Помощь в учёбе, очень быстро...
Работаем вместе до победы

Реорганизация актинового цитоскелета, лежащая в основе движения клеток

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Наши исследования реорганизации актиновой сети при движении фибробластов подтвердили существование двух зон на ведущем крае клетки, отличающихся по строению и динамическим характеристикам — ламеллиподии и ламеллы. Мы впервые выделили и разделили молекулярные механизмы, регулирующие динамику актина в этих зонах, и показали, что быстрый ретроградный ток актина в ламеллиподии определяется Агр 2/3… Читать ещё >

Содержание

  • Список сокращений
  • Актуальность проблемы
  • Цели и задачи
  • Научная новизна и практическая ценность
  • ЛИТЕРАТУРНЫЙ ОБЗОР. 17 L ОРГАНИЗАЦИЯ АКТИНОВОГО ЦИТОСКЕЛЕТА КЛЕТОК ПОЗВОНОЧНЫХ
  • ГЛАВА 1. БЕЛКОВАЯ ОРГАНИЗАЦИЯ АКТИНОВОГО ЦИТОСКЕЛЕТА
    • 1. 1. Актин — основной белок микрофиламснтов
    • 1. 2. Белки, индуцирующие полимеризацию актина
      • 1. 2. 1. Arp2/3 (Actin-related Protein) комплекс
      • 1. 2. 2. Формипы
      • 1. 2. 3. УУН2-домен-содержащие актиновые нуклеаторы
    • 1. 3. Белки, регулирующие динамику актиновых филаментов в клетке
      • 1. 3. 1. Кэпирующие белки
      • 1. 3. 2. VASP (Vasodilator-stimulatedphosphoprotein)
      • 1. 3. 3. ADF/кофилин (Actin Depolimerasing Factor)
    • 1. 4. Белки, регулирующие трехмерную организацию актина
  • ГЛАВА 2. РАСПРЕДЕЛЕНИЕ АКТИНА В ПОДВИЖНОЙ КЛЕТКЕ ФИБРОБЛАСТЕ)
    • 2. 1. Строение актинового цитоскелета фибробласта
    • 2. 2. Дискуссия о строении актииовой сети в ламеллиподии — ветвятся 29 ли актиновые филаменты в живых клетках?
  • ГЛАВА 3. СТРОЕНИЕ И ФУНКЦИИ ФОКАЛЬНЫХ АДГЕЗИЙ, РАЗНЫЕ 33 ТИПЫ АДГЕЗИЙ, СВЯЗЬ С ЦИТОСКЕЛЕТОМ
  • ГЛАВА 4. РЕГУЛЯЦИЯ КЛЕТОЧНОГО ДВИЖЕНИЯ МАЛЫМИ ГТФ-азами СЕМЕЙСТВА RHO
  • ОСТАЮЩИЕСЯ ВОПРОСЫ ш
  • ДВИЖЕНИЕ ТРАНСФОРМИРОВАННЫХ КЛЕТОК
  • ГЛАВА 5. СПОСОБЫ МИГРАЦИИ ТРАНСФОРМИРОВАННЫХ КЛЕТОК
    • 5. 1. Коллективная миграция
    • 5. 2. Мезенхимальиый способ миграции
    • 5. 3. Амебоидный способ миграции
    • 5. 4. Пластичность, как свойство опухолевых клеток
  • ГЛАВА 6. ОСОБЕННОСТИ ЦИТОСКЕЛЕТА ТРАНСФОРМИРОВАННЫХ КЛЕТОК
  • ГЛАВА 7. ИЗМЕНЕНИЕ СТРУКТУРЫ И СТРОЕНИЯ АДГЕЗИОННЫХ КОНТАКТОВ КЛЕТКА-МАТРИКС В ПРОЦЕССЕ КАНЦЕРОГЕНЕЗА
    • 7. 1. Изменение белкового состава фокальных адгезий в процессе канцерогенеза
    • 7. 2. Приобретение нового типа адгезионных структур в процессе канцерогенеза. Подосомы
    • 7. 3. Дальнейшая дедифференцировка ведет к ослаблению взаимодействия клеток с ВКМ
    • 7. 4. Изменение состава внеклеточного матрикса в процессе канцерогенеза
  • ГЛАВА 8. УЧАСТИЕ МАЛЫХ ГТФаз В ПРОЦЕССАХ ИНВАЗИИ И
  • КАНЦЕРОГЕНЕЗА ОСТАЮЩИЕСЯ ВОПРОСЫ МАТЕРИАЛЫ И МЕТОДЫ Клеточные культуры
  • Методы световой микроскопии
  • Фазовый контраст с компьютерным усилением
  • Флуоресцентная микроскопия
  • Конфокальная микроскопия
  • Интерференционно-отражательная микроскопия (ШРмикроскопия)
  • TIRF- м икроскоп ия
  • Видеосъемка
  • Трансфекция живых клеток, использованные конструкты 55 Анализ динамики формирования и подвижности клеточных структур. Кимограммы
  • Использованные ингибиторы и модуляторы движения
  • Анализ морфологии клеток
  • Электронная микроскопия
  • Метод платиновых реплик 58 Коррелятивная электронная микроскопия, негативный контраст
  • Электронная томография
  • Исследование клеточной подвижности 60 Подвижность индивидуальных клеток. Анализ характера псевдоподиальной активности
  • Анализ характера и направления миграции
  • Миграция одиночных клеток в редкой культуре
  • Анализ миграции клеток в экспериментальную рану
  • Анализ миграции и инвазии клеток в камерах Бойдена
  • Инвазия в матригель
  • Определение активности Ras
  • Зимография
  • Статистическая обработка результатов
  • РЕЗУЛЬТАТЫ
    • I. ИССЛЕДОВАНИЕ РЕОРГАНИЗАЦИИ ЦИТОСКЕЛЕТА, ЛЕЖАЩЕЙ В
  • ОСНОВЕ ДВИЖЕНИЯ НОРМАЛЬНЫХ КЛЕТОК
  • ГЛАВА 1. ИНИЦИАЛЬНЫЕ ПРОЦЕССЫ ДВИЖЕНИЯ КЛЕТОК
    • 1. 1. ПЕРЕСТРОЙКИ ЦИТОСКЕЛЕТА ЭПИТЕЛИОЦИТОВ ПРИ ИНИЦИАЦИИ ДВИЖЕНИЯ ПОД ДЕЙСТВИЕМ СКЭТТЕР- 66 ФАКТОРА (HGF/SF)
    • 1. 2. РАЗДЕЛЕНИЕ НА ФРАГМЕНТЫ МНОГОЯДЕРНЫХ ЭПИТЕЛИАЛЬНЫХ КЛЕТОК MDCK ПОД ДЕЙСТВИЕМ 68 HGF/SF
    • 1. 3. Исследование активации движения клеток под действием форболового эфира РМА
  • ГЛАВА 2. ИССЛЕДОВАНИЕ ВКЛАДА ДВУХ СОСТАВЛЯЮЩИХ -ПОЛИМЕРИЗАЦИИ АКТИНА И АКТО-МИОЗИНОВОЙ СОКРАТИМОСТИ В ПОДВИЖНОСТЬ КЛЕТОК
    • 2. 1. Исследование влияния ингибиторов сократимости и полимеризации актина на распластывание фибробластов
      • 2. 1. 1. Динамика распластывания контрольных фибробластов
      • 2. 1. 2. Влияние ингибиторов сократительной активности миозина 81 II (У27 632 и блеббистатина на динамику распластывания нормальных фибробластов)
      • 2. 1. 3. Влияние ингибиторов полимеризации актина латрункулина, А и цитохалазина Д на динамику распластывания нормальных фибробластов
    • 2. 2. Исследование влияния ингибиторов сократимости и полимеризации актина на способность клеток к миграции
      • 2. 2. 1. Движение нормальных фибробластов в рану
      • 2. 2. 2. Движение клеток в присутствии ингибиторов полимеризации актина
      • 2. 2. 3. Движение клеток в присутствии ингибиторов сократимости
      • 2. 2. 4. Формирование монослоя нарушается в присутствии ингибиторов миозиновой сократимости
  • ГЛАВА 3. ИССЛЕДОВАНИЕ ДИНАМИЧЕСКИХ ПРЕОБРАЗОВАНИЙ НА ВЕДУЩЕМ АКТИВНОМ КРАЮ В ПРОЦЕССЕ РАСПЛАСТЫВАНИЯ И ДВИЖЕНИЯ КЛЕТОК
    • 3. 1. Две зоны ведущего края клетки — ламеллиподия и ламелла
    • 3. 2. Разные молекулярные механизмы, регулирующие движение актина в ламелле и ламеллиподии
    • 3. 3. Роль формирования первичных фокальных контактов в динамической организации ведущего края клетки
      • 3. 3. 1. Формирование первичных фокальных контактов локально блокирует ламеллиподиальный ток актина
      • 3. 3. 2. Ингибирование ламеллиподиального быстрого ретроградного тока блокирует формирование инициальных контактов
  • ГЛАВА 4. ИССЛЕДОВАНИЕ ДИНАМИКИ ОБРАЗОВАНИЯ ИНИЦИАЛЬНЫХ ФОКАЛЬНЫХ АДГЕЗИЙ ПРИ ДВИЖЕНИИ КЛЕТОК
    • 4. 1. Модели для исследования динамики ФА
    • 4. 2. Формирование VASP-положительных ФА
    • 4. 3. Динамическая колоколизация VASP и винкулина и ультраструктура винкулин-положительных инициальных контактов
    • 4. 4. Динамическая колокализация VASP и зиксина и ультраструктура зиксин-положительных инициальных контактов
    • 4. 5. Динамическая колокализация VASP и бета-З-интегрина
    • 4. 6. Исследование образования инициальных ФА у фибробластов ЗТЗ с помощью электронной томографии
  • ОБСУЖДЕНИЕ
    • II. ИССЛЕДОВАНИЕ ИЗМЕНЕНИЙ, ВОЗНИКАЮЩИХ В РЕЗУЛЬТАТЕ ТРАНСФОРМАЦИИ
  • ГЛАВА 5. ПОДБОР КЛЕТОЧНЫХ СИСТЕМ ДЛЯ ИССЛЕДОВАНИЯ
  • ГЛАВА 6.
  • ГЛАВА 7.

МОРФОЛОГИЯ, СТРОЕНИЕ АКТИНОВОГО ЦИТОСКЕЛЕТА И АССОЦИИРОВАННЫХ С НИМ СТРУКТУР И АНАЛИЗ КРАЕВОЙ АКТИВНОСТИ У КОНТРОЛЬНЫХ И RAS-ТРАНСФОРМИРОВАННЫХ ФИБРОБЛАСТОВ Морфология контрольных и Ras-трансформированных фибробластов

Исследование динамики ведущего активного края контрольных и Ras-трансформированных фибробластов

МОРФОЛОГИЯ, СТРОЕНИЕ АКТИНОВОГО ЦИТОСКЕЛЕТА И АССОЦИИРОВАННЫХ С НИМ СТРУКТУР И АНАЛИЗ КРАЕВОЙ АКТИВНОСТИ У КОНТРОЛЬНЫХ И SV40-ТРАНСФОРМИРОВАННЫХ ФИБРОБЛАСТОВ Морфология и цнтоскелет контрольных и SV40трансформированыых фибробластов

Распределение и характер псевдоподиальной активности контрольных и 8У40-трансформированыых фибробластов

7.2.1. Морфометрические измерения периметра клеток

7.2.2. Распределение различных форм активности вдоль клеточного края

7.2.3. Распределение маркера образования протрузий Агр2/3-комплекса по периметру клетки

7.3. Ультраструктура актинового цитоскелета у контрольных и SV40-трансформироваиых фибробластов

7.4. Исследование динамики ведущего активного края контрольных и 177 8У40-трансформированных фибробластов

7.4.1. Частота протрузий и раффлов

ГЛАВА 8. МОРФОЛОГИЯ, СТРОЕНИЕ АКТИНОВОГО ЦИТОСКЕЛЕТА И АССОЦИИРОВАННЫХ С НИМ СТРУКТУР- АНАЛИЗ КРАЕВОЙ АКТИВНОСТИ У ПОДКОЖНЫХ ФИБРОБЛАСТОВ ЧЕЛОВЕКА ПО СРАВНЕНИЮ С КЛЕТКАМИ ФИБРОСАРКОМЫ

8.1. Морфологическое описание исследуемых клеточных культур

8.2. Строение актинового цитоскелета и ассоциированных с ним 181 структур у контрольных подкожных фибробластов и клеток фибросаркомы НТ

8.3. Распределение и характер пссвдоподиальной активности

8.4. Исследование динамики ведущего активного края контрольных фибробластов и клеток фибросаркомы НТ

ГЛАВА 9. ЛОКОМОТОРНОЕ ПОВЕДЕНИЕ НОРМАЛЬНЫХ И

ТРАНСФОРМИРОВАННЫХ ФИБРОБЛАСТОВ В КУЛЬТУРЕ.

9.1. Изменение локомоторного поведения в системе Ras-трансформации.

9.2. Изменение локомоторного поведения в системе SV-40 трансформации.

9.3. Анализ локомоторного поведения контрольных подкожных фибробластов и клеток фибросаркомы НТ

9.4. Оценка инвазивных способностей трансформированных фибробластов

ГЛАВА 10. ИССЛЕДОВАНИЕ ВОЗМОЖНЫХ МОЛЕКУЛЯРНЫХ МЕХАНИЗМОВ, ЛЕЖАЩИХ В ОСНОВЕ ПРИОБРЕТЕНИЯ КЛЕТКАМИ ИНВАЗИВНОГО ФЕНОТИПА.

10.1. Анализ активности матриксных металлопротеаз в исследуемых линиях.

10.2. Анализ вклада малой ГТФ-азы КЬо в формирование «трансформированного» фенотипа.

10.3. Выяснение роли уровня активных кислородных радикалов в формировании «трансформированного» фенотипа

ОБСУЖДЕНИЕ

Реорганизация актинового цитоскелета, лежащая в основе движения клеток (реферат, курсовая, диплом, контрольная)

Актуальность проблемы.

Способность к движению является одним из основных свойств животных клеток. Движение клеток и клеточных слоев лежит в основе таких процессов, как формирование различных органов в эмбриогенезе, заживление ран и развитие воспалительных процессов. Движение клеток бывает очень разнообразно, зависит от типа клеток и от условий, в которых осуществляется миграция. Например, клетки эпителиального происхождения обычно перемещаются группами или целыми слоями, сохраняя при движении межклеточные контакты. Такой тип миграции называется групповым движением клеток. Наоборот фибробласты двигаются в индивидуальном порядке и демонстрируют так называемый мезенхимальный тип клеточного движения. При различных патологиях нарушается характер движения клеток. В частности в процессе развития злокачественных опухолей клетки приобретают способность проникать в соседние ткани и органы (инвазировать) или могут образовывать отдаленные очаги ростаметастазы. Способность клеток опухоли к инвазии и метастазированию является одной из основных причин смертности людей, страдающих от онкологических заболеваний. В процессе опухолевой прогрессии клетки претерпевают существенные морфологические изменения, что и приводит к приобретению ими несвойственных ранее способностей и изменению характера движения. В частности эпителиальные клетки при развитии опухоли претерпевают так называемый эпителиально-мезенхимальный переход (ЭМП) при котором нарушаются межклеточные контакты, клетки приобретают фибробластоподобную форму, могут двигаться поодиночке. При этом существенно возрастает возможность их индивидуальной миграции и они могут инвазировать в близлежащие органы. В последнее время был так же описан так называемый мезенхимально — амебоидный переход (МАП), в результате которого клетки начинают двигаться на амебоидный манер, напоминающий движение лимфоцитов. При этом резко увеличивается скорость движения индивидуальных клеток в Зх-мерном матриксе и практически пропадает зависимость движения клеток от контактов с субстратом или активности ферментов, растворяющих матрикс — матриксных металлопротеаз (ММП). Картина усложняется тем, что при определенных условиях клетки могут возвращаться к прежнему способу миграции, что очень затрудняет попытки найти способы регуляции движения и ингибирования инвазии опухолевых клеток. Это свойство опухолевых клеток было описано несколько лет назад и называется пластичность опухолевых клеток (Wolf et а1., 2003). Поэтому чрезвычайно важно знать, какие механизмы отвечают за тот или иной способ миграции и что регулирует движение клеток.

Давно показано, что в основе движения клеток лежат перестройки цитоскелета, в частности актинового цитоскелета. Выделяют несколько основных этапов движенияобразование протрузий на ведущем краю клетки, закрепление этих протрузий с помощью адгезионных структур, подтягивание и перенос тела клетки за счет акто-миозинового сокращения. Известно, что основной механизм формирования актиновых филаментовэто полимеризация сети на краю клетки. Однако оставалось неясным, каким образом густая равномерная сеть актина перестраивается в пучки микрофиламентов, способные к сокращению. Так же был неизвестен вклад каждой из составляющих клеточного движения — образования протрузии и акто-миозинового сокращения в эффективность клеточной миграции.

В последнее время был сделан огромный методологический скачок, появились новые методы микроскопии — фазово-контрастная микроскопия с компьютерным усилением, конфокальная микроскопия, электронная томография, открывающие новые возможности в исследовании клеточных структур. С помощью трансфекции белков, меченных флуорохромами, появилась возможность наблюдать за динамикой и активацией индивидуальных белков при движении живых клеток. В связи с этим представляется актуальным с применением этих новых методов исследовать динамику формирования и реорганизации цитоскелета при движении нормальных клеток, чтобы понимать, какие механизмы лежат в основе клеточного движения.

Как уже отмечалось выше, при прогрессии опухолей резко меняется морфология и характер движения клеток. Ранее была описана разница в строении актинового цитоскелета у нормальных и трансформированных клеток. Общепринят факт, что опухолевые клетки отличаются от нормальных отсутствием крупных пучков микрофиламентов — стресс-фибрилл, и крупных зрелых фокальных контактов. Для трансформированных клеток характерно или полное отсутствие пучков микрофиламентов, или остаточные актиновые пучки и наличие мелких точечных фокальных комплексов. Но вопрос о том, как и почему указанные изменения приводят к возникновению у опухолевых клеток способностей к инвазии в соседние ткани, остается открытым.

Цели и задачи.

Исходя из сказанного выше, в нашей работе мы поставили две основные цели:

1. Исследовать перестройки актинового цитоскелета, лежащие в основе движения нормальных клеток, проанализировать вклад разных составляющих — полимеризации актиновой сети и акто-миозиновой сократимости — для обеспечения эффективного клеточного движения, выяснить роль образования адгезионных структур в реорганизации актинового цитоскелета.

2. Исследовать изменения морфологии клеток и цитоскелета, возникающие при опухолевой трансформации и приводящие к изменению характера клеточного движения и приобретению клетками инвазивного фенотипа.

Для решения этих целей мы поставили следующие экспериментальные задачи:

1. Используя в качестве активаторов клеточного движения скэттер-фактор (HGF/SF) (для эпителиальных клеток) и опухолевый промотор форболовый эфир РМА (для фибробластов) исследовать изменения морфологии клеток и цитоскелета при инициации движения, определить роль системы микротрубочек и транспорта внутриклеточных частиц в миграции клеток.

2. С помощью специфических ингибиторов, исследовать роль основных составляющих клеточного движения — формирования протрузий на ведущем крае и актин-миозинового сокращения для эффективного движения клеток.

3. С применением современных микроскопических техник (видеомикроскопии живых клеток, метода компьютерно-усиленного фазового контраста, видеонаблюдения за меченными белками, инъецированными в клетку и т. д.) исследовать структуру и динамику ведущего края клетки при движении.

4. С помощью коррелятивной видео и электронной микроскопии и с применением электронной томографии исследовать ультраструктуру и динамику актинового цитоскелета и адгезионных структур на ведущем крае при движении клеток. Исследовать на белковом уровне динамику формирования адгезионных структур с субстратом и предложить модель реорганизации актинового цитоскелета при движении клеток.

5. Исследовать роль второй составляющей — акто-миозинового сокращения для движения клеток с помощью высокоспецифичных ингибиторов акто-миозинового сокращения. Для этого исследовать динамику движения клеток, регуляцию направленности движения и формирование клеточного монослоя в условиях ингибирования сократительной активности.

6. Исследовать изменения характера движения клеток, вызванного неопластической трансформацией с помощью нескольких альтернативных методов и проанализировать, какие именно морфологические изменения существенны для приобретения клетками инвазивного поведения.

7. Исследовать ультраструктуру актинового цитоскелета фибробластов с разной степенью трансформации и выявить нарушения строения цитоскелета определяющие проявление инвазивного фенотипа.

8. Для выяснения механизмов изменения клеточной морфологии при трансформации проанализировать влияние экспрессии онкогенов (N-Ras) на морфологию фибробластов. Исследовать изменения морфологии и цитоскелета фибробластов под влиянием активных кислородных радикалов (ROS).

Научная новизна и практическая ценность.

Исследованию подвижности клеток и механизмам, определяющим эту подвижность, уделяется огромный интерес в мире. Благодаря бурному техническому развитию микроскопии в последнее время появилось много новых методов и подходов, позволяющих изучать движение индивидуальных клеток. В нашей работе мы использовали уникальное сочетание современных методов — видеомикроскопию, метод компьютерно-усиленного фазового контраста, TIRF (тотальную интерференционно-отражательную микроскопию), конфокальную микроскопию. Мы разработали метод, позволяющий, сочетать видеосъемки живых клеток с последующем изучением на электронно-микроскопическом уровне клеточных структур с известной жизненной историей и таким образом наладили возможность коррелятивной электронной и видеомикроскопии. Мы применяли метод электронной томографии, позволяющую с высоким разрешением исследовать Зх-мерное строение адгезионных структур построить модели реорганизации цитоскелета на разных стадиях формирования ФА. Такие модели построены впервые в мире и они внесли новое понимание организации построения адгезионных структур и механизмов перестройки цитоскелета при движении клеток. Проведенные исследования позволили ясно продемонстрировать важнейшую роль формирования новых адгезионных структур в процессе реорганизации актинового цитоскелета во время клеточного движения.

Исследование динамики трансфицированных в клетку белков — компонентов фокальных адгезий позволило внести существенный вклад в современное представление о строении и динамике адгезионных структур. Нами впервые в мире была выделена стадия инициальных фокальных адгезий, как начальная стадия формирования адгезионных структур. Ранее эта стадия не была описана исследователями из-за методических трудностей, и только использование такого широкого набора белков-маркеров и последующее исследование структуры с помощью коррелятивной электронной микроскопии позволило выделить этот этап формирования ФА. Мы впервые продемонстрировали роль белка VASP, как организатора сборки фокальных адгезий. Трансфекция клеток белками, меченными флуорохромами, позволила наблюдать перестройки актинового цитоскелета при движении клеток, дало возможность выяснить механизмы, регулирующие динамику цитоскелета. Были исследованы две зоны, образующиеся на активном ведущем краю — ламеллиподия и ламелла. Впервые в мире было показано, что основным процессом, определяющим быстрый ретроградный ток в ламеллиподии, является полимеризация актина, тогда как медленный ретроградный ток в ламеллиподии обеспечивается акто-миозиновым сокращением. Мы впервые в мире показали, что формирование адгезионных структур de novo происходит в зоне ламеллиподии и при дальнейших перестройках именно позиция этих структур определяет положение границы между ламеллиподией и ламеллой. Эти исследования вносят весомый вклад в понимание процессов перестройки цитоскелета, лежащие в основе клеточного движения.

Изменение характера клеточного движения приводит к проявлению таких свойств опухолевых клеток, как способность к инвазии. Важность исследования механизмов, приводящих к подобным изменениям сомнению не подлежит. Мы впервые в мире поставили перед собой задачу подробно оценить изменения динамики и распределения псевдоподиальной активности при трансформации и сопоставить их с изменениями, происходящими в ультраструктуре актинового цитоскелета ведущего края опухолевых клеток (которые также не были описаны ранее). Комплексная оценка изменений, вызываемых неопластической трансформацией с применением такого большого набора различных методов (иммуноморфологии, видеомикроскопии живых клеток, разнообразных тестов на эффективность миграции и биохимический анализ активности регуляторных молекул) на нескольких клеточных линиях проведен впервые. Мы провели сравнительный компьютерный анализ динамики активного края нормальных и трансформированных клеток. В результате этого анализа мы показали, что характерным признаем трансформации фибробластов является значительное перераспределение псевдоподиальной активности. При этом у трансформированных клеток существенно возрастает доля активного клеточного края и соответственно уменьшается стабильный край. При трансформации клеток существенно изменяется не только распределение, но и характер псевдоподиалыюй активности: протрузии на переднем крае становятся более мелкими, а частота их образования и частота образования раффлов значительно возрастает. Эти изменения коррелируют с изменениями строения актиновой сети в ламеллиподии, а также с отсутствием полноценных контактов клетки с субстратом. С помощью метода платиновых реплик (электронная микроскопия) мы выявили ультраструктурную основу такого перераспределения: нарушение регулярности актиновой сети, появление большого количества «дыр» в подмембранном слое актина на ведущем краю клетки и нарушение краевого актинового пучка, в норме стабилизирующего боковые края клеток. В результате исследования клеточных линий, находящихся на разных стадия опухолевой трансформации, мы показали, что по мере нарастания таких признаков трансформации, как изменения цитоскелета и перераспределение активности ведущего края, изменяется и характер миграции клеток. Движение одиночных трансформированных клеток носит менее направленный характер и скорость их миграции падает, в основном в результате отсутствия поляризации активности на ведущем крае. Одновременно появляется и/или усиливается способность к трехмерной миграции через поры камеры Бойдена и способность к инвазии. При выяснение молекулярных механизмов указанных изменений цитоскелета мы выявили возрастание активности малой ГТФазы Rae и заметное увеличение активного (дефосфорилированного) кофилина. Проведенная работа дает основание предположить, что именно перераспределение псевдоподиальной активности, вызванное изменениями структуры актинового цитоскелета, в результате которого трансформированные клетки легко меняют направление движения, является определяющим в проявлении способности опухолевых клеток к инвазии. Нами впервые показано, что по крайней мере одним из механизмов, лежащих в основе изменения морфологии и подвижности клеток является накопление активных кислородных радикалов (ROS) под действием гиперэкспрессии онкогена N-Ras, и одним из путей возвращения нормального фенотипа может быть обработка клеток антиоксидантами (в нашем случае N-ацетил цистеином). Эти выводы имеют не только теоретическое, но и важное научно-практическое значение, так как показывают новые подходы к нормализации морфологии и движения опухолевых клеток и открывают новые направления исследований в области клеточной биологии и антиопухолевой терапии.

ЛИТЕРАТУРНЫЙ ОБЗОР.

Миграция клеток является сложным, хорошо скоординированным процессом, состоящим из нескольких стадий — выбрасывание новых протрузий на ведущем краю клетки, закрепление этих протрузий на субстрате за счет образования адгезионных структур, перемещения тела клетки, отрыва заднего конца клетки от субстрата и его подтягивания. Все эти события в основном базируются на перестройках актинового цитоскелета. Так показано, что протрузии формируются за счет полимеризации актиновых филаментов на краю клетки, а перемещение тела клетки и подтягивание хвостового участка зависит от сокращения актиновых стресс-фибрилл при участии моторного белка миозина II (Ridley et al., 2003; Mogilner and Oster, 2003). Адгезия клетки к субстрату осуществляется с помощью специализированных структур — фокальных адгезий (Geiger et al., 2001; Kaverina et al., 2002; Webb et al., 2003), которые кроме функций механического соединения с субстратом выполняют многочисленные регуляторные функции (Geiger et al., 2001, Sastry and Burridge, 2000; Zaidel-Bar et al., 2007). Способности клеток к миграции и сам характер миграции сильно варьирует от одного типа клеток к другому. Например фибробласты двигаются довольно медленно и их движение связано с постоянным выбрасыванием и сокращением ведущего края, для них характерно наличие больших сократимых пучков актиновых микрофиламентов и крупных фокальных контактов. Кератоциты рыб — мелкие, быстро ползущие клетки, их движение связано с равномерным выдвижением ведущего края. Для них характерно отсутствие пучков микрофиламентов и мелкие фокальные адгезии. Тем не менее, принципы организации актинового цитоскелета и его перестроек при движении клеток, его связь с адгезионными структурами являются общими для всех типов клеток.

I. ОРГАНИЗАЦИЯ АКТИНОВОГО ЦИТОСКЕЛЕТА КЛЕТОК ПОЗВОНОЧНЫХ.

ВЫВОДЫ.

1. Наиболее важным этапом, определяющим движение клеток, является формирование активного ведущего края. Акто-миозиновая сократимость существенна для упорядочивания движения и правильного формирования клеточных слоев.

2. На ведущем крае клетки существуют две зоны — ламеллиподия и ламелла, отличающиеся по строению и динамическим характеристикам. Динамика актинового тока в ламеллиподии обеспечивается за счет полимеризации актиновой сети на краю клетки, медленный ток актина в ламелле обеспечивается за счет акто-миозинового сокращения.

3. В зоне ламеллиподии формируются инициальные фокальные адгезии (ФА), которые определяют положение границы ламеллиподия-ламелла. Формирование новой адгезии вызывает сдвиг этой границы вперед и последующее выдвижение ламеллиподии, т. е. является инициирующим шагом в выдвижении активного края. В точках первичных ФА происходит реорганизация актинового цитоскелета из однонаправленной сети, характерной для ламеллиподии в сократимые пучки микрофиламентов, включающие в себя филаменты разной направленности и миозин II.

4. Первым шагом образования ФА является формирования инициальных ФА, в которых концентрируется белок УАБР. Остальные белки контактов встраиваются в структуру инициального контакта с задержкой от 0.5 до нескольких минут. Стадия инициальных ФА является обязательной при формировании адгезионных структур, но только некоторые из инициальных ФА созревают в более крупные адгезионные структуры — фокальные комплексы и фокальные контакты. Структура актинового цитоскелета в местах инициальных ФА не отличается от структуры окружающей ламеллиподиипучки микрофиламентов, типичные для фокальных комплексов и фокальных контактов появляются при их дальнейшем созревании.

5. При неопластической трансформации фибробластов происходит перераспределение краевой активности, существенно увеличивается доля активного края и соответственно сокращается доля стабильного края. Эти признаки нарастают по мере нарастания степени трансформации клеток и могут служит еще одним морфологическим критерием клеточной трансформации.

6. В результате трансформации меняется улыраструктура актинового цитоскелета. Актиновая сеть в ламеллиподии становится менее регулярной, появляется большое количество «дырок» в подмембранном слое микрофиламентов. Краевой актиновый пучок в боковых и хвостовой частях клетки существенно редуцирован и не обеспечивает стабильность клеточного края.

7. При трансформации клеток существенно изменяется не только распределение, но и характер псевдоподиальной активности: протрузии на переднем крае становятся более мелкими, а частота их образования и частота образования раффлов значительно возрастает. Эти изменения коррелируют с изменениями строения актиновой сети ламеллиподии, а также с отсутствием полноценных контактов клетки с субстратом.

8. По мере нарастания таких признаков трансформации, как изменения цитоскелета и перераспределение активности ведущего края, изменяется характер миграции клеток. Движение одиночных трансформированных клеток носит менее направленный характер и скорость их миграции падает, в основном в результате отсутствия поляризации активности на ведущем крае. Одновременно появляется и/или усиливается способность к 3D миграции и способность к инвазии.

9. Одним из молекулярных механизмов, лежащих в основе указанных изменений цитоскелета в результате трансформации, является возрастание уровня реактивных кислородных радикалов (ROS) в результате оверэкспрессии онкогена N-Ras, приводящих к повышению активности малой ГТФазы Rae и заметному увеличению активного (дефосфорилированного) кофилина. Обработка таких клеток антиоксидантом NAC (N-ацетил цистеином) приводит к нормализации фенотипа и подвижности клеток.

10. Перераспределение псевдоподиальной активности, вызванное изменениями структуры актинового цитоскелета, в результате которого трансформированные клетки легко меняют направление движения, является определяющим в проявлении способности опухолевых клеток к инвазии.

ЗАКЛЮЧЕНИЕ

.

Как уже говорилось в начале, настоящая работа состоит из двух основных частей. Первая часть — это исследование движения нормальных фибробластов и изучение клеточных механизмов, обеспечивающих это движение: реорганизации актинового цитоскелета, формирования адгезионных структур и взаимодействий этих процессов. Вторая часть посвящена исследованию нарушений, возникающих при неопластической трансформации и приводящих к формированию так называемого «инвазивного» фенотипа клеток, а именно анализу изменений морфологии и цитоскелета, вызванных трансформацией, и выявлению характеристик, которые являются определяющими при появлении у клеток способности инвазировать в окружающие ткани. Такая структура работы объясняется тем, что для исследования механизмов, определяющих патологические процессы инвазии опухолевых клеток, необходимо хорошо понимать, как обеспечивается движение клеток в норме, а, несмотря на огромный интерес к этим вопросам, многое до сих пор оставалось неизвестным.

Наши исследования реорганизации актиновой сети при движении фибробластов подтвердили существование двух зон на ведущем крае клетки, отличающихся по строению и динамическим характеристикам — ламеллиподии и ламеллы. Мы впервые выделили и разделили молекулярные механизмы, регулирующие динамику актина в этих зонах, и показали, что быстрый ретроградный ток актина в ламеллиподии определяется Агр 2/3 — зависимой полимеризацией актина на краю клетки, а медленный ретроградный ток в ламелле определяется акто-миозиновым сокращением. Мы также впервые показали роль вновь формирующихся фокальных адгезий в установлении границы между ламеллиподией и ламеллой, а также их роль в реорганизации актинового цитоскелета из равномерной униполярной сети в зоне ламеллиподии в цитоскелет ламеллы, содержащий акто-миозиновые сократимые пучки. Мы впервые доказали наличие и охарактеризовали самую начальную стадию формирования ФА — инициальные ФА. Показана динамика включения различных белков в состав ФА. С помощью исследования включения бета-3-интегрина в состав инициальных адгезий доказана их связь с внеклеточным матриксом. Выявлена и доказана новая роль белка УАБР, как организатора образования ФА. Кроме того, с помощью новейшей техники 3-х мерной компьютерной томографии, основанной на электронной микроскопии, показано строение актинового цитоскелета в местах образования ФА и показано строение ФА на разных стадиях формирования: от инициальной адгезии и до фокального контакта. С помощью этой же техники показано единство цитоскелета ламеллиподии и ламеллы и тем самым разрешен один из вопросов, до сих пор существовавших в современной клеточной биологии. Эти данные вносят существенный вклад в понимание механизмов клеточного движения. В процессе работы мы показали, что определяющим шагом в обеспечении движения клеток является формирование и распределение активного «ведущего» края. Именно эти результаты явились основанием для дальнейшего исследования изменения распределения активного края при трансформации клеток. В результате этих исследований мы впервые показали, что общим признаком нормальных фибробластов различного происхождения является то, что около 50% их периметра являются стабильными. Наличие стабильного бокового края определяет постоянство и направленность движения клеток. Характерной чертой трансформированных клеток, не описанной ранее, является существенное уменьшение доли стабильного края и, соответственно, увеличение и перераспределение активных участков. Мы показали, что нарастание этих признаков коррелирует с нарастанием других характерных признаков трансформации у клеток и усиления у них способностей к трехмерной миграции и инвазии. При этом в результате трансформации изменяется не только распределение псевдоподиальной активности вдоль периметра клетки, но меняется и динамический характер этой активности, а именно усиление краевой активности и общее увеличение раффлинга по всей поверхности клетки. Мы исследовали структуру цитоскелета у нормальных и трансформированных клеток с помощью электронномикроскопического метода платиновых реплик и показали, что в основе подобных изменений в динамике краевой активности лежат изменения ультраструктуры актинового цитоскелета. В частности нарушение регулярности подмембранной актиновой сети может вести к появлению поверхностных и боковых раффлов, а нарушение структуры стресс-фибрилл, идущих вдоль боковых стабильных участков клетки приводит к потере стабильности и возникновению мелких локальных филоподий и ламеллиподий. К активации раффлинга также может приводить изменения фокальных адгезий. Опытами с проверкой активности металлопротеаз в исследованных нами культурах мы показали, что, по крайней мере в рассмотренных нами случаях, именно изменения актинового цитоскелета приводят к увеличению способностей клеток при трансформации инвазировать матригель. Та важнейшая роль, которую мы показали для ФА в общей организации цитоскелета клетки при ее движении, предполагает, что изменения в динамике или строении ФА при трансформации может приводить к существенным изменениям организации актинового цитоскелета клетки. Таким образом, необходимы дальнейшие сравнительные исследования изменений строения и динамики ФА и цитоскелета в процессе трансформации и особенно при мезенхимально-амебоидном переходе (МАП). Для исследования этих вопросов представляются перспективными использованные нами методы и подходы.

Исследование механизмов клеточной миграции различными способами дали интересные результаты, так как показали, что не всегда увеличение скорости клеточной подвижности на двумерном субстрате коррелирует со способностью клеток инвазировать матригель (что, конечно, является моделью, более близкой к естественным условиям миграции клеток). Наши исследования показали, что более важным критерием для оценки изменения клеточной подвижности при трансформации является показатель направленности миграции, и именно нарушение способностей к направленной миграции является характерной особенностью опухолевых клеток.

Важным представляется исследование молекулярных механизмов, приводящих к к проявлению у клеток опухолевого фенотипа, возникновению описанных изменений цитоскелета и соответствующего миграционного поведения, демонстрация роли активных кислородных радикалов в проявлении изменений цитоскелета, приводящих к проявлению опухолевого фенотипа и поведения у клеток, а так же демонстрация роли малых ГТФаз в этих изменениях.

В целом подобный подход комплексного исследования механизмов движения нормальных клеток и изменения этих механизмов при трансформации представляется перспективным при дальнейших исследованиях.

Показать весь текст

Список литературы

  1. Е. А. Изучение участия систем микротрубочек и актиновых филаментов в процессе движения фибробластов Автореферат на соискание ученой степени доктора биологических наук. Москва, 2007.
  2. Л. В., Иванова О. Ю., Васильев 10. М. Изменение поляризации фибробластов при изменении контрактильности актинового цитоскелета. // Цитология, 2001, Т.43 (2), С. 133−141.
  3. П.Б., Иванов A.B., Ильинская Г. В., Саблина A.A., Копнин Б. П., Чумаков П. М. Защитная функция р53 при Ras-индуцированной трансформации клеток REF52.// Мол. Биол., 2003, Т. 37, С. 458.
  4. , A.B., Блэк, К.Л., Любимова, Ю. Ю. Изоформы ламинина в диагностике и прогнозировании течения опухолей мозга и молочной железы. // Вестник РОНЦ, 2003, Т. 3, С. 83−91
  5. С.А., Александрова А. Ю. и Васильев Ю.М. Изменение формы клеток и актинового цитоскелета при трансформации, вызванной онкогеном Ras- возможная роль Rho-киназы // Доклады Академии Наук. 2003. Т. 388(3). С. 1−3.
  6. Ю.А., Васильев Ю. М. Морфогенетические реакции клеток и их нарушения при опухолевой трансформации // Канцерогенез. М.: Медицина. 2004. С. 376−414.
  7. Т.М. Динамическая организация цитоскелета культивируемых клеток: ультраструктурное исследование. // Автореферат на соискание ученой степени доктора биологических наук. 1990, Москва.
  8. Abercrombie, M. Contact inhibition in tissue culture // In Vitro 1970. V. 6, P. 128−142.
  9. Abercrombie, M., and Dunn, G.A., Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy.// Exp. Cell. Res., 1975, V. 92, P.57−62.
  10. Agapova L.S., Volodina J.L., Chumakov P.M., Kopnin B.P., Activation of Ras-Ral pathway attenuates p53-independent DNA damage G2 checkpoint.// J. Biol. Chem. 2004, V. 279, P. 36 382−36 389.
  11. Agapova LS, Ivanov AV, Sablina AA, Kopnin PB, Sokova 01, Chumakov PM, Kopnin BP. P53-dependent effects of RAS oncogene on chromosome stability and cell cycle checkpoints. // Oncogene, 1999, V. 18(20), P. 3135−42.
  12. Akisawa, N., Nishimori, I., Iwamura, T., Onishi, S. and Hollingsworth, M. A. High levels of ezrin expressed by human pancreatic adenocarcinoma cell lines with high metastatic potential.//Biochem. Biophys. Res. Commua, 1999, V. 258, P. 395−400.
  13. Albelda, S.M., Mette, S.A., Elder, D.E., Stewart, R., Damjanovich, L., Herlyn, M., and Buck, C.A. Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. // Cancer Res., 1990, V. 50, P. 6757−6764.
  14. Amann, K.J. and Pollard, T.D. The Arp2/3 complex nucleates actin filament branches from the sides of pre-existing filaments. //Nat. Cell Biol., 2001, V. 3, P. 306−310
  15. Andreasen P.A., Kjoller L., Christensen L. and Duffy MJ. The urokinase-type plasminogen activator system in cancer metastasis: a review // Int J Cancer. 1997. V. 72. P. 1−22.
  16. Applewhite, D.A., M. Barzik, S. Kojima, T.M. Svitkina, F.B. Gertler, and G.G. Borisy. Ena/VASP proteins have an anti-capping independent function in fi lopodia formation. // Mol. Biol. Cell, 2007, V. 18, P. 2579 2591 .
  17. Archer H., Bar-Sagi D. Ras and Rac as activators of reactive oxygen species (ROS),// Methods Mol. Biol., 2002, V. 189, P. 67−73.
  18. Azuma, K., Tanaka, M., Uekita, T., Inoue, S., Yokota, J., Ouchi, Y., and Sakai, R. Tyrosine phosphorylation of paxillin affects the metastatic potential of human osteosarcoma.// Oncogene, 2005, V. 24, P. 4754−4764.
  19. Bachmann, C., L. Fischer, U. Walter, and M. Reinhard. The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding and actin bundle formation. // J. Biol. Chem., 1999, V. 274, P. 23 549 23 557 .
  20. Ballestrem C, Erez N, Kirchner J, Kam Z, Bershadsky A, Geiger B. Molecular mapping of tyrosine-phosphorylated proteins in focal adhesions using fluorescence resonance energy transfer. // J Cell Sci., 2006, V. l 19, P. 866−875.
  21. Ballestrem C, Hinz B, Imhof BA, Wehrle-Haller B. Marching at the front and dragging behind: differential alphaVbeta3-integrin turnover regulates focal adhesion behavior. // J Cell Biol. 2001, V. 155(7), P. 1319−32.
  22. Ballestrem C, Wehrle-Haller B, Imhof BA. Actin dynamics in living mammalian cells. // J Cell Sci. 1998, V. 111, P. 1649−58.
  23. Barzik M, Kotova TI, Higgs HN, Hazelwood L, Hanein D, Gertler FB, Schafer DA Ena/VASP proteins enhance actin polymerization in the presence of barbed end capping proteins. // J Biol Chem., 2005, V. 280, P. 28 653−28 662
  24. Baum, B., and Perrimon N. Spatial control of the actin cytoskeleton in Drosophila epithelial cells. //Nat. Cell Biol., 2001, V. 3, P. 883 890 .
  25. Baum B. and Kunda P. Actin nucleation: spire-actin nucleator in a class of its own// Curr Biol. 2005. V 15 R305-R308.
  26. Bear, J.E., Loureiro J.J., Libova I., Fassler R., Wehland J., and Gertler F.B. Negative regulation of fi broblast motility by Ena/VASP proteins. // Cell. 2000, V. 101, P. 717 728 .
  27. Bear JE., Gertler FB. Ena/VASP: towards resolving a pointed controversy at the barbed ends. // Journal of Cell Science, 2009, V. 122, P. 1947−1953
  28. Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. // J Cell Biol., 2001, V. 153, P. 881−888.
  29. Beningo KA, Dembo M, Kaverina 1, Small JV, Wang YL. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. // J Cell Biol., 2001, V. 153, P. 881−888.
  30. Bershadsky A.D. and Vasiliev J.M. // Cytoskeleton. New York: Plenum Press, 1988.
  31. Bershadsky AD, Balaban NQ, Geiger B. Adhesion-dependent cell mechanosensitivity. // Annu. Rev. Cell Dev Biol., 2003, V. 19, P. 677−695.
  32. Bissell, M.J., and Radisky, D. Putting tumours in context. //Nature Rev. Cancer, 2001, V. 1, P. 46−54.
  33. Blanchoin L., Pollard T.D. and Hitchcock-DeGregori S.E. Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin // Curr. Biol. 2001. V. 11. P. 1300−1304.
  34. Blanchoin, L., Amann KJ, Higgs HN, Marchand JB, Kaiser DA, Pollard TD. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. // Nature, 2000, V. 404, P. 1007−1011.
  35. Bottaro, D.P., Rubin, J.S., Faletto, D.L., Chan, A.M.-L., Kmiecick, T.E., Van de Woude, G.F., and Aaronson, S.A. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. // Science, 1991, V. 251, P. 802−804.
  36. Breckenridge M.T., Dulyaninova N.G. and Egelhoff T.T. Multiple regulatory steps control mammalian nonmuscle myosin II assembly in live cells. // Mol Biol Cell., 2009, V. 20, P. 338−347
  37. Breitsprecher, D., Kiesewetter A.K., Linkner J., Urbanke C., Resch G.P., Small J.V., and Faix J. Clustering of VASP actively drives processive, WH2 domain-mediated actin filament elongation. // EMBO J., 2008, V. 27, P. 2943- 2954.
  38. Brenner S.L. and Korn E.D. Substoichiometric concentrations of cytochalasin D inhibit actin polymerization. Additional evidence for an F-actin treadmill. // J Biol Chem., 1979, V. 254, P. 9982−5.
  39. Brodu V, Casanova J. The RhoGAP crossveinless-c links trachealess and EGFR signaling to cell shape remodeling in Drosophila tracheal invagination. // Genes Dev., 2006, V. 20, P. 1817−1828.
  40. Bruinsma R. Theory of force regulation by nascent adhesion sites. // Biophys J., 2005, V. 89, P. 87−94
  41. Burgstaller, G., and Gimona, M. Actin cytoskeleton remodelling via local inhibition of contractility at discrete microdomains. // J. Cell Sci., 2004, V. 117, P. 223−231.
  42. Burridge K, Feramisco JR. Microinjection and localization of a 130K protein in living fibroblasts: A relationship to actin and fibronectin. // Cell, 1980, V. 19, P. 587−595.
  43. Burridge, K., Fath, K., Kelly, T., Nucolls, G., and Turner, C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. // Ann. Rev. Cell Biol., 1988, V. 4, P. 487−525.
  44. Burridge, K., Wennerberg, K. Rho and Rac take center stage. // Cell, 2004, V. 2, P. 167−79.
  45. Campellone KG, Welch MD: A nucleator arms race: cellular control of actin assembly. //Nat Rev Mol Cell Biol., 2010, V. 11, P. 237−251.
  46. Carl UD, Pollmann M, Orr E, Gertlere FB, Chakraborty T, Wehland J. Aromatic and basic residues within the EVH1 domain of VASP specify its interaction with proline-rich ligands. // Curr Biol. 1999, V. 9(13), P. 715−8.
  47. Carragher, N.O., and Frame, M.C. Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. // Trends Cell Biol., 2004, V. 14, P. 241−249.
  48. Castellano F, Le Clainche C, Patin D, Carlier MF, Chavrier P. A WASp-VASP complex regulates actin polymerization at the plasma membrane. // EMBO J., 2001, V. 20, P. 56 035 614.
  49. Chan C., Beltzner C.C. and Pollard T.D. Cofilin Dissociates Arp2/3-Complex and Branches from Actin Filaments // Curr. Biol. 2009. V. 19, P. 537−545.
  50. Chesarone MA, Goode BL: Actin nucleation and elongation factors: mechanisms and interplay. // Curr Opin Cell Biol., 2009, V. 21, P. 28−37.
  51. Chrzanowska-Wodnicka M, Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. // J Cell Biol., 1996, V. 133, P. 1403−1415.
  52. Clark, E.A., Golub, T.R., Lander, E.S., and Hynes, R.O. Genomic analysis of metastasis reveals an essential role for RhoC. // Nature, 2000, V. 406, P. 532−535.
  53. Clark, E.A., King, W.G., Brugge, J.S., Simons, M., and Hynes, R.O. Integrin-mediated signals regulated by members of the rho family of GTPases. // J. Cell Biol., 1998, V. 142, P. 573−586.
  54. Cooper J.A. and Schafer D.A. Control of actin assembly and disassembly at filament ends // Curr Opin Cell Biol. 2000. V. 12(1), P. 97−103.
  55. Coussens, L.M., Fingleton, B., and Matrisian, L.M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. // Science, 2002, V. 295, P. 2387−2392.
  56. Craig R., Smith R. and Kendrick-Jones J. Light-chain phosphorylation controls the conformation of vertebtate non-muscle and smooth muscle myosin molecules. // Nature, 1983, V .302, P. 436−439.
  57. Cramer L.P. Organization and polarity of actin filament networks in cells: implications for the mechanism of myosin-based cell motility. // Biochem Soc Symp., 1999, V. 65, P. 173 205.
  58. Cukierman, E., R. Pankov, D.R. Stevens, and K.M. Yamada. Taking cell-matrix adhesions to the third dimension. // Science, 2001, V. 294, P. 1708−1712.
  59. Curtis AS. THE MECHANISM OF ADHESION OF CELLS TO GLASS. A STUDY BY INTERFERENCE REFLECTION MICROSCOPY. // J Cell Biol. 1964, V. 20, P. 199−215.
  60. Dalhaimer P, Pollard TD. Molecular dynamics simulations of Arp2/3 complex activation. // Biophys J., 2010, V. 99(8), P. 2568−76.
  61. De, S., Razorenova, O., McCabe, N.P., O’Toole, T., Qin, J., and Byzova, T.V. VEGF-integrin interplay controls tumor growth and vascularization. // Proc. Natl. Acad. Sci. USA, 2005, V. 102, P. 7589−7594.
  62. DeMali KA, Barlow CA, Burridge K. Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. // J Cell Biol., 2002, V. 159, P. 881−891.
  63. Dent EW, Kwiatkowski AV, Mebane LM, Philippar U, Barzik M, Rubinson DA, Gupton S, Van Veen JE, Furman C, Zhang J, Alberts AS, Mori S, Gertler FB. Filopodia are required for cortical neurite initiation. // Nat Cell Biol., 2007, V. 9, P. 1347−1359
  64. Deryugina E.I. et al., Matrix metalloproteinase activation modulates glioma cell migration // J. Cell Sci. 1997. V. 110. P. 2473−2482.
  65. DesMarais V., Ichetovkin I., Condeelis J., and Hitchcock-DeGregori S.E. Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge // J. Cell Sci. 2002. V. 115. P. 4649−4660.
  66. Domnina L.V., Ivanova O.Y., Margolis L.B., Olshevskaya L.V., Rovensky Y.A., Vasiliev J.M. and Gelfand I.M. Defective formation of the lamellar cytoplasm by neoplastic fibroblasts // Proc. Natl. Acad. Sci. USA. 1972. V 69: 248−252.
  67. Dowrick, P.G., and Warn, R. The effects of scatter factor on the cytoskeletal organization of epithelial cells. // Cancer Invest. 1990, V. 8, P. 675−683.
  68. Dowrick, P.G., Prescott, A.R., and Warn, R. Scatter factor affects major changes in the cytoskeletal organization of epithelial cells. // Cytokine, 1991, V. 3, P. 299−310.
  69. Dugina V., Zwaenepoel I., Gabbiani G., Clement S. and Chaponnier S. P- and y-cytoplasmic actins display distinct distribution and functional diversity // Journal of Cell Science. 2009. V 122, P. 2980−2988.
  70. Dugina V.B., Svitkina T.M., Vasiliev J.M. and Gelfand I.M. Specific type of morphological reorganization induced by phorbol ester: Reversible partition of cell into motile and stable domains. // Proc. Natl. Acad.Sci. USA, 1987, V. 84, P. 4122−4125.
  71. Dugina, V.B., Alexandrova, A.Y., Lane, K., Bulanova, E., and Vasiliev, J.M. The role of the microtubular system in the cell response to HGF/SF. // J. Cell Sci., 1995, V. 108, P. 16 591 667.
  72. Dunn G.A. and Brown A.F. Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. // J Cell Sci., 1986, V. 83, P. 313−340.
  73. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. // Nature, 2002, V. 420, P. 629 635.
  74. Even-Ram S., Doyle A.D., Conti M.A., Matsumoto K., Adelstein R.S. and Yamada K.M. Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. // Nat Cell Biol., 2007, V. 9, P. 299−309.
  75. Faix J. and Grosse R. Staying in shape with formins // Dev. Cell. 2006 V. 10(6). P. 693−706.
  76. Farina, K.L., Wyckoff, J.B., Rivera, J., Lee, H., Segall, J.E., Condeelis, J.S., and Jones, J.G. Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein. // Cancer Res., 1998, V. 58, P. 2528−2532.
  77. Feltkamp, C. A., Pijnenburg, M. A. & Roos, E. Organization of talin and vinculin in adhesion plaques of wet-cleaved chicken embryo fibroblasts. // J. Cell Sci., 1991, V. 100, P. 579−587
  78. Fidler IJ. Critical determinants of cancer methastasis: rationale for therapy. // Cancer. Chemother. Pharmacol., 1999, V. 43, S 3−10.
  79. Fox C.H., Caspersson T., Kudynowski J. Sanford K.K. and Tarone R.E. Morphometric analysis of neoplastic transformation in rodent fibroblast cell lines // Cancer Res. 1977. V 37. P. 892−897.
  80. Fradelizi J, Noireaux V, Plastino J, Menichi B, Louvard D, Sykes C, Golsteyn RM, Friederich E. ActA and human zyxin harbour Arp2/3-independent actin-polymerization activity. //Nat Cell Biol. 2001, V.8, P. 699−707.
  81. , A. S. & Hegerl, R. Noise reduction in electron tomographic reconstructionsusing nonlinear anisotropic diffusion. // J. Struct. Biol., 2001, V. 135, P. 239 250
  82. Friedl P. and Wolf K. Plasticity of cell migration: a multiscale tuning model // J Cell Biol. 2010. V. 188. P. 11−19.
  83. Friedl P. and Wolf K. Tube travel: the role of proteases in individual and collective cancer cell invasion // Cancer Res. 2008. V. 68. P. 7247−7249.
  84. Friedl P. and Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms //Nat Rev Cancer. 2003. V. 3. P. 362−374.
  85. Friedl P. Prespecification and plasticity: shifting mechanisms of cell migration // Curr Opin Cell Biol. 2004. V. 16. P. 14−23.
  86. Friedl P., Hegerfeldt Y. and Tusch M. Collective cell migration in morphogenesis and cancer// Int. J. Dev. Biol. 2004. V. 48. P. 441−449.
  87. Friedl, P., Zanker, K. S. and Brocker, E.-B. Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. //Microsc. Res. Tech., 1998, V. 43, P. 369−378.
  88. Frisch, S.M., and Ruoslahti, E. Integrins and anoikis. // Curr. Opin. Cell Biol., 1997, V. 9, P. 701−706.
  89. Fukata Y, Amano M, Kaibuchi K: Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. // Trends Pharmacol Sci 2001, V.22, P. 32−39.
  90. Furman, C., Sieminski A.L., Kwiatkowski A.V., Rubinson D.A., Vasile E., Bronson R.T., Fassler R., and Gertler F.B. Ena/VASP is required for endothelial barrier function in vivo. // J. Cell Biol., 2007, V. 179, P. 761 765.
  91. Gabarra-Niecko, V., Schaller, M.D., Dunty, J.M. FAK regulates biological processes important for the pathogenesis of cancer. // Cancer Metastasis Rev., 2003, V. 4, P. 359−74.
  92. Gadea G., Anguille C. and Roux P. Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices // J Cell Biol. 2007. V. 178. P. 23−30.
  93. Gates, J., Mahaffey J.P., Rogers S.L., Emerson M., Rogers E.M., Sottile S.L., Van Vactor D., Gertler F.B., and Peifer M. Enabled plays key roles in embryonic epithelial morphogenesis in Drosophila. II Development. 2007. V.134, P. 2027 2039 .
  94. Geiger B and Bershadsky A Assembly and mechanosensory function of focal contacts. // Current Opinion in Cell Biology, 2001, V.13, P. 584−592
  95. Geiger B and Yamada KM. Molecular Architecture and Function of Matrix Adhesions. // Cold Spring Harb Perspect Biol., 2011, V.3, P. a005033
  96. Geiger B, Bershadsky A, Pankov R., Yamada KM. Transmembrane extracellular matrix--cytoskeleton crosstalk. // Nat Rev Mol Cell Biol., 2001, V. 2, P. 793−805.
  97. Geiger B. A 130K protein from chicken gizzard: Its localization at the termini of microfilament bundles in cultured chicken cells. // Cell, 1979, V. 18(1), P.193−205.
  98. Gerald D., Berra E., Frapart Y.M., Chan D.A., Giaccia A.J., Mansuy D., Pouyssegur J., Yaniv M., Mechta-Grigoriou F. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. // Cell, 2004, V. 118, P. 781−794.
  99. Gertler, F. B., Niebuhr, K., Reinhard, M., Wehland, J. and Soriano, P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. // Cell, 1996, V. 87, P. 227−239.
  100. Gherardi, E., Gray, J., Stoker, M., Perryman, M., and Furlong, R. Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement. // Proc. Natl. Acad. Sci. U.S.A., 1989, V. 86, P. 5844−5848.
  101. Ghosh M., Song X., Mouneimne G., Lawrence D.S. and Condeelis J.S. Cofilin promotes actin polymerization and defines the direction of the motility // Science. 2004. V. 304. P. 743 746.
  102. , F. G. & Tarone, GPositional control of cell fate through joint integrin/receptor protein kinase signaling. // Annu. Rev. Cell Dev. Biol., 2003, V. 19, P. 173−206
  103. Giancotti, F.G., and Ruoslahti, E. Integrin signaling. // Science, 1999, V. 285, P. 1028−1032.
  104. Giancotti, F.G., and Tarone, G. Positional control of cell fate through joint integrin/receptor protein kinase signaling. // Annu. Rev. Cell Dev. Biol., 2003, V. 19, P. 173−206.
  105. Giannone G, Dubin-Thaler BJ, Rossier O, Cai Y, Chaga O, Jiang G., Beaver W., Dobereiner H.G., Freund Y., Borisy G. and Sheetz M.P. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. // Cell, 2007, V. 128, P. 561−575.
  106. Gimona, M, The microfilament system in the formation of invasive adhesions. // Seminars in Cancer Biology, 2008, V. 18(1), P. 23−34.
  107. Gimona, M., and Buccione, R. Adhesions that mediate invasion. // Intern. J. Biochem. Cell Biol., 2006, V. 38, P. 1875−1892.
  108. Gladson, C.L., and Cheresh, D.A. (1991) Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells.J. Clin. Invest., 88,1924−1932.
  109. Goley ED, Welch MD. The ARP2/3 complex: an actin nucleator comes of age. // Nat Rev Mol Cell Biol., 2006, V. 7, P. 713−726.
  110. Goode B.L., Eck M.J. Mechanism and function of formins in the control of actin assembly // Annu Rev Biochem. 2007. V 76, P. 593−627
  111. Guo, W., and Giancotti, F.G. Integrin signalling during tumour progression. //Nat. Rev. Mol. Cell Biol., 2004, V. 5, P. 816−826.
  112. Gupton S.L. and Gertler F.B. Filopodia: the fingers that do the walking // Sci STKE. 2007, V. 400. Review 5.
  113. Gupton SL, Anderson KL, Kole TP, Fischer RS, Ponti A, et al. Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin. // J Cell Biol., 2005, V. 168, P. 619−631.
  114. Hannon G.J., Demetrick D. and Beach D. Isolation of the Rb-related pl30 through its interaction with CDK2 and cyclins // Genes. Dev. 1993. V. 7. P. 2378−2391.
  115. Harris, A. K. Cell surface movements related to cell locomotion. // In Locomotion of Tissue Cells: Ciba Foundation Symposium, 1973, Amsterdam: Elsevier., V. 14, P 3−26.
  116. Harris, A.K., Wild, P., and Stopak, D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. // Science, 1980, V. 208, P. 177−179.
  117. Harvey D.M., Levine A.J. p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts // Genes Devel. 1991. V. 5. № 12B. P. 2375−235.
  118. Heath JP, Dunn GA. Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electron-microscope study. // J Cell Sci., 1978, V. 29, P. 197−212.
  119. Heath, J. P. and Holifield, B. F. Cell locomotion: new research tests old ideas on membrane and cytoskeletal flow. // Cell Motil. Cytoskeleton., 1991, V. 18, P. 245−257
  120. Helin K. Regulation of cell proliferation by the E2 °F transcription factors // Curr. Opin. Genet. Dev. 1998. V 8,28−35
  121. Hinz B., Alt W., Johnen C., Herzog V. and Kaiser H.W. Quantifying lamella dynamics of cultured cells by SACED, a new computer-assisted motion analysis // Exp. Cell Res. 1999. V 251,234−243.
  122. Hommem CC and Peifer M. Exploring the roles of diaphanous and enabled activity in shaping the balance between filopodia and lamellipodia // Mol Biol Cell. 2009 V. 20(24). P. 5138−55.
  123. Hotulainen P, Lappalainen P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. // J Cell Biol., 2006, V. 173, P. 383−394.
  124. Howe, A., Aplin, A.E., Alahari, S.K., and Juliano, R.L. Integrin signaling and cell growth control. // Curr.Opin. Cell Biol., 1998. V. 10, P. 220−231.
  125. Hu K, Ji L, Applegate KT, Danuser G, Waterman-Storer CM. Differential transmission of actin motion within focal adhesions. // Science, 2007, V. 315, P. 111−115.
  126. Huschtscha L.I. and Holliday R. Limited and unlimited growth of SV40-transformed cells from human diploid MRC-5 fibroblasts //J. Cell. Sci. 1983. V. 63. P. 77−99.
  127. Huttelmaier, S., B. Harbeck, O. Steffens, T. Messerschmidt, S. Illenberger, and B.M. Jockusch. Characterization of the actin binding properties of the vasodilator-stimulated phosphoprotein VASP. // FEBS Lett., 1999, V.451, P. 68 74 .
  128. Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. //Cell, 2002, V. 110, P. 673−687.
  129. Hynes, R.O. Integrins: versatility, modulation, and signaling in cell adhesion. // Cell, 1992, V. 69, P. 11−25.
  130. Insall R. H. and Machesky L. M. Actin dinamics at the leading edge: from simple machinery to complecs networks // Developmental Cell., 2009, V P. 310−319
  131. Irani K., Xia Y., Zweier J.L., Sollott S.J., Der C.J.,. Fearon E. R, Sundaresan M., Finkel T., Goldschmidt-Clermont P.J., Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts, // Science, 1997, V. 275, P. 1649−1652.
  132. Ishizaki T., Uehata M., Tamechika I., Keel J., Nonomura K., Maekawa M. and Narumiya S. Pharmacological properties of Y-27 632, a specific inhibitor of rho-associated kinases. // Mol Pharmacol., 2000, V.57, P. 976−983.
  133. Itoh, K., Yoshioka, K., Akedo, H., Uehata, M., Ishizaki, T., and Narumiya, S. An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. // Nature Med., 1999, V. 5, P. 221−225.
  134. Ivanova OY, Svitkina TM, Vasiliev JM, Gelfand IM. Effect of colcemid on the distribution of pseudopodial activity in fibroblasts. Microtubule-independent stabilization of cell surface. // Exp Cell Res., 1980, V.128(2), P. 457−61.
  135. Izzard, C.S., and Lochner, L.R. Formation of cell-to-substrate contacts during fibroblast motility: an interference-reflexion study. // J. Cell. Sci., 1980, V. 42, P. 81−116.
  136. Jacobs J.P., Jones C. M. and Baillie J.P. Characteristics of a human diploid cell designated MRC-5 //Nature. 1970. V. 227. P. 168−170.
  137. Jurado C, Haserick JR, Lee J. Slipping or gripping? Fluorescent speckle microscopy in fish keratocytes reveals two different mechanisms for generating a retrograde flow of actin. // Mol Biol Cell., 2005, V.16, P. 507−518.
  138. Kahana, O., Micksche, M., Witz, I.P., and Yron, LThe focal adhesion kinase (P125FAK) is constitutively active in human malignant melanoma. // Oncogene, 2002, V. 21, P. 39 693 977.
  139. Kalluri R. and Zeisberg M. Fibroblasts in cancer // Nat Rev Cancer. 2006. V. 6. P. 392 401.
  140. Kalluri R. EMT: when epithelial cells decide to become mesenchymal-like cells // J Clin Invest. 2009. V. 9. P. 1417−1419.
  141. Kaneko, K., Satoh, K., Masamune, A., Satoh, A., and Shimosegawa, T. Myosin light chain kinase inhibitors can block invasion and adhesion of human pancreatic cancer cell lines. //Pancreas, 2002, V. 24, P. 341.
  142. Katz, N., Zamir, E., Bershadsky, A., Kam, Z., Yamada, K.M., and Geiger, B. Physical state of the extracellular matrix regulates the structure and molecular composition of cellmatrix adhesions. // Moll. Biol. Cell, 2000, V. 11, P. 1047−1060.
  143. Kaverina I, Krylyshkina O, Small JV. Regulation of substrate adhesion dynamics during cell motility. // Int J Biochem Cell Biol., 2002, V. 34, P. 746−761.
  144. Kaverina, I., Stradal, T.E., and Gimona, M. Podosome formation in cultured A7r5 vascular smooth muscle cells requires Arp2/3-dependent de-novo actin polymerization at discrete microdomains. // J. Cell Sci., 2003, V. 116, P.4915−4924.
  145. Kaverina, I.N., Minin, A.A., Gyoeva, F.K., and Vasiliev, J.M. Kinesin-associated transport is involved in the regulation of cell adhesion. // Cell Biol. Int., 1997, V. 21, P. 299 236.
  146. Kerkhoff E. Cellular functions of Spir actin-nucleation factors // ScienceDirect. 2006. V 477−482.
  147. Khaitlina SY. Functional specificity of actin isoforms. // Int Rev Cytol. 2001, V. 202, P. 35−98.
  148. Koestler, S. A., Auinger, S., Vinzenz, M., Rottner, K. and Small, J. V. Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front. // Nat. Cell Biol., 2008, V. 10, P. 306−313.
  149. Kornberg, L.J. Focal adhesion kinase and its potential involvement in tumor invasion and metastasis. // Head Neck, 1998, V. 20, P. 745−752.
  150. Kovar D. R., Pollard T. D., Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. // Proc. Natl. Acad. Sci. U.S.A., 2004, V. 101, P. 14 725−14 730
  151. Kovar D.R. Molecular details of formin-mediated actin assembly // Curr Opin Cell Biol. 2006. V 18, P. 11−17.
  152. Kozlov M.M. and Bershadsky A.D. Processive capping by formin suggests a force-driven mechanism of actin polymerization //JCB. 2004. V. 167(6). P. 1011−1017.
  153. Krause, M., Dent, E. W., Bear, J. E., Loureiro, J. J. and Gertler, F. B. Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. // Annu. Rev. Cell Dev. Biol., 2003, V. 19, P.541−564.
  154. Kremer, J. R., Mastronarde, D. N. & Mcintosh, J. R. Computer visualization of threedimensional image data using IMOD. // J. Struct. Biol., 1996, V. 116, P. 71−76
  155. Krendel M., Mooseker M. S. Myosins: Tails (and Heads) of Functional Diversity. // Physiology, 2005, V. 20, P. 239−251.
  156. Kunda P, Craig G, Dominguez V, Baum B. Abi, Sral, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. // Curr Biol. 2003, V. 13(21), P. 1867−75.
  157. Kwiatkowski D.J. Functions of gelsolin: motility, signaling, apoptosis, cancer // Curr. Opin. Cell Biol. 1999. V. 11. P. 103−108.
  158. Lai, F. P., Szczodrak, M., Block, J., Faix, J., Breitsprecher, D., Mannherz, H. G., Stradal, T. E., Dunn, G. A., Small, J. V. and Rottner, K. Arp2/3 complex interactions and actin network turnover in lamellipodia. // EMBO J., 2008, V. 27, P. 982−992.
  159. Lai, F. P., Szczodrak, M., Block, J., Faix, J., Breitsprecher, D., Mannherz, H. G., Stradal, T. E., Dunn, G. A., Small, J. V. and Rottner, K. Arp2/3 complex interactions and actin network turnover in lamellipodia. // EMBO J., 2008, V. 27, P. 982−992.
  160. Lammermann T., Bader B.L., Monkley S.J., Worbs T., Wedlich-Soldner R., Hirsch K., Keller M., Forster R., Critchley D.R., Fassler R. and Sixt M. Rapid leukocyte migration by integrinindependent flowing and squeezing //Nature. 2008. V. 435. P. 51−55.
  161. Lanier, L. M., Gates, M. A., Witke, W., Menzies, A. S., Wehman, A. M., Macklis, J. D., Kwiatkowski, D., Soriano, P. and Gertler, F. B. Mena is required for neurulation and commissure formation. //Neuron, 1999, V. 22, P. 313−325.
  162. Lauffenburger, D.A., and Horwitz, A. FCell migration: a physically integrated molecular process. // Cell, 1996, V. 84, P. 359−369 .
  163. Lawrence, D. W., Comerford, K. M. and Colgan, S. P. Role of VASP in reestablishment of epithelial tight junction assembly after Ca2+ switch. // Am. J. Physiol. Cell Physiol., 2002, V. 282, C1235-C1245.
  164. Le Clainche C. and Carlier M.-F. Regulation of actin assembly associated with protrusion and adgesionin cell migration // Phisiological review. 2007. V 88,489−513
  165. Lee J, Ishihara A, Jacobson K The fish epidermal keratocyte as a model system for the study of cell locomotion. // Symp Soc Exp Bio., 1993, V. 47, P. 73−89.
  166. Lee S., Helfman D.M., Cytoplasmic p21Cipl is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway, // J. Biol. Chem., 2004, V. 279, P. 1885−1891.
  167. Lewis A.K. and Bridgman P.C. Nerve growth cone lamellipodia contain two populations of actin fi laments that differ in organization and polarity // J. Cell Biol. 1992. V. 119, P. 1219−1243.
  168. Li Z.H. and Bresnick A.R. The S100A4 metastasis factor regulates cellular motility via a direct interaction with myosin-IIA. // Cancer Res., 2006, V. 66, P. 5173−5180.
  169. Lo C.M., Buxton D.B., Chua G.C., Dembo M., Adelstein R.S. and Wang Y.L. Nonmuscle myosin IIB is involved in the guidance of fibroflast migration. // Mol Biol Cell., 2004, V. 5, P. 982−989.
  170. Lozano E., Betson M. and Braga V.M. Tumor progression: Small GTPases and loss of cell-cell adhesion// Bioessays. 2003. V. 5. P. 452−463.
  171. Machesky L.M. and Insall R.H. Scarl and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3-complex // Curr. Biol. 1998. V. 8, P.1347−1356.
  172. Machesky, L.M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. // Proc. Natl. Acad. Sci. U. S. A., 1999, V. 96, P. 37 393 744
  173. Machesky, L.M., and Hall, A. Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization. // J. Cell Biol., 1997, V. 138, P. 913−926.
  174. Maekawa M., Ishizaki T., Boku S., Watanabe N., Fujita A., Iwamatsu A., Obinata T., Ohashi K., Mizuno K., Narumiya S., Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. // Science, 1999, V. 285, P. 895−898.
  175. Maschler, S., Wirl, G., Spring, H., Bredow, D.V., Sordat, I., Beug, H., Reichmann, E. Tumor cell invasiveness correlates with changes in integrin expression and localization. // Oncogene. 2005, V. 17, P. 2032−41.
  176. Matsudaira P. Actin crosslinking proteins at the leading edge // Semin. Cell. Biol. 1994. V. 5. P. 165−174.
  177. Matsui, T., Maeda, M., Doi, Y., Yonemura, S., Amano, M., Kaibuchi, K., Tsukita, S., and Tsukita, S. // J. Cell Biol., 1998, V. 140, P. 647−657.
  178. McGough A., Pope B., Chiu W. and Weeds A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function // J. Cell Biol. 1997. V. 138, P. 771−781.
  179. Medalia O. M. and Geiger B. Frontiers of microscopy-based research into cell-matrix adhesions. // Curr. Cell. Biol, 2010, V. 22(5), P. 659−68.
  180. Mejillano Marisan R., Kojima S., Applewhite D.A., Gertler F.B., Svitkina T.M., and Borisy G.G. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end // Cell Press. 2004. V 118, P. 363−373.
  181. Mercurio, A.M., and Rabinovitz, I. Towards a mechanistic understanding of tumor invasion-lessons from the alpha6beta 4 integrin. // Semin. Cancer Biol., 2001, V. 11, P. 129−141.
  182. Miki H., Sasaki T., Takai Y., Takenawa T. Induction of filopodial formation by a WASP-related actin-depolimerasing protein N-WASP //Nature. 1998. V. 391. P. 99−99.
  183. Miranti, C. K. and Brugge, J. S. Sensing the environment: a historical perspective on integrin signal transduction. // Nature Cell Biol., 2002, V. 4, E83-E90.
  184. Mitchison T.J. and Cramer L.P. Actin-based cell motility and cell locomotion // Cell. 1996. V. 84. P. 371−379.
  185. Mittnacht S. Control of pRB phosphorylation // Curr. Opin. Genet. Dev. 1998. V 8,2127.
  186. Moeller, M.J., A. Soofi, G.S. Braun, X. Li, C. Watzl, W. Kriz, and L.B. Holzman. Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization. // EMBO J., 2004, V. 23, P. 3769 3779 .
  187. Mogilner A, Oster G. Polymer motors: pushing out the front and pulling up the back. // Curr Biol., 2003, V. 13, R721−733.
  188. Montesano, R., Matsumoto, K., Nakamura, T., and Orci, L. Identification of a fibroblast-derived epithelial morphogene as hepatocyte growth factor. // Cell, 1991b, V. 67, P. 901— 908.
  189. Montesano, R., Schaller, G., and Orci, L. Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. // Cell, 1991a, V. 66, P. 697−711.
  190. Moreau, V., Tatin, F., Varon, C., Anies, G., Savona-Barron, C., and Genot, E. Cdc42-driven podosome formation in endothelial cells. // Eur. J. Cell Biol., 2006, V. 85, P. 319−325.
  191. Muller K., Antipsoriatic anthrones: aspects of oxygen radical formation, challenges and prospects, // Gen. Pharmacol., 1996, V. 27, P. 1325−1335.
  192. Mullins, R.D., Heuser J.A. and Pollard T.D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. // Proc. Natl. Acad. Sci. U. S. A., 1998, V. 95, P. 6181−6186
  193. Myat MM. Making tubes in the Drosophila embryo. // Dev. Dyn., 2005, V. 232, P. 617 632.
  194. Nabeshima K., Inoue T., Shimao Y. and Sameshima T. Matrix metalloproteinases in tumor invasion: role for cell migration // Pathol Int. 2002. V. 52. P. 255−264.
  195. Nakamura, T., Teramoto, H., and Ichihara, A. Purification and characterization of a growth factor from rat platelets for mature parenchimal hepatocytes in primary culture. // Proc. Natl. Acad. Sci. U.S.A., 1986, V. 86, P. 6489−6493.
  196. Neff, N.T., Lowrey, C., Decker, C., Tovar, A., Damsky, C., Buck, C., and Horwitz, A.F. A monoclonal antibody detaches embryonic skeletal muscle from extracellular matrices. // J. Cell Biol., 1982, V. 95, P. 654−666.
  197. Nicol, A. Nermut MV, Doeinck A, Robenek H, Wiegand C, Jockusch BM. Labeling of structural elements at the ventral plasma membrane of fibroblasts with the immunogold technique. // J. Histochem. Cytochem., 1987, V. 35, P. 499−506.
  198. Nicolas A, Geiger B, Safran SA. Cell mechanosensitivity controls the anisotropy of focal adhesions. // Proc Natl Acad Sci USA, 2004, V. 101, P. 12 520−12 525.
  199. Nobes CD, Hall A: Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. // Cell 1995, V. 81, P. 53−62.
  200. Nourshargh S., Hordijk P. L. and Sixt M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. //Nat Rev Mol Cell Biol, 2010, V. l 1, P. 366−378
  201. Oikawa T, Yamaguchi H, Itoh T, Kato M, Ijuin T, Yamazaki D, Suetsugu S, Takenawa T. PtdIns (3,4,5)P3 binding is necessary for WAVE2-induced formation of lamellipodia. // Nat Cell Biol., 2004, V. 6(5), P. 420−6.
  202. E. M. 2,3-Butanedione monoxime (BDM) as a myosin inhibitor. // J. Muscle Res. Cell Motil. 2002, V. 23 (4), P. 305−8.
  203. Owens, L.V., Xu, L., Craven, R.J., Dent, G.A., Weiner, T.M., Kornberg, L., Liu, E.T., and Cance, W.G. Overexpression of the focal adhesion kinase (pl25FAK) in invasive human tumors. // Cancer Res., 1995, V. 55, P. 2752−2755.
  204. Pankov R., Endo Y., Even-Ram S., Araki M, Clark K, Cukierman E, Matsumoto K, Yamada KM. A Rac switch regulates random versus directionally persistent cell migration //
  205. J. Cell Biol. 2005. V. 170. < 5. P. 793−802.
  206. Pantaloni, D. Boujemaa R, Didry D, Gounon P, Carlier MF. The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. // Nat. Cell Biol., 2000, V. 2, P. 385−391.
  207. Parri M, Chiarugi P. Rac and Rho GTPases in cancer cell motility control. // Cell Commun Signal., 2010, V. 8, P. 23.
  208. Pasic L, Kotova T, Schafer DA. Ena/VASP proteins capture actin filament barbed ends. // J Biol Chem. 2008, V. 283(15), P. 9814−9.
  209. Patla I, Volberg T., Elad N., Hirschfeld-Warneken V., Grashoff C., Fassler R., Spatz J.P., Geiger B. and Medalia O. Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography. // Nat Cell Biol, 2010
  210. Pawlak G., Helfman D.M., Post-transcriptional down-regulation of ROCKI/Rho-kinase through an MEK-dependent pathway leads to cytoskeleton disruption in Ras-transformed fibroblasts. // Mol. Biol. Cell, 2002, V. 13, P. 336−347.
  211. Pfaff, M., Du, X., and Ginsberg, M.H. Calpain cleavage of integrin beta cytoplasmic domains. // FEBS Lett., 1999, V. 460, P. 17−22.
  212. Pilot F, Lecuit T. Compartmentalized morphogenesis in epithelia: from cell to tissue shape. // Dev. Dyn., 2005, V. 232, P. 685−694.
  213. Plastino J, Olivier S, Sykes C. Actin filaments align into hollow comets for rapid VASP-mediated propulsion. // Curr Biol., 2004, V. 14(19), P. 1766−7.
  214. Pletjushkina, O.J., Ivanova, O.J., Kaverina, I.N., and Vasiliev, J.M. Taxol-treated fibroblasts acquire an epithelioid shape and a circular pattern of actin bundles. // Exp. Cell Res., 1994, V. 212, P. 201−208.
  215. Pokorna E., Jordan P. W. O’Neill C. H., Zicha D., Gilbert C. S., Vesely P. Actin cytoskeleton and motility in rat sarcoma cell populations with different metastatic potential // Cell Motil. Cytoskeleton. 1994. V 28 (1), P. 25−33.
  216. Pollard T. D., Borisy G. G. Cellular motility driven by assembly and disassembly of actin filaments. // Cell, 2003, V. 112, P. 453−465.
  217. Pollard T.D. and Weihing R.R. Actin and myosin and cell movement. // CRC Crit Rev Biochem., 1974. V. 2, P. 1−65.
  218. Pollard T.D. Introduction of actin and actin-binding proteins // Guidebook to the Cytoskeletal and Motor Proteins, Second Edition. 1999. P. 3−11.
  219. Pollard TD Regulation of actin filament assembly by Arp2/3 complex and formins. // Annu Rev Biophys Biomol Struct., 2007, V. 36, P. 451−477
  220. Pollard TD, Cooper JA. Actin, a central player in cell shape and movement. // Science. 2009, V. 326(5957), P. 1208−12.
  221. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits // Nat Rev Cancer. 2009 V. 9(4) P. 265−73.
  222. Ponti A, Machace M, Gupton SL, Waterman-Storer CM, Danuser G Two distinct actin networks drive the protrusion of migrating cells. // Science, 2004, V. 305, P. 17 821 786.
  223. Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. and Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. // Science, 2004, V. 305, P. 1782−1786.
  224. Potter, D.A., Tirnauer, J.S., Janssen, R., Croall, D.E., Hughes, C.N., Fiacco, K.A., Mier, J.W., Maki, M., and Herman, I.M. Calpain regulates actin remodeling during cell spreading. // J. Cell Biol., 1998, V. 141, P. 647−662.
  225. Qualmann B. and Kessels M. M. New players in actin polymerization WH2-domain-containing actin nucleators // Cell 2009. V 276 — 285.
  226. Ramos, D.M., But, M., Regezi, J., Schmidt, B.L., Atakilit, A., Dang, D., Ellis, D., Jordan, R., Li, X. Expression of integrin beta 6enchances invasive behavior in oral squamous cell carcinoma. // Matrix Biol, 2002, V. 21, P. 297−307
  227. Rasheed S. Et al., Characterization of a newly derived human sarcoma cell line (HT-1080) // Cancer. 1974. V. 33. P. 1027−1033.
  228. Renault L., Bugyi B., Carlier M.-F. Spire and Cordon-bleu: multifunctional regulators of actin dynamics // Cell 2008. V 18, P. 494−502.
  229. Renfranz, P.J., Beckerle, M.C. Doing (F/L)PPPPs: EVH1 domains and their prolinerich partners in cell polarity and migration. // Curr. Opin. Cell Biol., 2002, V. 14, P. 88−103.
  230. Resch G.P., Small J.V., Goldie K.N. Electron microscopy of extracted cytoskeletons: negative staining, cryoelectron microscopy and correlation with light microscopy. // In Cell Biology (J.E. Celis ed) 3rd ed" Elsvier Science., 2005.
  231. Ridley AJ, Schwartz MA, Burridge K, Firtel, RA, Ginsberg MH, et al. Cell migration: integrating signals from front to back. // Science, 2003, V. 302, P. 1704−1709.
  232. Ridley AJ. Rho GTPases and cell migration. // Journal of Cell Science, 2001, V. 114, P. 2713−2722
  233. Ridley, A., Comoglio, P.M., Hall, A. Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac and Rho in MDCK cells. // Мої. Cell Biol., 1995, V. 15, P. 1110−1122.
  234. Ridley, A.J., and Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. // Cell, 1992, V. 70, P. 389−399.
  235. Ridley, A.J., Paterson, H.F., Johnston, C.L., Diekmann, D., and Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. // Cell, 1992, V. 70, P. 40110.
  236. Rinnerthaler G., Geiger B., and Small J.V. Contact formation during fibroblast locomotion: involvement of membrane ruffles and microtubules. // J.Cell.Biol., 1988, V. 106 (3), P. 747 760
  237. Rolo A, Skoglund P, Keller R. Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB. // Dev. Biol., 2009, V.327, P. 327−338.
  238. Ronen D. and Ravid S. Myosin II Tailpiece Determines Its Paracrystal Structure, Filament Assembly Properties, and Cellular Localization. // J Biol Chem., 2009, V. 284(37), P. 24 948−57.
  239. Rottner K, Behrendt B, Small JV, Wehland J. VASP dynamics during lamellipodia protrusion. // Nat Cell Biol., 1999, V. 1, P. 321−322.
  240. Rottner K, Hall A, Small JV: Interplay between rac and rho in the control of substrate contact dynamics. // Curr Biol 1999, V. 9, P. 640−648.
  241. Sahai E., Garcia-Medina R., Pouyssegur J. and Vial E. Smurfl regulates tumor cell plasticity and motility through degradation of Rho A leading to localized inhibition of contractility // J Cell Biol. 2007. V. 176. P. 35−42.
  242. Sahai E., Olson M.F., Marshall C.J., Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. // EMBO J., 2001, V. 20, P. 755−766.
  243. Sahai, E., and Marshall, C.J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. //Nat. Cell Biol., 2003, V. 5, P. 711−719.
  244. Sahai, E., and Marshall, C.J. RHO-GTPases and cancer. // Nat. Rev. Cancer, 2002, V. 2, P. 133−42.
  245. Salmon WC, Adams MC, Waterman-Storer CM. Dual-wavelength fluorescent speckle microscopy reveals coupling of microtubule and actin movements in migrating cells. // J Cell Biol., 2002, V. 158, P. 31−37.
  246. Samarin, S., Romero S., Kocks C., Didry D., Pantaloni D., and Carlier M.-F. How VASP enhances actin-based motility. // J. Cell Biol., 2003, V.163, P. 131 142.
  247. Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ. Rac activation and inactivation control plasticity of tumor cell movement. // Cell. 2008, V. 135(3), P. 510−23.
  248. Sastry SK, Burridge K Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. // Exp Cell Res., 2000, V. 261, P. 25−36.
  249. Schlaepfer, D.D., Mitra, S.K., Ilic, D. Control of motile and invasive phenotypes by focal adhesion kinase. // Biochim Biophys Acta, 2004, V. 1692, P. 77−102.
  250. Schliwa, M., and Honer, B. Microtubules, centrosomes and intermediate filaments in directed cell movement. // Trends Cell Biol., 1993, V. 3, P. 377−380.
  251. Schoenwaelder, S.M., and Burridge, K. Bidirectional signaling between the cytoskeleton and integrins. // Curr. Opin. Cell Biol., 1999, V. 11, P. 274−286.
  252. Schwartz, M.A. Integrins, oncogenes, and anchorage independence. // J. Cell Biol., 1997, V. 139, P. 575−578.
  253. Schwartz, M.A., Schaller, M.D., and Ginsberg, M.H. Integrins: emerging paradigms of signal transduction. // Annu. Rev. Cell Dev. Biol., 1995, V. 11, P. 549−599.
  254. Shemesh T. and Kozlov M. Actin polymerization upon processive capping by formin: a model for slowing and acceleration // Biophys J. 2007, V 92(5), P. 1512−21
  255. Shutova M. S., Alexandrova A. Y., Vasiliev J. M. Regulation of polarity in cells devoid of actin bundle system after treatment with inhibitors of myosin II activity. // Cell Motil. Cytoskeleton. 2008, V. 65 (9), P. 734−46.
  256. Skoble, J., Auerbuch V., Goley E.D., Welch M.D., and Portnoy D.A. Pivotal role of VASP in Arp2/3 complex-mediated actin nucleation, actin branch-formation, and L isteria monocytogenes motility. // J. Cell Biol., 2001, V. 155, P. 89 100 .
  257. Skoglund P, Rolo A, Chen X, Gumbiner BM, Keller R. Convergence and extension at gastrulation require a myosin IIB-dependent cortical actin network. // Development 2008, V. 135, P.2435−2444.
  258. Small J. V, Rottner K., Kaverina I., Anderson K.I., Assembling an actin cytoskeleton for cell attachment and movement. // Biochim. Biophys. Acta, 1998, V. 1404, P. 271−481.
  259. Small J.V. and Sechi A Whole-mount electron microscopy of the cytoskeleton: negative staining methods. // in: Cell Biology: A laboratory handbook (J/Е/ Celis. td.,), 1998, V.3, 2ed, Academic Press, P. 285 292.
  260. SMALL J.V., AUINGER S., NEMETHOVA M., KOESTLER S., GOLDIE K.N., HOENGER A. & RESCH G.P. Unravelling the structure of the lamellipodium. // Journal of Microscopy, 2008, V. 231, P. 479−485
  261. Small J.V., Winkler C, Vinzenz, M., Schmeiser C. Reply: Visualizing branched actin filaments in lamellipodia by electron tomography. // Nature Cell Biology, 2011, V. 13, P. 1013−1014.
  262. Small JV, Isenberg G, Celis JE. Polarity of actin at the leading edge of cultured cells. // Nature. 1978, V. 272(5654), P. 638−9.
  263. Small JV, Stradal T, Vignal E, Rottner K. The lamellipodium: where motility begins. // Trends Cell Biol., 2002, V. 12, P. 112−120.
  264. Small JV. Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks. // J Cell Biol., 1981, V. 91, P. 695−705.
  265. Small JV. The actin cytoskeleton. // Electron Microsc Rev. 1988, V. 1(1), P. 155−74
  266. Small, J. V. and Resch, G. P. The comings and goings of actin: coupling protrusion and retraction in cell motility. // Curr. Opin. Cell Biol., 2005, V. 17, P. 517−523
  267. Somlyo A. V., Bradshaw D., Ramos S., Murphy C., Myers C. E., Somlyo A. P. Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. // FEBS Lett., 2000, V.269, P. 652−659.
  268. Spector I., Shochet N.R., Blasberger D. and Kashman Y. Latrunculins-Novel Marine Macrolides That Disrupt Microfilament Organization and Affect Cell Growth: I. Comparison with Cytochalasin D. // Cell Motil Cytoskeleton, 1989, V. 13, P. 127−144
  269. Steffen A, Faix J, Resch GP, Linkner J, Wehland J, Small JV, Rottner K, Stradal TE. Filopodia formation in the absence of functional WAVE- and Arp2/3-complexes. // Mol Biol Cell. 2006, V. 17(6), P. 2581−91.
  270. Steffen A., Rottner K., Ehinger J., Innocenti M., Scita G., Wehland J., Stradal T.E. Sra-1 and Napl link Rac to actin assembly driving lamellipodia formation. // EMBO J., 2004, V. 23(4), P. 749−759
  271. Sternlicht, M.D. and Werb, Z. How matrix metalloproteinases regulate cell behavior. // Annu. Rev. Cell Dev. Biol, 2001, V. 17, P. 463−516.
  272. Stoker, M., Gherardi, E., Perryman, M., and Gray, J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. //Nature, 1987, V. 327, P. 239−242.
  273. Stradal TE, Scita G. Protein complexes regulating Arp2/3-mediated actin assembly. // Curr Opin Cell Biol., 2006, V. 18, P. 4−10.
  274. Straight A.F., Cheung A., Limouze J., Chen I., Westwood N.J., Sellers J.R. and Mitchison T.J. Dissecting Temporal and Spatial Control of Cytokinesis with a Myosin II Inhibitor. // Science, 2003, V. 299, P. 1743−1747.
  275. Strongin A.Y., Marmer B.L., Grant G.A. and Goldberg G.I. Plasma membrane-dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2 //J Biol Chem. 1993. V. 268(19). P. 14 033−9.
  276. Sukezane T., Oneyama C., Kakumoto K., Shibutani K., Hanafusa H., Akagi T. Human diploid fibroblasts are resistant to MEK/ERK-mediated disruption of the actin cytoskeleton and invasiveness stimulated by Ras. // Oncogene, 2005, V. 24, P. 5648−5655.
  277. Svitkina T. Electron microscopic analysis of the leading edge in migrating cells. // Methods Cell Biol., 2007, V. 79, P. 295−319.
  278. Svitkina T. M .and Borisy G.G. Correlative light and electron microscopy of the cytoskeleton of cultured cells // Methods Enzymol. 1998. V. 298. P. 570−92.
  279. Svitkina T.M., Bulanova T.A., Chaga O.Y., Vignjevic D.M., Kojima Sh., Vasiliev J.M. and Borisy G.G. Mechanisms of filopodia initiation by reorganization of a dendritic network // J. Cell Biol. 2003. V 160: 409.
  280. Svitkina TM, Borisy GG. Correlative light and electron microscopy of the cytoskeleton of cultured cells. // Methods Enzymol. 1998, V. 298, P. 570−92.
  281. , T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. // J. Cell Biol., 1999, V. 145, P. 1009−1026
  282. Svitkina, T., Verkhovsky, A. B., McQuade, K. M. & Borisy, G. G. Analysis of the actinmyosin II system in fish epidermal keratocytes: mechanism of cell body translocation. // J. Cell Biol., 1997, V. 139, P. 397−415
  283. Takaishi, K., Sasaki, T., Kato, M., Yamochi, W., Kuroda, S., Nakamura, T., Takeichi, M., Takai, Y. Involvment of Rho p21 small GTP-binding protein and its regulator in the HGF-induced cell motility. // Oncogene, 1994, V. 9, P. 273−279.
  284. Takenawa T, Suetsugu S. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. // Nat Rev Mol Cell Biol., 2007, V. 8, P. 37−48.
  285. Tamada M, Sheetz MP, Sawada Y. Activation of a signaling cascade by cytoskeleton stretch. //Dev Cell, 2004, V. 7, P. 709−718.
  286. Tan, C., Cruet-Hennequart, S., Troussard, A., Fazli, L., Costello, P., Sutton, K., Wheeler, J., Gleave, M., Sanghera, J., and Dedhar, S. Regulation of tumor angiogenesis by integrin-linked kinase (ILK). // Cancer Cell, 2004, V. 5, P. 79−90.
  287. Tanenbaum S.W. Cytochalasins. // Biochemical and Cell Biological Aspects. Amsterdam: Elsevier, North Holland. 1978, P. 1−564.
  288. Tapon, N., and Hall, A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. // Curr. Opin. Cell Biol, 1997, V. 9, P. 86−92.
  289. Theriot JA. Accelerating on a treadmill: ADF/cofilin promotes rapid actin filament turnover in the dynamic cytoskeleton. // J Cell Biol., 1997, V. 136(6), P. 1165−8.
  290. Thiery, J.P. Epithelial-mesenchymal transitions in tumour progression. // Nat. Rev. Cancer, 2002, V. 2, P. 442154.
  291. Tilghman, R.W., and Parsons, J.T. Focal adhesion kinase as a regulator of cell tension in the progression of cancer. // Semin. Cancer Biol., 2008, V. 18, P. 45−52.
  292. Trinkaus, J.P. Cells into Organs: The Forces that Shape the Embryo. // Prentice-Hall, Englewood Cliffs, NJ., 1969, P. 237.
  293. Tsubouchi, A., Sakakura, J., Yagi, R., Mazaki, Y., Schaefer, E., Yano, H. and Sabe, H. Localized suppression of RhoA activity by Tyr31/118-phosphorylated paxillin in cell adhesion and migration. // J. Cell. Biol., 2002, V. 159, P. 673−683.
  294. Urban E, Jacob S, Nemethova M, Resch GP, Small JV. Electron tomography reveals unbranched networks of actin filaments in lamellipodia. // Nat Cell Biol., 2010, V. 12(5), P. 429−35.
  295. Vallotton P. and Small J.V. Shifting views on the leading role of the lamellipodium in cell migration: speckle tracking revisited. // Journal of Cell Science, 2009, V. 122, P. 19 551 958
  296. Vandekerckhove J, Weber K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. // J Mol Biol., 1978, V. 126(4), P. 783−802.
  297. Vasiliev, J.M. Cytoskeletal mechanisms responsible for invasive migration of neoplastic cells. // Int. J. Dev. Biol., 2004, V. 48, P. 425−439.
  298. Vasiliev, J.M. Polarization of pseudopodial activities: cytoskeletal mechanisms. // J. Cell Sci., 1991, V. 98, P. -4.
  299. Vasiliev, J.M., and Gelfand, I.M. Chapter in Neoplastic and Normal Cells in Culture, Cambridge University Press, Cambridge, 1980.
  300. Vasioukhin, V., C. Bauer, M. Yin, and E. Fuchs. Directed actin polymerization is the driving force for epithelial cell-cell adhesion. // Cell, 2000, V. 100, P. 209 219.
  301. Verkhovsky AB, Chaga OY, Schaub S, Svitkina, TM, Meister JJ, et al. Orientational order of the lamellipodial actin network as demonstrated in living motile cells. // Mol Biol Cell., 2003, V. 14, P. 4667−4675.
  302. Verkhovsky AB, Svitkina TM, Borisy GG. Myosin II filament assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles. //J Cell Biol., 1995, V. 131, P. 989−1002.
  303. Verkhovsky, A.B., Svitkina, T.M., and Borisy, G.G. Polarity sorting of actin filaments in cytochalasin-treated fibroblasts. // J. Cell Sci., 1997, V. 110, P. 1693−1704.
  304. Vicente-Manzanares M., Ma X., Adelstein R. S., and Horwitz A.R., Non-muscle myosin II takes centre stage in cell adhesion and migration. // Nat Rev Mol Cell Biol., 2009a, V. 10(11), P. 778−790.
  305. Vicente-Manzanares M., Zareno J., Whitmore L., Choi C.K. and Horwitz A.F. Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. // J Cell Biol., 2007, V. 176, P. 573−580.
  306. Vicente-Manzanares, M., Choi, C. K. & Horwitz, A. R. Integrins in cell migration — the actin connection. // J. Cell Sci., 2009, V. 122, P. 199−206
  307. Vignjevic D, Kojima S, Aratyn Y, Danciu O, Svitkina T and Borisy GG. Role of fascin in filopodial protrusion. // J Cell Biol 2006. V. 174. P. 863−75.
  308. Vojtek A.B., Hollenberg S.M., Cooper J.A. Mammalian Ras interacts directly with the serine/threonine kinase Raf// Cell. 1993. V 214
  309. Volberg, T., Geiger, B., Citi, S., and Bershadsky, A.D. Effect of protein kinase inhibitor H-7 on the contractility, integrity, and membrane anchorage of the microfilament system. // Cell Motil. Cytoskeleton, 1994, V. 29, P.321−38.
  310. Wakatsuki T., Wysolmerski R. B., Elson E. L. Mechanics of cell spreading: role of myosin II. // J. Cell Sci., 2003, V. 116, P. 1617−25.
  311. Wang Z., Castresana M.R., Newman W.H., Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. // Biochem. Biophys. Res. Commun., 2001, V. 285, P. 669−674.
  312. Wang, Y. L. Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. // J. Cell Biol., 1985, V. 101, P. 597−602.
  313. Watanabe N and Higashida C. Formins: processive cappers of growing actin filaments // Exp Cell Res. 2004. V 301(1), P.16−22
  314. Waterman-Storer, C. M., Desai, A., Bulinski, J. C. & Salmon, E. D. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. // Curr. Biol., 1998, V. 8, P. 1227−1230
  315. Webb DJ, Brown CM, Horwitz AF Illuminating adhesion complexes in migrating cells: moving toward a bright future. // Curr Opin Cell Biol., 2003, V. 15, P. 614−620.
  316. Webb, D.J., Donais, K., Whitmore, L.A., Thomas, S.M., Turner, C.E., Parsons, J.T., and Horwitz, A.F. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. //Nat. Cell. Biol., 2004, V 2, P. 154−161.
  317. Weinberg RA. Mechanisms of malignant progression. // Carcinogenesis. 2008 V. 6, P. 1092−5.
  318. Wiseman, B.S., and Werb, Z. Stromal effects on mammary gland development and breast cancer. // Science, 2002, V. 296, P. 1046−1049.
  319. Wittmann T, and Waterman-Storer CM. Cell motility: can Rho GTPases and microtubules point the way? // J Cell Sci., 2001, V. 114, P. 3795−803.
  320. Wolf, K., Wu, YI., Liu, Y., Geiger, J., Tam, E., Overall, C., Stack, M.S., and Friedl, P. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. //Nat. Cell Biol., 2007, V. 9, P. 893−904.
  321. Wolfenson H, Henis, YI. Geiger B. and Bershadsky AD. The Heel and Toe of the Cell’s Foot: A Multifaceted Approach for Understanding the Structure and Dynamics of Focal Adhesions. // Cell Motility and the Cytoskeleton, 2009, V. 66, P. 1017−1029
  322. Wolfenson H, Lubelski A, Regev T, Klafter J, Henis YI, Geiger B. A role for the juxtamembrane cytoplasm in the molecular dynamics of focal adhesions. // PLoS One, 2009, V. 4, e4304.
  323. Worthylake R. A., Lemoine S., Watson J. M., Burridge K. RhoA is required for monocyte tail retraction during transendothelial migration. // J. Cell Biol., 2001, V. 154, P. 147−160.
  324. Wyckoff J.B., Jones J.G., Condeelis J.S. and Segall J.E. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor // Cancer Res. 2000. V. 60. P. 2504−2511.
  325. Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. // Curr Biol. 2006 V. 16(15), P. 1515−23.
  326. Yamasaki M., Furuike S., and Ito T. Mechanical response of single Filamin A (ABP-280) mjlecules and its role in the actin cytoskeleton // Journal of Muscle Research and Cell Motility. 2002. V. 23. P. 525−534.
  327. Yamazaki D., Suetsugu S., Miki H., Kataoka Y., Nishikawa S., Fujiwara T., Yoshida N and Takenawa T. WAVE2 is required for directed cell migration and cardiovascular development // Nature. 2003. V. 424. P. 452−458.
  328. Yamazaki, D., Kurisu, S., and Takenawa, T. Regulation of cancer cell motility through actin reorganization. // Cancer Sci., 2005, V. 96, P. 379−386.
  329. Yang C & Svitkina T. Visualizing branched actin filaments in lamellipodia by electron tomography. //Nature Cell Biology, 2011, V. 13, P. 1012−1013,
  330. Yang C., Czech L., Gerboth S., Kojima S., Scita G. and Svitkina T. Novel Roles of Formin mDia2 in Lamellipodia and Filopodia Formation in Motile Cells // PloS Biol. 2007. V 5(11): e317.
  331. Yang N., Higuchi O., Ohashi K., Nagata K., Wada A., Kangawa K., Nishida E., Mizuno K., Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. //Nature, 1998, V. 393, P. 809−812.
  332. Zaidel-Bar R, Ballestrem C, Kam Z, Geiger B. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. // J Cell Sci., 2003, V. l 16, P. 46 054 613.
  333. Zaidel-Bar R. and Geiger B. The switchable integrin adhesome. // J Cell Sci., 2010, V. 123, P.1385−1388,
  334. Zaidel-Bar, R., Itzkovitz, S., Ma’ayan, A., Iyengar, R. and Geiger, B. Functional atlas of the integrin adhesome. //Nat. Cell Biol., 2007, V. 9, P. 858−867.
  335. Zamir E, Geiger B, Kam Z. Quantitative multicolor compositional imaging resolves molecular domains in cell-matrix adhesions. // PLoS ONE, 2008, V.3, el901.
  336. Zamir E., Katz B.Z., Aota S., Yamada. K.M., Geiger B., Kam. Z. Molecular diversity of cellmatrix adhesions//JCS. 1999. V. 112. P. 1655−1669.
  337. Zamir, E., and Geiger, B. Molecular complexity and dynamics of cell-matrix adhesions. // J. Cell Sci., 2001, V. 114, P. 3583−3590.
  338. Zamir, E., Katz, M., Posen, Y., Erez, N., Yamada, K.M., Katz, B.Z., Lin, S., Lin, D.C., Bershadsky, A., Kam, Z. and Geiger, B. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. // Nat. Cell Biol., 2000, V. 2, P. 191−196.
  339. Zarnegar, R., and Michalopoulos, M. Purification and biological characterization of human hepatopoietin A, a polypeptide growth factor for hepatocytes. // Cancer Res., 1989, V. 49, P. 3314−3320.
  340. Zhuge, Y., and Xu, J. Racl mediates type I collagen-dependent MMP-2 activation, role in cell invasion across collagen barrier. // J. Biol. Chem., 2001, V. 276, P. 16 248−16 256.
  341. Zigmond SH, Evangelista M, Boone C, Yang C, Dar AC, Sicheri F, Forkey J. and Pring M. Formin leaky cap allows elongation in the presence of tight capping proteins // Curr Biol. 2003. V. l3(20). P. 1820−3.
Заполнить форму текущей работой