Помощь в учёбе, очень быстро...
Работаем вместе до победы

Двойственный симплекс-метод решения задачи ЛП. Градиентные методы

КонтрольнаяПомощь в написанииУзнать стоимостьмоей работы

Двойственный симплекс-метод решения задачи ЛП Двойственный симплекс-метод, как и симплекс-метод, используется при нахождении решения задачи линейного программирования, записанной в форме основной задачи, для которой среди векторов, составленных из коэффициентов при неизвестных в системе уравнений, имеется m единичных. Вместе с тем двойственный симплекс-метод можно применять при решении задачи… Читать ещё >

Содержание

  • Двойственный симплекс-метод решения задачи ЛП Градиентные методы

Двойственный симплекс-метод решения задачи ЛП. Градиентные методы (реферат, курсовая, диплом, контрольная)

Двойственный симплекс-метод решения задачи ЛП Двойственный симплекс-метод, как и симплекс-метод, используется при нахождении решения задачи линейного программирования, записанной в форме основной задачи, для которой среди векторов, составленных из коэффициентов при неизвестных в системе уравнений, имеется m единичных. Вместе с тем двойственный симплекс-метод можно применять при решении задачи линейного программирования, свободные члены системы уравнений которой могут быть любыми числами (при решении задачи симплексным методом эти числа предполагались неотрицательными). Такую задачу и рассмотрим теперь, предварительно предположив, что единичными являются векторы т. е. рассмотрим задачу, состоящую в определении максимального значения функции

(54)

при условиях

(55)

(56)

где

и среди чисел имеются отрицательные.

В данном случае есть решение системы линейных уравнений (55). Однако это решение не является планом задачи (54) — (56), так как среди его компонент имеются отрицательные числа.

Поскольку векторы — единичные, каждый из векторов можно представить в виде линейной комбинации данных векторов, причем коэффициентами разложения векторов по векторам служат числа Таким образом, можно найти

Определение 14.

Решение системы линейных уравнений (55), определяемое базисом, называется псевдопланом задачи (54) — (56), если для любого

Теорема 11.

Если в псевдоплане, определяемом базисом, есть хотя бы одно отрицательное число такое, что все, то задача (54) — (56) вообще не имеет планов.

Теорема 12.

Если в псевдоплане, определяемом базисом, имеются отрицательные числа такие, что для любого из них существуют числа aij<0, то можно перейти к новому псевдоплану, при котором значение целевой функции задачи (54) — (56) не уменьшится.

Сформулированные теоремы дают основание для построения алгоритма двойственного симплекс-метода.

Итак, продолжим рассмотрение задачи (54) — (56). Пусть — псевдоплан этой задачи. На основе исходных данных составляют симплекс-таблицу (табл. 15), в которой некоторые элементы столбца вектора являются отрицательными числами. Если таких чисел нет, то в симплекс-таблице записан оптимальный план задачи (54)-(56), поскольку, по предположению, все. Поэтому для определения оптимального плана задачи при условии, что он существует, следует произвести упорядоченный переход от одной симплекс-таблицы к другой до тех пор, пока из столбца вектора не будут исключены отрицательные элементы. При этом все время должны оставаться неотрицательными все элементы (т +1)-й строки, т. е. для любого

Таким образом, после составления симплекс-таблицы проверяют, имеются ли в столбце вектора отрицательные числа. Если их нет, то найден оптимальный план исходной задачи. Если же они имеются (что мы и предполагаем), то выбирают наибольшее по абсолютной величине отрицательное число. В том случае, когда таких чисел несколько, берут какое-нибудь одно из них: пусть это число bl. Выбор этого числа определяет вектор, исключаемый из базиса, т. е. в данном случае из базиса выводится вектор Pl. Чтобы определить, какой вектор следует ввести в базис, находим, где

Пусть это минимальное значение принимается при, тогда в базис вводят вектор Рr. Число является разрешающим элементов. Переход к новой симплекс-таблице производят по обычным правилам симплексного метода. Итерационный процесс продолжают до тех пор, пока в столбце вектора Р0 не будет больше отрицательных чисел. При этом находят оптимальный план исходной задачи, а следовательно, и двойственной. Если на некотором шаге окажется, что в i-й строке симплекс-таблицы (табл. 15) в столбце вектора Р0 стоит отрицательное число bi, а среди остальных элементов этой строки нет отрицательных, то исходная задача не имеет решения.

Таким образом, отыскание решения задачи (54) — (56) двойственным симплекс-методом включает следующие этапы:

1. Находят псевдоплан задачи.

2. Проверяют этот псевдоплан на оптимальность. Если псевдоплан оптимален, то найдено решение задачи. В противном случае либо устанавливают неразрешимость задачи, либо переходят к новому псевдоплану.

3. Выбирают разрешающую строку с помощью определения наибольшего по абсолютной величине отрицательного числа столбца вектора Р0 и разрешающий столбец с помощью нахождения наименьшего по абсолютной величине отношения элементов (m+1)-и строки к соответствующим отрицательным элементам разрешающей строки.

4. Находят новый псевдоплан и повторяют все действия начиная с этапа 2.

Показать весь текст
Заполнить форму текущей работой