Помощь в учёбе, очень быстро...
Работаем вместе до победы

Г. Хакен. 
Тайны природы. 
Синергетика: учение о взаимодействии[1]

РефератПомощь в написанииУзнать стоимостьмоей работы

Противоречат ли биологические структуры основополагающим законам природы? Физика имеет полное право считаться основой естествознания, ведь предметом ее изучения является материя, а так как весь окружающий нас мир материален, то и подчинен он законам, открытым физиками. Однако подобное представление о физике существовало отнюдь не всегда — по крайней мере, среди биологов. Приверженцы витализма… Читать ещё >

Г. Хакен. Тайны природы. Синергетика: учение о взаимодействии[1] (реферат, курсовая, диплом, контрольная)

ХАКЕН Герман (р. 1927) — немецкий физик-теоретик, основатель синергетики. Получив степени доктора философии и доктора естественных наук, изучал физику и математику в университетах Галле (194G-1948) и Эрлангена (1948−1950). С 1960 г. является профессором теоретической физики университета Штутгарта. До ноября 1997 г. был директором Института теоретической физики и синергетики университета Штутгарта. С декабря 1997 г. — почетный профессор и глава Центра синергетики в этом Институте; ведет исследования в Центре по изучению сложных систем в университете Флориды, Бока Рэтон, США. Является издателем шпрингеровской серии книг по синергетике, в рамках которой к настоящему времени опубликовано уже 69 томов.

Термин «синергетика», обозначающий новое направление междисциплинарных исследований в науке, Хакен впервые ввел в своих лекциях в университете Штутгарта в 1969 г. В своих мировоззренческих ориентациях Хакен близок к Аристотелю. Убежден в существовании общих закономерностей, которые имеют силу не только для фундаментальных составных частей материи, но и для поведения сложных систем любой природы.

ГЛАВА 1.

Введение

и обзор

Почему эта книга может показаться вам интересной. Наш мир состоит из множества разнообразнейших вещей: некоторые из них созданы человеком — дома, автомобили, инструменты, картины и т. п., — но остальные сотворены Природой. Для ученого этот мир вещей является миром структур, упорядоченных в соответствии со строгими закономерностями. Если направить телескопы на неизмеримые дали космического пространства, мы увидим спиралевидные туманности, подобные изображенным на фотографии. Здесь хорошо различимы спиральные рукава, благодаря которым туманность и получила свое имя. В этих газовых туманностях рождаются новые солнца — невообразимое количество новых ярких солнц. Наше Солнце и наша Земля тоже принадлежат такой туманности — Млечному Пути, хорошо видному на небе в ясные ночи. Наше Солнце — лишь одно из ста миллиардов солнц, входящих в Млечный Путь.

Земля вместе с другими планетами вращается вокруг Солнца по орбитам, подчиняясь строгим законам небесной механики. Упорядоченные структуры можно обнаружить не только в космосе. Оглядитесь вокруг, и вашему взору откроется бесконечное разнообразие таких структур: приведем в качестве примера исполненную благородства форму самой обыкновенной снежинки. Живая природа вновь и вновь поражает нас своим изобилием, причем формы, в которых оно выражается, могут быть порой совершенно невероятными.

Однако в изумление нас повергают не только неподвижные структуры, подобные вышеупомянутым. Не меньший восторг могут вызвать танец, исполненный грации, или красота бега лошади. Жизнь человеческого общества тоже демонстрирует немалое разнообразие структур: как в политической (например, различные формы государственного устройства), так и в чисто духовной сфере человеческой деятельности обнаруживается структурированность — в языке, в музыке и, наконец, в науке. Таким образом, мир вокруг нас изобилует всевозможными структурами: начиная с тех, которые мы встречаем в природе, и заканчивая теми, что присущи разумной жизни; мы настолько привыкли к структурам, что зачастую уже не осознаем, каким чудом является само их существование.

Люди прошлых веков воспринимали все это как проявление божественной воли и подтверждение тому — история создания нашего мира, изложенная в Ветхом Завете. Наука тоже долгое время была занята лишь вопросами строения — но не возникновения! — структур, существующих вокруг нас.

Интерес к тому, каким же образом могли возникнуть все эти структурные образования, появился и окреп только в новейшее время. Если наука желает избежать необходимости всякий раз для объяснения сути вещей обращаться за помощью к сверхъестественным силам и актам творения, она первым делом должна объяснить природу самозарождения и развития структур — иными словами, суть процессов самоорганизации.

Стремление к созданию единой картины мира. Если мы, осознавая все бесконечное разнообразие окружающих пас структур, решим выяснить, как же они возникли, то окажемся перед невыполнимой, на первый взгляд, задачей. Уже попытки каким-либо образом классифицировать обнаруженные структуры потребовали (и продолжают требовать) огромных затрат времени и сил многих поколений исследователей — возможно ли пройти этот путь до конца? да и стоит ли овчинка выделки? Действительно, будь строение каждой отдельно структуры подчинено особым, свойственным ей одной, законам, нечего было бы и думать о том, чтобы описать все это в одной книге — для этого потребовалась бы целая библиотека невообразимых размеров.

Здесь на сцену выходит идея, являющаяся, собственно, движущей силой всякой пауки. Наука призвана не просто собирать фактический материал, но и стремиться создать целостную картину мира, целостное мировоззрение. Особенно ярко это стремление проявляется в области естественных наук — например в физике, химии или биологии, — однако не менее известны и попытки, предпринятые философами. Все мы хорошо знаем о поисках физиками фундаментальных законов мироздания. Механика Исаака Ньютона (1643−1727) и его закон всемирного тяготения дают нам возможность описать движение планет вокруг Солнца — движение, для которого в древности не существовало единого объяснения. Благодаря Джеймсу Клерку Максвеллу (1831−1879) нам стало известно, что свет представляет собой не что иное, как электромагнитные колебания, подобные радиоволнам. Альберту Эйнштейну (1879−1955) удалось связать тяготение, пространство и время. Химик Дмитрий Иванович Менделеев (1834−1907) впервые упорядочил многообразие существующих в природе веществ, создав периодическую систему химических элементов. В современной атомной физике периодическая система Менделеева может считаться воплощением основного закона строения атомов. В биологии, в соответствии с открытыми Менделем законами, происходит передача от поколения к поколению наследственных признаков при скрещивании, к примеру, растений с различной окраской цветков. Уже в наше время были обнаружены химические механизмы такой передачи, происходящей благодаря гигантским молекулам дезоксирибонуклеиновой кислоты (ДНК).

Как показывают эти примеры (а их количество можно было бы многократно умножить), человечество неустанно ищет и находит все новые и новые законы, единые для всех происходящих в природе процессов.

В то время как явления самого разнообразного свойства усилиями ученых сводятся, наконец, воедино как проявления неких законов природы, исследователи обнаруживают совершенно новые факты, касающиеся еще более сложных явлений, и порой наука оказывается близка к полному погребению иод лавиной добываемых учеными сведений. Отсюда — бесконечная «гонка», борьба между потоком новых фактов и стремлением ученых эти факты систематизировать, понять и соотнести с действием единых законов мироздания.

Анализ и синтез. Какими же, собственно, возможностями для изучения структур и протекающих в них процессов мы располагаем? Излюбленным и, пожалуй, используемым чаще прочих способом является разложение изучаемого объекта на все более мелкие составляющие. Так физик обнаруживает, что кристалл состоит из атомов, атомы же, в свою очередь, разделяются на меньшие элементы — протоны и электроны. Одно из важнейших направлений современных физических исследований связано как раз с изучением «элементарных» частиц (кварков и глюонов), которые, вполне возможно, все еще не являются последними, «наиэлементарнейшими» частицами материи. Биолог препарирует клетки ткани, добираясь до составляющих их элементов: клеточных мембран и ядер, а затем и далее — до биомолекул. Перечень такого рода «разложений» можно дополнить примерами из других отраслей науки… да и сама наука, собственно, тоже уже «разложена» на математику, физику, химию и т. д. — вплоть до социологии и психологии.

Противоречат ли биологические структуры основополагающим законам природы? Физика имеет полное право считаться основой естествознания, ведь предметом ее изучения является материя, а так как весь окружающий нас мир материален, то и подчинен он законам, открытым физиками. Однако подобное представление о физике существовало отнюдь не всегда — по крайней мере, среди биологов. Приверженцы витализма выдвигали свою точку зрения: они считали, что всем живым существам свойственна присущая только им совершенно особая жизненная сила. Сегодня, после того как химические процессы удалось описать в терминах физических теорий (касающихся природы химических связей и строения атома), уже едва ли найдутся люди, сомневающиеся в том, что ту же операцию возможно проделать и с процессами биологическими. Подчеркнем — в принципе, так как за этой, на первый взгляд, простой фразой скрывается, как мы позднее увидим, целый комплекс весьма непростых проблем.

Здесь мы сталкиваемся с совершенно замечательной закономерностью, которая красной нитью проходит по всему, что связано с феноменом самоорганизации.

Отдельные элементы систем организуются, словно управляемые невидимой рукой, с другой же стороны, системы, взаимодействуя друг с другом, непрерывно создают эту невидимую руку. Назовем такую организующую невидимую руку «организатором». Однако, похоже, мы снова попали в замкнутый круг? Наш «организатор», по сути, является результатом взаимодействия отдельных элементов системы, однако он же и руководит поведением этих отдельных элементов. Напоминает древнюю задачку: что было раньше — курица или яйцо? (О петухе почему-то даже не вспоминают.).

На языке синергетики происходящее описывается следующим образом: параметр порядка подчиняет себе элементы системы. Параметр порядка похож на мастера-кукольника, управляющего марионетками: он заставляет их танцевать, но и они, в свою очередь, имеют над ним власть и оказываются способны им управлять. В дальнейшем мы убедимся, что принцип подчинения играет в синергетике центральную роль. Однако уже сейчас хотелось бы подчеркнуть, что термин «принцип подчинения» нс несет в себе абсолютно никакой эмоциональной нагрузки, и его следует воспринимать совершенно нейтрально. Принцип этот выражает лишь определенный тип взаимосвязи и не имеет ничего общего с подчинением или порабощением в этическом смысле. Так, например, можно сказать, что представители какого-нибудь народа подчинены своему национальному языку.

Исследуя различные явления сначала в физике, затем в химии и, наконец, в биологии с точки зрения, предполагающей существование принципа подчинения и параметра порядка, я снова и снова сталкивался со следующей закономерностью: процессы образования структур всегда протекают в определенном направлении, однако вовсе не в том, какое предсказывает термодинамика, и отнюдь не в сторону увеличения «разупорядоченности» .

Напротив: элементы системы, прежде неорганизованные, приходят в состояние определенного порядка, и порядок этот подчиняет себе их поведение.

В дальнейшем мы увидим, что та неизбежность, с которой из хаоса возникает порядок, ничуть не зависит от материального субстрата, ставшего сценой для наблюдаемого процесса. В этом смысле лазер ведет себя совершенно так же, как и облачная формация или группа клеток. Очевидно, мы имеем здесь дело с проявлением одного и того же феномена. Есть все основания предполагать, что эта же закономерность действительна и в нематериальной сфере.

При знакомстве с синергетикой — как и в случае с любой другой наукой — представляется разумным начать с рассмотрения самых простых процессов, а уж затем переходить к более сложным. Поэтому мы начнем с примеров из физики и химии, а затем обратимся к экономическим наукам, социологии и методологии. Нет ничего нового в идее перенесения методов и опыта, полученных на простых примерах, в область более сложных явлений. Так, скажем, в социологии и экономических науках разрабатываются модели, сходные с моделями в физике и широко использующие физическое понятие «энтропия», являющееся мерой для хаоса.

Достижения современной физики послужили основой для нового мышления сначала в самой физике, а затем и в других науках. К примеру, сегодня совершенно изменился научный взгляд на структуру общества, которая прежде рассматривалась как система, пребывающая в статическом равновесии. Структуры возникают, распадаются, конкурируют между собой или кооперируют друг с другом, объединяясь и создавая новые, большие структуры. Мы находимся сейчас в поворотной точке истории: в мышлении человека происходит поворот от статики к динамике.

  • [1] Хакен Г. Тайны природы. Синергетика: учение о взаимодействии. М.: Институт компьютерных исследований. 2003. URL: log-in.ru/books/taiyny-prirody-sinergetika-uchenieo-vzaimodeiystvii-g-khaken-khaken-g-nauka-i-obrazovanie/; URL: zahori.ucoz.ru/load/khaken_g_tajny_prirody_sinergetika_nauka_o_vzaimodejstvii/l-l-0−10
Показать весь текст
Заполнить форму текущей работой