport in Escherichia coli //Mol.Microbiol. 1990. -V.7. -P. 1083−1090.
  138. Robbins I., Mitta G., Vichier-Guerre S., Sobol R., Ubysz A., Rayner B., Lebleu B. Selective mRNA degradation by antisense oligonucleotide-2,5A chimeras: involvement of RNase H and RNase L //Biochimie 1998. — V.80. -P.711−720
  139. Rushizky G.W., Greco A.E., Hartley R.W., Sober H.A. Studies on Bacillus subtilis ribonuclease. I. Characterization of enzymatic specificity. //Biochemistry. 1963. — V.2, N4. — P.787−793.
  140. Rybak S.M. Ribonuclease based therapeutics for cancer and A TPSth
  141. Proceedings of the 5 Meeting on ribonucleases. 12−16 May, Warrengton, USA. 1999.-P.18.
  142. Seki T., Yoshikawa H., Takahashi H., Saito H. Nucleotide sequence of the Bacillus subtilisphoR gene //J.Bacteriol. -1988.-V.170. P.5935−5938.
  143. Shapiro R., Riordan J.F., Vallee B.L. Characteristic ribonucleolytic activity of human angiogenin//Biochemistry. 1986. — V.25. — P.3527−3532.
  144. Shi L., Hulett F.M. The cytoplasmic kinase domain of PhoR is sufficient for the low phosphate-inducible expression of PHO regulon genes in Bacillus subtilis //Mol.Microbiol. 1999. — V.31. — P.211−222.
  145. Shi L., Liu W., Hulett F.M. Decay of activated Bacillus subtilis Pho response regulator, PhoP approximately P, involves the PhoR approximately intermediate //Biochemistry. 1999. — V.38. — P.10 119−10 125.
  146. Shulga A.A., Nurkiyanova K.M., Zakharyev V.M., Kirpichnikov M.P., K.G.Skryabin. Cloning of the gene encoding RNase binase from Bacillus intermedins //Nucl. Acids Res. 1992. — V.20. — P.23−25.128
  147. Siehnel RJ, Worobec EA, Hancock RE. Regulation of components of the Pseudomonas aeruginosa phosphate-starvation-inducible regulon in Escherichia co/z //Mol. Microbiol. 1988. — V.2. — P.347−352.
  148. Siew D, Zahler NH, Cassano AG, Strobel SA, Harris ME Identification of adenosine functional groups involved in substrate binding by the ribonuclease P ribozyme //Biochemistry. 1999. — V.38. — P.1873−1883.
  149. Smeaton J.R.,. Eliott W.H. Isolation and properties of a specific bacterial ribonuclease inhibitor //Biochim.Biophys.Acta.- 1967. V. 145, N3. — P.547−560
  150. Steed P.M., Wanner B.L. Use of rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU operon: evidence of a new role for the PhoU protein in the phosphate regulon //J.Bacteriol. 1993. -V.175. — P.6797−6809.
  151. Stock J.B., Ninfa A.J., Stock A.M. Protein phosphorylation and the regulation of adaptive responses in bacteria //Microbiol.Rev.-1989.-V.53.-P.450−490.
  152. Strauch M.A., Hoch J.A. Transition-state transcription regulators: sentinels of Bacillus subtilis post-exponential gene expression //Mol.Microbiol. 1993.- V.7. P.337−342.
  153. Strauch M.A., Perego M., Burbulys D., Hoch J.A. The transition state transcription regulator AbrB of Bacillus subtilis is autoregulated during vegetative growth //Mol.Microbiol. 1989. — Y.3. — P.1203−1209.
  154. Strauch M.A., Webb V., Spigelman G., Hoch J.A. The SpoOA protein of Bacillus subtilis is a repressor of the abrB gene //Proc. Natl. Acad. Sci. USA.- 1990. V.87. — P.1801−1805.
  155. Summers M.L., Elkins J.G., Elliott B.A., McDermott T.R. Expression and regulation of phosphate stress inducible genes in Sinorhizobium meliloti. //Mol Plant Microb Interact. 1998. — V. l 1. — P.1094−1101.
  156. Sun G., Birkey M., Hulett F.M. Three two-component signal transduction systems interact for pho regulation in Bacillus subtilis //Mol.Microbiol. -1996a. -V.19.-P.941 -948.129
  157. O.Sun G., Sharkova E., Chesnut R., Birkey S., Duggan M.F., Sorokin A., Pujic P., Ehrlich S.D., Hulett F.M. Regulators of aerobic and anaerobic respiration m Bacillus subtilis //J.Bacteriol. 1996b. -V.178. — P.1374 — 1385.
  158. Surin B.P., H. Rosenberg and G.B.Cox. Phosphate-specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationship //J.Bacteriol. 1985. — V.161. — P.189−198.
  159. Suzuki M., Brenner S. Classification of multi-helical DNA-binding domain and application to predict the DBD structures of factor LysR, OmpR/PhoB, CENP-B, Rap, and XylS/Ada/AraC //FEBS Letters.-1995. -V.372.- P.215−221
  160. Tatusova T.A., Madden T.L. BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences //FEMS Microbiol.Letters. -1999. -V. 174, N2. P.247−250.
  161. Tommassen J., P. De Geus., B. Lugtenberg, J. Hackett, Reeves P. Regulation of the pho regulon of Escherichia coli K12. Cloning of the regulatory genes phoB and phoR and identification of their gene products //J.Mol.Biol. 1982. -V.157. — P.265−274.
  162. Torriani-Gorini A. Introduction: The PHO regulon of Escherichia coli /In: Torriani-Gorini A., Yagil E. and S. Silver (eds.) Phosphate in microorganisms: cellular and molecular biology. Washington, DC: American Society for Microbiology. 1994. — P. 1−4.
  163. Van Bogelen R.A., Olson E.R., Wanner B.L., Neidhardt F.C. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. //J.Bacteriol. 1996. — V.178. — N15. — P.4344−4366.
  164. Vilu R. Calculation of probability of random occurence of different types of palindromes //J.Theor.Biol. 1983. — V.102. — P.261−268 130
  165. Wackett L.P., Wanner B.L., Venditti C.P., Walsh C.T. Involvment of the phosphate regulon and psiD locus in the carbon-phosphorus lyase activity of Escherichia coliK12 //J.Bacteriol. 1987. — V.169 — P.1753−1756.
  166. Walker M.S., DeMoss J.A. NarL-phosphate must bind to multiple upstream sites from the narG promoter of Escherichia coli //Mol.Microbiol. 1994. -V.14. — P.633−641.
  167. Wang W., Bechhofer D.H. Bacillus subtilis RNase III gene cloning, function of the gene in Escherichia coli, and construction of Bacillus subtilis strains with altered rnc loci//J.Bacteriol. — 1997. -V.179. -P.7379−7385.
  168. Wanner B.L., Wilmes-Riesenberg M.R. Involvment of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in control of the phosphate regulon in Escherichia coli //J.Bacteriol.-1992.-V.174.-P.2124−2130.
  169. Wanner B.L., Latterell P. Mutants affected in alkaline phosphatase expression: eviodence for multiple positive regulators of the phosphate regulon in Escherichia coli cells //Genetics. 1980. -V.96. -P.353−366.
  170. Wanner B.L. Is cross regulation by phosphorylation of two-component response regulator proteins important in bacteria //J.Bacteriol. 1992. — V.174 -P.2053−2058.
  171. Wanner B.L. Gene regulation by phosphate in enteric bacteria //J.Biol.Chem.1993.-V.51 .-P.47−54.
  172. Wanner B.L. Molecular genetics of carbon-phosphorus bond cleavage in bacteria //Biodegradation. 1994. — V.5. — P. 175−184.
  173. Watson G.M., Scanlan D.J., Mann N.H. Characterization of the genes encoding a phosphate-regulated two component sensory system in the marine131cyanobacterium Synechococcus sp. WH7803 //FEMS Microbiol Letters. 1996. — V.142. — P.105−109.
  174. Wyman C., Rombel I., North A., Bustamante C., Kustu S. Oligomerization require for activity of NtrC, a bacterial enhancer binding protein //Science. -1997. -V.275. P.1658−1661.
  175. Yakovlev G.I., Struminskaya N.K., Kipenskaya L.V., Znamenskaya L.V., Leshchinskaya I.B., Hartlley RW. Contribution of arginine-82 and arginine-86 to catalysis of RNases from B. intermedius //FEBS Letters. 1998. — V.428.-P.57−58
  176. Yamada M., Makino K., Amemura M., Shinagawa H., Nakata A. Regulation of the phosphate regulon of E. coli: analysis of mutant phoB and phoR genes causing different phenotypes //J.Bacteriol. 1989. — V.171. — P.5601−5606
  177. Yamada M., Makino K., Shinagawa H., Nakata A. Regulation of the phosphate regulon of E. coli: properties of phoR deletion mutants and subcellular localization of phoR protein //Mol.Gen.Genet. 1990. — V.220.-P.366−372.
  178. Yamane K., Maruo B. Alkaline phosphatases possesing alkaline phosphodiesterase activity and other phosphodiesterases in Bacillus subtilis //J.Bacteriol. 1978. — V.134. — P.108−114.
  179. Yoshida K., Ogawa N., Oshima Y. Function of PHO regulatory genes for repressible acid phosophatase synthesis in Saccharomyces cerevisiae //Mol.Gen.Genet.-1989. V.217. — P.40−46.
  180. Zewe M., Rybak S.M., Dubel S., Coy J.F., Welschof M., Newton D.L., Little Cloning and cytotoxicity of a human pancreatic RNase immunofusion //Immunotechnology. 1997. -V.3. — P. 127−136.
  181. Bacillus amyloliquefaciens >giI 493 894|pdbI1BRN|M
  182. A Bacillus amyloliquefaciens >giI 493 903|pdb11BSB|B
  183. A Bacillus amyloliquefaciens >gi|493 906|pdbI1BSCIB
  184. A Bacillus amyloliquefaciens >giI 493 909|pdbI1BSD|B
  185. A Bacillus amyloliquefaciens >giI 493 900 IpdbI1BSA|B
  186. A Bacillus amyloliquefaciens >giI 442 652|pdbI1BAN|B
  187. A Chain A, Barnase Mutant With lie 88 Replaced By
  188. A Bacillus amyloliquefaciens >giI 442 655|pdbI1BAO|B
  189. A Bacillus amyloliquefaciens >giI 576 012|pdb11BNS|B
  190. A Chain A, Barnase Mutant With Leu 14 Replaced By
  191. A Chain A, Barnase Mutant With He 76 Replaced By
  192. A Chain A, Barnase Mutant With lie 96 Replaced By
  193. A Chain A, Deletion Of A Buried Salt Bridge In Bar
  194. A Chain A, Structural Response To Mutation At A Pr
  195. A Chain A, Deletion Of A Buried Salt-Bridge In Bar
  196. A Bacillus amyloliquefaciens >gi|576 022|pdbI1BRG|B ribonuclease T2 (EC 3.1.27.1) Bacillus circul
  197. A Chain A, Barnase A43cS80C DISULFIDE MUTANT >gi|1
  198. A Bacillus amyloliquefaciens >gi|229 427|prfI I 72 194
  199. A Chain A, Structural Response To Mutation At A Pr
  200. A Chain A, Barnase T70cS92C DISULFIDE MUTANT >gi|1
  201. A Chain A, Deletion Of A Buried Salt Bridge In Bar
  202. Score = 327 bits (829), Expect = 6e-891.entities = 162/162 (100%), Positives = 162/162 (100%)1. Frame = +3
  203. Query: 177 MKKISSVFTMFALIAAILFSGFIPQQAYAETPLTQTATNETATIQLTSDVHTLAVINTFD 356
  204. MKKISSVFTMFALIAAILFSGFIPQQAYAETPLTQTATNETATIQLTSDVHTLAVINTFD Sbjct: 1 MKKISSVFTMFALIAAILFSGFIPQQAYAETPLTQTATNETATIQLTSDVHTLAVINTFD 60
  205. Query: 357 GVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGRLPSASG 536
  206. GVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGRLPSASG Sbjct: 61 GVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGRLPSASG 120
  207. Query: 537 RTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  208. Score = 318 bits (807), Expect = 2e-861.entities = 158/162 (97%), Positives = 160/162 (98%)1. Frame = +3
  209. Query: 177 MKKISSVFTMFALIAAILFSGFIPQQAYAETPLTQTATNETATIQLTSDVHTLAVINTFD 356
  210. MKKISSVFTMFALIAAILFSGFIPQQAYAET LT TATN+TA+IQLTSDVHTLAVINTFD Sbjct: 1 MKKISSVFTMFALIAAILFSGFIPQQAYAETTLTPTATNKTASIQLTSDVHTLAVINTFD 60
  211. Query: 357 GVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGRLPSASG 536
  212. GVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGRLPSASG Sbjct: 61 GVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGRLPSASG 120
  213. Query: 537 RTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  214. RTWREADINYVSG FRNADRLVYS SDWLIYKTTDHYATFTRIR Sbjct: 121 RTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 162pdb|1BUJ| Structure Of Binase In Solution Length = 109
  215. Score = 225 bits (567), Expect = 3e-581.entities = 108/108 (100%), Positives = 108/108 (100%)1. Frame = +32uery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  216. VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 3bjct: 2 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 612uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  217. Score = 224 bits (566), Expect = 4e-581.entities = 108/109 (99%), Positives = 108/109 (99%)1. Frame = +3
  218. Query: 336 AVINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREG 515
  219. AVINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREG Sbjct: 1 AVINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREG 60
  220. Query: 516 RLPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  221. RLPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATF RIR Sbjct: 61 RLPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFARIR 109pdbI2RBI1A Chain A, Structure Of Binase Mutant His 101 Asngi|1 942 121|pdb|2RBI|B Chain B, Structure Of Binase Mutant His 101 Asn Length = 109
  222. Score = 224 bits (564), Expect = 7e-581.entities = 108/109 (99%), Positives = 109/109 (99%)1. Frame = +3
  223. Query: 336 AVINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREG 515
  224. AVINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREG Sbjct: 1 AVINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREG 60
  225. Query: 516 RLPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  226. RLPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTD+YATFTRIR Sbjct: 61 RLPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDNYATFTRIR 109pir||NRBSI ribonuclease (EC 3.1.-.-) Bacillus «intermedius» Length = 109
  227. Score = 217 bits (546), Expect = 9e-561.entities = 104/109 (95%), Positives = 107/109 (97%)1. Frame = +3
  228. Query: 336 AVINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREG 515
  229. AVINTFDGVADYLIRYKRLP++YITKSQASALGWVASKG+LAEVAPGKSIGGDVFSNREG Sbjct: 1 AVINTFDGVADYLIRYKRLPNDYITKSQASALGWVASKGDLAEVAPGKSIGGDVFSNREG 60
  230. Query: 516 RLPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  231. Score = 202 bits (508), Expect = 3e-51 Identities = 91/108 (84%), Positives = 102/108 (94%) Frame = +3
  232. Query: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  233. VINTFDGVADYL+ Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ Sbjct: 3 VINTFDGVADYLLTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 62
  234. Query: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662 LP+ SGRTWREADINY SGFRN+DR++YSSDWLIYKTTDHY TFT+IR
  235. Sbjct: 63 LPAKSGRTWREADINYTSGFRNSDRILYSSDWLIYKTTDHYKTFTKIR 110pdb|lBSE|a Bacillus amyloliquefaciens >gi|4 93 912|pdb|1BSE|B Bacillus amyloliquefaciens >giI 493 913 IpdbI1BSE|C Bacillus amyloliquefaciens Length = 110
  236. Score = 201 bits (505), Expect = 6e-511.entities = 92/108 (85%), Positives = 100/108 (92%)1. Frame = +32uery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  237. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ 3bjct: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 622uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  238. Score = 200 bits (504), Expect = 8e-511.entities = 94/112 (83%), Positives = 103/112 (91%), Gaps = 1/112 (0%)1. Frame = +3
  239. Query: 327 HTLA-VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFS 503
  240. HT A VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FS Sbjct: 37 HTEAQVINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFS 96
  241. Query: 504 NREGRLPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  242. Score = 200 bits (504), Expect = 8e-511.entities = 94/112 (83%), Positives = 103/112 (91%), Gaps = 1/112 (0%)1. Frame = +3
  243. Query: 327 HTLA-VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFS 503
  244. HT A VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FS Sbjct: 45 HTEAQVINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFS 104
  245. Query: 504 NREGRLPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  246. NREG+LP SGRTWREADINY SGFRN+DR++YSSDWLIYKTTDHY TFT+IR Sbjct: 105 NREGKLPGKSGRTWREADINYTSGFRNSDRILYSSDWLIYKTTDHYQTFTKIR 157giI 1 439 559 (U46664) barnase synthetic construct. Length = 111
  247. Score = 199 bits (502), Expect = le-501.entities = 91/108 (84%), Positives = 100/108 (92%)1. Frame = +3
  248. Query: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  249. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ Sbjct: 4 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 63
  250. Query: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  251. Structure At Ph 6.0 >gi11127179|pdb|1BNI|B Chain B,
  252. Barnase Wildtype Structure At Ph 6.0gi11127180 Ipdb11BNI|C Chain C, Barnase Wildtype
  253. Structure At Ph 6.0 >giI 112 7282Ipdbl1BNRI Barnasegi|32 122 68|pdb|1A2P|A Chain A, Barnase Wildtype
  254. Structure At 1.5 Angstroms Resolutiongi.32 122 69|pdb|1A2P|B Chain B, Barnase Wildtype
  255. Structure At 1.5 Angstroms ResolutiongiI 3 212 270 Ipdb11A2P|C Chain C, Barnase Wildtype
  256. Structure At 1.5 Angstroms ResolutiongiI 3 745 778 Ipdb11BV0|A Chain A, Structural Response To
  257. Mutation At A Protein-Protein InterfacegiI 374 5779Ipdbl1BV0IB Chain B, Structural Response To
  258. Mutation At A Protein-Protein InterfacegiI 374 5780Ipdbl1BV0IC Chain C, Structural Response To
  259. Mutation At A Protein-Protein InterfacegiI 413 9697Ipdbl1B2X|A Chain A, Barnase Wildtype
  260. Structure At Ph 7.5 From A Cryocooled Crystal At 100kgiI 413 9698Ipdbl1B2XIB Chain B, Barnase Wildtype
  261. Structure At Ph 7.5 From A Cryocooled Crystal At 100kgiI 413 9699Ipdbl1B2XIC Chain C, Barnase Wildtype
  262. Structure At Ph 7.5 From A Cryocooled Crystal At 100kgi|4 139 778|pdb|1B27|A Chain A, Structural Response To
  263. Mutation At A Protein-Protein InterfacegiI 413 9779Ipdbl1B27IB Chain B, Structural Response To
  264. Mutation At A Protein-Protein InterfacegiI 4 139 780 Ipdb|1B27|C Chain C, Structural Response To
  265. Mutation At A Protein-Protein Interfacegi|4 388 896|pdb|1YVS| Trimeric Domain Swapped BarnasegiI 39 310 IembICAA31365| (X12871) barnase Bacillusamyloliquefaciens.1.ngth = 110
  266. Score = 199 bits (502), Expect = le-50 Identities = 91/108 (84%), Positives = 100/108 (92%) Frame = +32uery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  267. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ 3bjet: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 622uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  268. Score = 199 bits (501), Expect = 2e-50 Identities = 90/108 (83%), Positives = 100/108 (92%) Frame = +3
  269. Juery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  270. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ 3bjct: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 62iuery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  271. Score = 199 bits (501), Expect = 2e-50 Identities = 91/108 (84%), Positives = 100/108 (92%) Frame = +32uery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  272. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ 3bjct: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 622uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  273. Score = 199 bits (501), Expect = 2e-50 Identities = 90/108 (83%), Positives = 100/108 (92%) Frame = +32uery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  274. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ 3bjet: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 622uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  275. Score = 199 bits (501), Expect = 2e-50 Identities = 90/108 (83%), Positives = 100/108 (92%) Frame = +32uery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  276. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKS+GGD+FSNREG+ 3bjet: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSVGGDIFSNREGK 622uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  277. Score = 198 bits (499), Expect = 3e-50 Identities = 90/108 (83%), Positives = 100/108 (92%) Frame = +3
  278. Query: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  279. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ Sbjct: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 622uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  280. Score = 198 bits (499), Expect = 3e-50 Identities = 91/108 (84%), Positives = 99/108 (91%) Frame = +3
  281. Query: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  282. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ Sbjct: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 62
  283. Query: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  284. Score = 198 bits (498), Expect = 4e-50 Identities = 90/108 (83%), Positives = 100/108 (92%) Frame = +3
  285. Query: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  286. ViNTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ Sbjct: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 62
  287. Query: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  288. Score = 198 bits (497), Expect = 5e-50 Identities = 90/108 (83%), Positives 99/108 (91%) Frame = +33uery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  289. VINTFDGVADYL Y +LPDNYI KS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ 3bjet: 3 VINTFDGVADYLQTYHKLPDNYIAKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 622uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  290. Score = 198 bits (497), Expect = 5e-50 Identities = 90/108 (83%), Positives = 99/108 (91%) Frame = +32uery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  291. VINTFDGVADY Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ Bbjct: 3 VINTFDGVADYAQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 622uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  292. Score = 198 bits (497), Expect = 5e-50 Identities = 90/108 (83%), Positives = 99/108 (91%) Frame = +32uery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  293. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ Sbjct: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 622uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  294. Score = 198 bits (497), Expect = 5e-50 Identities = 90/108 (83%), Positives = 99/108 (91%) Frame = +3
  295. Query: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  296. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ Sbjct: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 62
  297. Query: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  298. Score = 198 bits (497), Expect = 5e-50 Identities = 90/108 (83%), Positives = 100/108 (92%) Frame = +3
  299. Juery: 339 VINTFDGVADYLIRYKRLPDN YI TKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  300. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ 3bjet: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 622uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  301. Score = 197 bits (496), Expect = 7e-50 Identities = 90/108 (83%), Positives = 99/108 (91%) Frame = +32uery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  302. VINTFDGVADYL Y +LPDNYIT S+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ Sbjct: 3 VINTFDGVADYLQTYHKLPDNYITASEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 622uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  303. Score = 197 bits (496), Expect = 7e-50 Identities = 90/108 (83%), Positives = 99/108 (91%) Frame = +3
  304. Juery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  305. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ 3bjet: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 622uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  306. Score = 197 bits (496), Expect = 7e-50 Identities = 90/108 (83%), Positives = 99/108 (91%) Frame = +32uery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  307. VINT DGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ 3bjct: 1 VINTLDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 602uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  308. Score = 196 bits (493), Expect = 2e-49 Identities = 89/108 (82%), Positives = 100/108 (92%) Frame = +32uery: 339 VINT FDGVADYLIRYKRL PDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  309. Score = 196 bits (493), Expect = 2e-49 Identities = 89/108 (82%), Positives = 98/108 (90%) Frame = +3
  310. Juery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  311. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNL +VAPGKSIGGD+FSNREG+ sbjct: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLCDVAPGKSIGGDIFSNREGK 622uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  312. SGRTWREADINY GFRN+DR++YSSDWLIYKTTDHY TFT+IR Sbjct: 63 LPGKSGRTWREADINYTCGFRNSDRILYSSDWLIYKTTDHYQTFTKIR 110pdb|1RNB|A Bacillus amyloliquefaciens >gi|229 427|prf||72 1946A RNase Bacillus amyloliquefaciens. Length = 110
  313. Score = 196 bits (492), Expect = 2e-49 Identities = 89/108 (82%), Positives = 100/108 (92%) Frame = +32uery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  314. VINTFDGVADYL Y +LP++YITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ Sbjct: 3 VINTFDGVADYLQTYHKLPNDYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 622uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  315. Score = 196 bits (492), Expect = 2e-49 Identities = 90/108 (83%), Positives = 99/108 (91%) Frame = +32uery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  316. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ Sbjct: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 622uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  317. Score = 195 bits (491), Expect = 3e-49 Identities = 89/108 (82%), Positives = 98/108 (90%) Frame = +32uery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  318. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ Sbjct: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 622uery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  319. Score = 195 bits (491), Expect = 3e-491.entities = 89/108 (82%), Positives = 99/108 (91%) Frame = +3
  320. Juery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  321. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ Sbjct: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 62
  322. Juery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  323. Score = 195 bits (490), Expect = 3e-49 Identities = 90/108 (83%), Positives = 98/108 (90%) Frame = +32uery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWVASKGNLAEVAPGKSIGGDVFSNREGR 518
  324. VINTFDGVADYL Y +LPDNYITKS+A ALGWVASKGNLA+VAPGKSIGGD+FSNREG+ Sbjct: 3 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSIGGDIFSNREGK 62
  325. Juery: 519 LPSASGRTWREADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRIR 662
  326. SGRTWREADINY SGFRN DR++YSSDWLIYKTTD Y TFT+IR Sbjct: 63 LPGKSGRTWREADINYTSGFRNCDRILYSSDWLIYKTTDCYQTFTKIR 110bbsI 139 914 ribonuclease Bci I- RNAase Bci I Length = 36
  327. Score =64.4 bits (154), Expect = 9e-10 Identities = 28/34 (82%), Positives = 31/34 (90%) Frame = +3uery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWV 440
  328. VINTFDGVADYL+ Y +LPDNYITKS+A ALGWV Sbjct: 3 VINTFDGVADYLLTYHKLPDNYITKSEAQALGWV 3 6embICAA07009I (AJ006407) barnase Bacillus intermedius. Length = 38
  329. Score = 62.5 bits (149), Expect = 3e-09 Identities = 28/34 (82%), Positives = 30/34 (87%) Frame = +3
  330. Juery: 339 VINTFDGVADYLIRYKRLPDNYITKSQASALGWV 440
  331. VINTFDGVADYL Y +LPDNYITKS+A ALGWV Sbjct: 5 VINTFDGVADYLQTYHKLPDNYITKSEAQALGWV 38bbs|139 916 ribonuclease Bci II, RNAase Bci II {N-terminal} Bacillus, BCF 247, Peptide Partial, 43 aa. Length = 43
  332. Score = 57.0 bits (135), Expect = le-071.entities = 28/35 (80%), Positives = 31/35 (88%), Gaps = 1/35 (2%) Frame = +3uery: 327 HTLA-VINTFDGVADYLIRYKRLPDNYITKSQASAL 431
  333. HT A VINTFDGVADYL+ Y +LPDNYITKS+A AL Sbjct: 8 HTEAQVINTFDGVADYLLTYHKLPDNYITKSEAQAL 43bbs|125 249 extracellular alkaline ribonuclease {N-terminal} Bacillus thuringiensis, var. subtoxicus, Peptide Partial, 25 aa. Length =25
  334. Score = 55.4 bits (131), Expect = 4e-07 Identities = 25/25 (100%), Positives = 25/25 (100%) Frame = +3
  335. Juery: 336 AVINTFDGVADYLIRYKRLPDNYIT 410
  336. AVINTFDGVADYLIRYKRLPDNYIT Sbjct: 1 AVINTFDGVADYLIRYKRLPDNYIT 25bbsI 148 781 alkaline ribonuclease, alkaline RNase {N-terminal} {EC 3.1.4.23} Bacillus subtilis, Kolyma lowland isolate, BCF 256, Peptide Partial, 24 aa. Length = 24
  337. Score = 53.5 bits (126), Expect = 2e-06 Identities = 24/24 (100%), Positives = 24/24 (100%) Frame = +32uery: 336 AVINTFDGVADYLIRYKRLPDNYI 407
  338. AVINTFDGVADYLIRYKRLPDNYI 3bjct: 1 AVINTFDGVADYLIRYKRLPDNYI 24bbs|179 881 Bpo 11=12.608 kda ribonuclease isoform II {N-terminal} Bacillus polymyxa, 514, Peptide Partial, 32 aa. Length = 32
  339. Score = 51.9 bits (122), Expect = 5e-06 Identities = 21/29 (72%), Positives = 28/29 (96%) Frame = +3
  340. Juery: 339 VINTFDGVADYLIRYKRLPDNYITKSQAS 425
  341. VINTF+GVADY+++Y RLPDN+ITK++AS 3bjct: 4 VINTFEGVADYIVKYGRLPDNFITKAEAS 32bbs|148 782 alkaline ribonuclease, alkaline RNase {N-terminal} {EC 3.1.4.23} Bacillus subtilis, Kolyma lowland isolate, BCF 247, Peptide Partial, 25 aa. Length = 25
  342. Score = 43.4 bits (100), Expect = 0.002 Identities = 19/23 (82%), Positives = 20/23 (86%) Frame = +3
  343. Juery: 339 VINTFDGVADYLIRYKRLPDNYI 407
  344. VINTFDGVADYL Y +LPDNYI Jbjct: 3 VINTFDGVADYLQTYHKLPDNYI 25bbs|179 882 Bpo 111=13.18 kda ribonuclease isoform III {N-terminal} Bacillus polymyxa, 514, Peptide Partial, 31 aa. Length = 31
  345. Score = 42.6 bits (98), Expect = 0.003 Identities = 17/27 (62%), Positives = 23/27 (84%) Frame = +32uery: 324 VHTLAVINTFDGVADYLIRYKRLPDNY 404
  346. V + VINTF+GVADY+++Y RLPDN+ >bjct: 5 VQSNEVINTFEGVADYIVKYGRLPDNF 31spIP30289|RNS3STRAU GOANYL-SPECIFIC RIBONUCLEASE SA3 PRECURSOR >gi|98 876|pir||JC1287 ribonuclease Sa (EC 3.1.27.-) precursor Streptomyces aureofaciens (strain CCM3239) Length = 141
  347. Score =39.1 bits (89), Expect = 0.0361.entities = 25/57 (43%), Positives = 31/57 (53%), Gaps = 2/57 (3%) Frame = +3
  348. Juery: 489 GDVFSNREGRLPSASGRTWREAD-INYVSGFRNADRLVYSSDWLI-YKTTDHYATFTRI 659
  349. Score = 34.8 bits (78), Expect = 0.711.entities = 21/54 (38%), Positives = 26/54 (47%), Gaps = 1/54 (1%) Frame = +3uery: 489 GDVFSNREGRLPSASGRTWREADINYVSG-FRNADRLVYSSDWLIYKTTDHYATF 650
  350. G VF NREG LP + +E+ SGRARV +T DHY +Fibjct: 41 GTVFENREGILPDCAEGYYHEYTVKTPSGDDRGARRFVVGDGGEYFYTEDHYESF 95gi11079693 (U39202) ribonuclease St synthetic construct. Length = 102
  351. Score =34.8 bits (78), Expect =0.711.entities = 21/54 (38%), Positives = 26/54 (47%), Gaps = 1/54 (1%) Frame = +3uery: 489 GDVFSNREGRLPSASGRTWREADINYVSG-FRNADRLVYSSDWLIYKTTDHYATF 650
  352. G VF NREG LP + +E + SG RARV +T DHY +Fbjct: 42 GTVFENREGILPDCAEGYYHEYTVKTPSGDDRGARRFVVGDGGEYFYTEDHYESF 96gi|3 242 716 (AC003040) hypothetical protein Arabidopsis thaliana. Length = 555
  353. Score = 33.2 bits (74), Expect = 2.1 Identities = 27/92 (29%), Positives = 43/92 (46%) Frame = +3luery: 153 DFLNRRMKMKKISSVFTMFALIAAILFSGFIPQQAYAETPLTQTATNETATIQLTSDVHT 332
  354. D +N +K+ +1 + F +AI I + + T+ A + L+ D Ibjct: 188 DMVNMCLKLLRIQTGFVPLVAGSAIAVCAGIIKDGFQLARFTEGAED----FFLSLDCFQ 243luery: 333 LAVINTFDGVADYLIRYKRLPDNYITKSQASA 428
  355. A + + VA YLI+ KR P + T SQASA Ibjct: 244 IAALG-YKSVAHYLIQTKRAPTDDTTPSQASA 274gi 1 153 424 (M88615) ribonuclease Streptomyces aureofaciens. Length = 163
  356. Score =32.8 bits (73), Expect =2.71.entities = 22/57 (38%), Positives = 26/57 (45%), Gaps = 1/57 (1%) Frame = +3luery: 489 GDVFSNREGRLPSASGRTWRE-ADINYVSGFRNADRLVYSSDWLIYKTTDHYATFTRI 659
  357. G VF NRE RLP + E + S R R+V Y + DHYATF I1. jct: 102 GVVFENRESRLPKKGNGYYHEFTVVTPGSNDRGTRRVVTGGYGEQYWSPDHYATFQEI 159gi13243108 (AF034976) T7-like RNA polymerase Pilayella littoralis. Length = 824
  358. Score = 31.3. bits (69), Expect = 8.11.entities = 18/67 (26%), Positives = 35/67 (51%), Gaps = 1/67 (1%) Frame = +1luery: 4 87 VEMFSLTG-RDVFLQQAAEHGVRQISTTSLASEMLTASCIQVTGSFTKQQTIMQLSHVFD 663
  359. FSL +D+F+ + + T+ L +TAS +Q+ G T+ ++++ VFD bjct: 478 IDDFSLHALKDIFINEGGQ-------TSQLIGLDVTASGLQIMGLITRCTKALEMTQVFD 530luery: 664 NQSKNSPI 687 NS +bjct: 531 QNETNSAV 538
  360. Database: Non-redundant GenBank CDS translations+PDB+SwissProt+SPupdate+PIR
  361. I I I I I I I I I I I I I I I Jbjct: 7571 cttccgaaatgctgac 7586emb1X92868|BS233DEG B. subtilis 23.9kb fragment from map position 233 degrees on the chromosome
  362. Score =32.2 bits (16), Expect =1.4 Identities = 16/16 (100%) Strand = Plus / Plusuery: 575 cttccgaaatgctgac 590
  363. I I II I I I I I I I I I I I I Jbjct: 21 452 cttccgaaatgctgac 21467emb|Z99106IBSUB0003 Bacillus subtilis complete genome (section 3 of 21): from 402 751 to 6 118 501. ngth = 209 100
  364. Score =32.2 bits (16), Expect =1.4 Identities = 16/16 (100%) Strand = Plus / Minusuery: 212 tctgatcgctgctatt 227
  365. I I I II I I I I I I I I I I! bjct: 3975 tctgatcgctgctatt 3960emb|Z99123|BSUB0020 Bacillus subtilis complete genome (section 20 of 21): from 3 798 401 t 40 105 501. ngth = 212 150
  366. Score =32.2 bits (16), Expect = 1.4 Identities = 19/20 (95%) Strand = Plus / Minus2uery: 674 aaaacagccccatttgacgt 693
  367. I I I I I II I I I I I I I I I I I >bjct: 64 867 aaaaccgccccatttgacgt 64 848
  368. Database: Non-redundant GenBank+EMBL+DDBJ+PDB sequences
  369. VINTFDGVADYL Y +LPDNYI >b jct: 3 VINTFDGVADYLQTYHKLPDNYI 25pir| |A26874 cellulase (EC 3.2.1.4) precursor Bacillus subtilis (strain DLG) >gi1143008 (M16185) endo-beta-1,4-glucanase Bacillus subtilis. Length = 508
  370. Score = 29.7 bits (65), Expect = 0.79 Identities = 18/55 (32%), Positives = 26/55 (46%) Frame = +3uery: 165 RRMKMKKISSVFTMFALIAAILFSGFIPQQAYAETPLTQTATNETATIQLTSDVH 329
  371. R MK+ S+F LIA + G+PAA TAN +1+ T V+ 3b j ct: 6 KRSDMKRSISIFITCLLIAVLTMGGLLPSPASAAGTKTPVAKNGQLSIKGTQLVN 60sp|P07983|GUN1BACSU ENDOGLUCANASE PRECURSOR (ENDO-1,4-BETA-GLUCANASE) (CELLULASE) Length = 4 99
  372. Score = 27,8 bits (60), Expect =3.1 Identities = 17/51 (33%), Positives = 24/51 (46%) Frame = +3
  373. Juery: 177 MKKISSVFTMFALIAAILFSGFIPQQAYAETPLTQTATNETATIQLTSDVH 329
  374. MK+ S+F LIA + G+PAA TAN +1+ T V+ 3bj ct: 1 MKRSISIFITCLLIAVLTMGGLLPSPASAAGTKTPVAKNGQLSIKGTQLVN 51
  375. Database: Non-redundant GenBank CDS translations+PDB+SwissProt+SPupdate+PIR
  376. Posted date: Sep 2, 1999 2:50 PM Number of letters in database: 124,895,471 Number of sequences in database: 407,989jambda 0.3181. K H0135 0.4011. Sappedjambda K H0270 0.0470 0.2304atrix: BLOSUM62
  377. Sap Penalties: Existence: 11, Extension: 1
  378. Cumber of Hits to DB: 1 804 369
  379. Cumber of Sequences: 407 989
  380. Cumber of extensions: 33457slumber of successful extensions: 89
  381. Cumber of sequences better than 10.0: 8
  382. Cumber of HSP’s better than 10.0 without gapping: 4
  383. Cumber of HSP’s successfully gapped in prelim test: 0
  384. Cumber of HSP’s that attempted gapping in prelim test: 85
Заполнить форму текущей работой