Помощь в учёбе, очень быстро...
Работаем вместе до победы

Влияние слабых комбинированных магнитных полей на регенерацию планарий Dugesia tigrina

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Определена зависимость скорости регенерации планарий от соотношения амплитуд переменной и постоянной компонент комбинированного магнитного поля, а также от частоты переменной компонентыподтверждены соответствующие количественные предсказания теории. Провести экспериментальную проверку количественных предсказаний теории относительно зависимости эффектов комбинированного магнитного поля… Читать ещё >

Содержание

  • Список сокращений
  • 1. ОБЗОР ЛИТЕРАТУРЫ
  • 1. Воздействие на биосистемы слабых магнитных полей
    • 1. 1. Модель Либова («циклотронный» резонанс)
    • 1. 2. Модель Леднева (параметрический резонанс)
      • 1. 2. 1. Специфически связанные ионы как первичные мишени для воздействия МП
      • 1. 2. 2. Количественные постулаты теории
      • 1. 2. 3. Экспериментальная проверка основного постулата теории с использованием бесклеточных систем
    • 1. 3. Влияние крайне слабых переменных магнитных полей
  • КС ПеМП) на биосистемы
    • 1. 3. 1. «Микротесловые» поля
    • 1. 3. 2. «Нанотесловые» поля
    • 1. 3. 3. «Пикотесловые» поля
  • 2. Регенерирующие планарии как тест-система для изучения влияния магнитных полей на процессы пролиферации и роста
    • 2. 1. Основные типы регенерации
    • 2. 2. Планарии — классический объект в изучении регенерации и морфогенеза
    • 2. 3. Необласты -тотипотентные резервные клетки
    • 2. 4. Молекулярные аспекты регенерации
  • Митогены, рецепторы, вторичные мессенджеры
    • 2. 4. 1. Гормональная регуляция
    • 2. 4. 2. Роль ионов кальция в индукции синтеза ДНК
    • 2. 4. 3. Серотонин -ключевой регулятор на ранних стадиях регенерации
    • 2. 4. 4. Протеинкиназа С
    • 2. 4. 5. Рецепторы серотонина и G- белки
    • 2. 5. Цели и задачи исследования
  • 2. ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ
    • 2. 1. Модель регенерирующих планарий
    • 2. 2. Определения пролиферативной активности необластов
    • 2. 3. Метод прижизненной компьютерной морфометрии
    • 2. 4. Техника получения магнитных полей
  • 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ
    • 3. 1. Активация пролиферации необластов при настройке переменной компоненты поля на параметрический резонанс для ионов кальция (Са -КМП) и магния (Mg2±KMn)
    • 3. 2. Увеличение пролиферативной активности необластов при экспонировании в КМП, настроенном на параметрический резонанс ядерных спинов атомов водорода
    • 3. 3. Ускорение и замедление формирования бластемы при экспонировании регенерирующих планарий в
  • Са2±КМП и К± КМП, соответственно
    • 3. 4. Совместное действие КМП и химических факторов на формирование бластемы
    • 3. 5. Влияние крайне слабых переменных магнитных полей (КС ПеМП) с амплитудами в диапазоне 10"6−109 Тл на скорость регенерации
  • ВЫВОДЫ

Влияние слабых комбинированных магнитных полей на регенерацию планарий Dugesia tigrina (реферат, курсовая, диплом, контрольная)

Изучение проблемы взаимодействия с биосистемами слабых магнитных полей (МП), амплитуда которых сравнима или значительно меньше амплитуды геомагнитного поля, направлено на решение следующих вопросов:

• выяснение механизмов взаимодействия МП с биологическими объектами;

• разработка научных основ использования МП в медицине и биотехнологии;

• оценка возможного негативного влияния слабых МП естественного и техногенного происхождения на человека и животных.

В связи с этим нам представлялось актуальным провести детальные исследования влияния слабых (5×10″ 6 Тл) и крайне слабых (10″ 6 — 10″ 9 Тл) комбинированных магнитных полей (КМП) на процесс регенерации тканей с использованием регенерирующих планарий в качестве тест-системы, уделив при этом особое внимание экспериментальной проверке количественных предсказаний теории магнитного параметрического резонанса в биосистемах (Леднев, 1991).

Основными целями работы явились:

• изучение возможности регуляции процесса регенерации планарий Dugesia tigrina с использованием КМП в режиме параметрического резонанса;

• экспериментальная проверка основных предсказаний теории магнитного параметрического резонанса в биосистемах;

• изучение возможных биологических эффектов крайне слабых переменных магнитных полей (КС ПеМП), имитирующих воздействие на биосистемы «фоновых» переменных магнитных полей техногенного и естественного происхождения. Для достижения этих целей были поставлены следующие задачи:

1. исследовать влияние слабых КМП на регенерацию планарий при настройке поля на резонанс для Са2+, Mg2+ и К+, а также на ларморовскую частоту ядерных спинов атомов водорода;

2. провести экспериментальную проверку количественных предсказаний теории относительно зависимости эффектов комбинированного магнитного поля от соотношения амплитуд переменной и постоянной компонент и от частоты переменной компоненты поля;

3. исследовать эффекты совместного действия КМП и серотонина (активатора регенерации на уровне рецепторов), а также КМП и коклюшного токсина (ингибитора передачи сигнала на уровне G-белков);

4. изучить возможность воздействия на регенерацию планарий КС ПеМП с амплитудами в диапазоне от 10~9 до 10'6 Тл.

Проведенные исследования показали, что при экспонировании регенерирующих планарий в КМП, настроенных на параметрический резонанс для Са2+, Mg2+ и К+ (Са2+ - КМП, Mg2± КМП и К±КМП) происходит существенное изменение скорости регенерации планарий: увеличение в Са — и Mg2+ - КМП и снижение в К — КМП. Обнаружено, что эффекты серотонина и коклюшного токсина на регенерацию планарий могут быть как усилены, так и ослаблены при одновременном воздействии КМП. Получено экспериментальное подтверждение предсказаний теории магнитного параметрического резонанса в биосистемах относительно зависимости величины биоэффектов КМП от соотношения амплитуд переменной и постоянной компонент поля, а также от частоты поля. Получено косвенное подтверждение основного предположения теории о том, что наиболее вероятными мишенями КМП в режиме параметрического резонанса являются биохимические реакции, опосредуемые Са2±зависимыми киназами. Впервые установлена возможность регуляции скорости регенерации сверхслабыми магнитными полями с величинами магнитной индукции в диапазоне от 10~6 до Ю-9 Тл. Полученные данные свидетельствуют о возможности непосредственного влияния КС ПеМП как естественного, так и техногенного происхождения на биосистемы.

Полученные результаты указывают на возможность регуляции пролиферации и дифференцировки клеток с помощью КМП, а также на возможность модификации эффектов биологически активных веществ при их применении в сочетании с КМП. Полученные данные могут быть использованы для создания принципиально новых методов и аппаратуры магнитотерапии.

Используемые сокращения.

МП — магнитное поле.

КМП — комбинированное магнитное поле.

МПРмагнитный параметрический резонанс.

Ca2±K±Mg2±KMn — комбинированные магнитные поля, настроенные, соответственно, на резонанс для ионов кальция, калия, магния.

КС ПеМП — крайне слабое переменное магнитное поле.

ПК-С — протеинкиназа-С.

5-НТ- 5-гидрокситриптамин, серотонин.

АЦ — аденилатциклаза.

КТкоклюшный токсин.

ОБЗОР ЛИТЕРАТУРЫ.

выводы.

1. Показана возможность регуляции (ускорения и замедления) процесса регенерации планарий при их экспонировании в комбинированных магнитных полях, настроенных на резонанс для ионов кальция, магния и калия.

2. Показана возможность модуляции эффектов серотонина и коклюшного токсина на регенерацию планарий с помощью слабых комбинированных магнитных полей.

3. Получено экспериментальное подтверждение основного предположения теории магнитного параметрического резонанса в биосистемах относительно возможности воздействия слабых комбинированных магнитных полей на биопроцессы, опосредуемые Са2± зависимыми киназами.

4. Определена зависимость скорости регенерации планарий от соотношения амплитуд переменной и постоянной компонент комбинированного магнитного поля, а также от частоты переменной компонентыподтверждены соответствующие количественные предсказания теории.

5. Показано, что экспонирование регенерирующих планарий в слабом комбинированном магнитное поле, настроенном на ларморовскую частоту ядерных спинов атомов водорода, приводит к увеличению митотической активности резервных клеток (необластов) и, соответственно, скорости регенерации планарий.

6. Установлена возможность регуляции скорости регенерации планарий при воздействии крайне слабых переменных магнитных полей с величинами магнитной индукции в диапазоне от 10″ 9 до 10″ 6 Тесла.

7. Показана возможность использования регенерирующих планарий в качестве тест-системы для сравнительного изучения биологической эффективности физических и химических факторов.

Показать весь текст

Список литературы

  1. ЛП. (1985) Влияние слабых магнитных полей на агглютинацию брюшнотифозных бактерий (in vitro) и автоколебательную химическую реакцию Белоусова-Жаботинского. Автореферат дисс. канд. биол. наук. Пущино
  2. Ачкасова ЮН (1984) Избирательная активность бактерий к инфранизкочастотным магнитным полям. Электромагнитные поля в биосфере. Москва: Наука. 1984, т.2: 72−73.
  3. Белова НА, Леднев ВВ. (2000а) Активация и ингибирование гравитропической реакции растений с помощью слабых комбинированных магнитных полей. Биофизика 45:1102−1107.
  4. Белова НА, Леднев ВВ. (20 006) Зависимость гравитропической реакции в сегментах стеблей льна от частоты и амплитуды переменной компоненты слабого комбинированного магнитного поля. Биофизика 45:1108−1111.
  5. Белова НА, Леднев ВВ. (2001а) Активация и ингибирование гравитропической реакции в сегментах стеблей льна при изменении величины магнитной индукции слабого постоянного поля в пределах от 0 до 350 микроТесла. Биофизика 46:118−121.
  6. Белова НА, Леднев ВВ. (20 016) Влияние крайне слабых переменных магнитных полей на гравитропизм растений. Биофизика 46:122−125.
  7. Валеева ЛА, Сергеев ПВ, Шимановский Н. Л. (1997) Рецепторы серотонина (результаты фармакологического анализа). Экспериментальная и клиническая фармакология 60(6): 57−61.
  8. Карлсон БМ (1986) Регенерация. Москва: Наука: 202−218
  9. ЕБ. (1980) Клеточные источники регенерации у планарий. Современные представления о необластах. Арх анат гист эмбр 79:102−109
  10. Киселев ВФ, Салецкий AM, Семихина ЛП. (1990) Структурные изменения в воде после воздействия слабых переменных магнитных полей. Вестн. Моск. ун-та, серия 3, 31(2):53−58
  11. Киселев ВФ, Салецкий AM, Семихина ЛП. (1988) О влиянии слабых магнитных полей и СВЧ-излучений на некоторые диэлектрические и оптические свойства воды и водных растворов. Теорет. и эксперим. химия 3: 330−334
  12. ВВ. (1996) Биоэффекты слабых комбинированных, постоянных и переменных магнитных полей. Биофизика 41:224 232.
  13. Леднев ВВ, Белова НА, Рождественская ЗЕ, Тирас ХП (2003) Биоэффекты слабых переменных магнитных полей и биологические предвестники землетрясений. Геофизические поля и биосфера (в печати).
  14. Макеев ВБ, Темурьянц НА, Владимирский БМ, Тишкин ОТ. (1984) Физиологически активные инфранизкочастотные магнитные поля. Электромагнитные поля в биосфере. Москва: Наука, т.2:62−72
  15. Михайловский ВН, Красногорский НН, Войчишин КС. и др. (1973) О восприятии людьми слабых колебаний напряженности магнитного поля. Проблемы бионики. Москва: Наука, 202−208
  16. Мина MB и Клевезаль ГА (1976) Рост животных. Москва: Наука: 69−75
  17. Новиков ВВ, Шейман ИМ, Фесенко ЕЕ. (2002а) Влияние слабых и сверхслабых магнитных полей на интенсивность бесполого размножения планарий Dugesia tigrina. Биофизика 47:125−129
  18. Новиков ВВ, Кувичкин ВВ, Новикова НИ, Фесенко ЕЕ. (2000) Влияние слабых магнитных полей на свойства ряда белков и полиаминокислот образовывать комплексы с ДНК. Биофизика 45:240−244.
  19. Новиков ВВ, Кувичкин ВВ, Фесенко ЕЕ. (1999) Влияние слабых комбинированных постоянного и низкочастотного переменного магнитных полей на собственную флуоресценцию ряда белков в водных растворах. Биофизика 44:224−230
  20. Новиков ВВ, Фесенко ЕЕ. (2001) Гидролиз ряда пептидов и белков в слабых комбинированных постоянном и низкочастотном переменном магнитном полях. Биофизика 46:235−241
  21. Опалинская AM, Агулова ЛП (1984) Влияние естественных и искуственных ЭМП на физико-химические и элементарные биологические системы. Томск: Издательство Томского университета., 192 с.
  22. ЕА. (1985) Парвальбумин и родственные кальций-связывающие белки. Москва: Наука, 192 с.
  23. Петричук СВ (1985). Влияние инфранизкочастотного слабого электромагнитного поля и небольших изменений атмосферного давления на ферментный статус лимфоцитов. Автореферат дис.канд. биол. наук. Москва
  24. В.Л. Действие слабого переменного магнитного поля га транспорт кислорода в организме у больных с неспецефическими воспалительными заболеваниями легких. Патологическая физиология и экспериментальная терапия. 1987, № 1: 59−61.
  25. ЛП. (1981) Изменение показателя преломления воды после магнитной обработки. Коллоидный журнал 2 :4011−404
  26. ЛП. (1989) Исследование влияния слабых магнитных полей на свойства воды и льда. Автореферат дисс. канд. физ.-мат. наук. Москва.
  27. Семихина ЛП (1989) Влияние гипомагнитных полей на диэлектрические потери воды и льда. Журнал физической химии, 513 (1):274−276
  28. Семихина ЛП, Любимов ЮА. (1988) Изменения диэлектрических потерь обычной и тяжелой воды после воздействия слабых магнитных полей. Вестн. Моск. ун-та, серия 3, 29(3):59−63
  29. Семихина ЛП, Киселев ВФ, Левшин ЛВ, Салецкий AM. (1988) Влияние слабых магнитных полей на спектрально-люминесцентные свойства красителя в водном растворе. Жур. прикл. спектроскоп. 48 (5):811−814
  30. Суслова ГФ, Петричук СВ, Беневоленский ВН (1988) Влияние геомагнитных факторов на физическое развитие и патологию человека и животных. Хронобиология сердечно-сосудистой системы. Москва: Изд-во Университета дружбы народов им. Патриса Лумумбы.: 91−92.
  31. Темурьянц НА.(1972) Влияние слабых электромагнитных полей сверхнизкой частоты на морфологию и некоторые показатели метаболизма лейкоцитов периферической крови. Автореферат дис. канд. мед. наук. Симферополь. 20с.
  32. Темурьянц НА, Влаимирский БМ, Тишкин ОГ. (1992) Сверхнизкочастотные электромагнитные сигналы в биологическом мире. Киев: Наукова Думка
  33. НА. (1982) О биологической эффективности слабого электромагнитного поля инфранизкой частоты. Проблемы космической биологии. 43:129−139
  34. Тирас ХП, Сахарова НЮ (1984) Прижизненная морфометрия планарий. Онтогенез, 15(1): 42−48
  35. ХП. (1986) Морфогенез и способы регенерации планарий. Журнал общей биологии 47 (1): 103−109
  36. Тирас ХП, Хачко ВИ. (1990) Критерии и стадии регенерации в планариях. Онтогенез 21: 620−624.
  37. Тирас ХП, Сребницкая J1K, Ильясова Е. Н., Леднев ВВ. (1996) Влияние слабого комбинированного магнитного поля на скорость регенерации планарий Dugesia tigrina. Биофизика 40(4): 826−831.
  38. Шейман ИМ, Тирас ХП, Балобанова ЭФ. (1989) Морфогенетическая функция нейропептидов. Физиол Ж СССР 75:619−626
  39. Шувалова JIA, Островская MB, Сосунов ЕА, Леднев ВВ. (1991) Влияние слабого магнитного поля в режиме параметрического резонанса на скорость кальмодулин -зависимого фосфорилирования миозина в растворе. ДАН СССР 317:227−230
  40. W.R. (1993) Biological effects of electromagnetic fields. Journal of Cellular Biochemistry 51:410−416
  41. Agata K, Watanabe K. (1999) Molecular and cellular aspects of planarian regeneration. Cell Dev Biol 10:377−383
  42. AS. (2000) Regeneration in metazoans: why does it happen? BioEssays 22:578−590.
  43. Baguna J, Romero R. (1981) Quantitative analysis of cell types growth? Degrowth and regeneration in the planarians Dugesia mediterranea and Dugesia tigrina. Hydrobiologia 84:181−194.
  44. J. (1981) Planarian neoblasts. Nature 290 (5): 14−15
  45. Baguna J, Salo E, Auladell С (1989) Regeneration and pattern formation in planarians. III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development 107:77−86
  46. Baguna J, Salo E, Romero R (1989) Effect of activators and antagonists of the neuropeptides substance P and substance К on cell proliferaation in planarians. Int. J. Dev. Biol. 33:261−264
  47. Baguna J, Salo E, Romero R, Garcia-Fernandez J, Bueno D, Munoz-Marmol AM, Bayascas-Ramirez JR, and Casali A (1994) Regeneration and pattern formation in planarians: cells, molecules and genes. Zool. Sci. 11:781−795
  48. Baguna J (1998) Planarians. In «Cellular and molecular basis of regeneration: from invertebrates to humans» New York: Wiley: 135−165
  49. J. (2002) Talking about regeneration. Nature 415(3): 13
  50. , J. (2001) Preface. Belg J Zool 131(suppl):7
  51. IR. (1974) A contribution to the phylogeny and biogeography of the freshwater triclads (Platyhelminthes Turbellaria). In:"Biology of the Turbellaria", McGraw-Hill, New York, pp.339−401.
  52. Bell JD, Buxton IL, and Brunton LL (1985) Enhancement of adenylate cyclase activity in S49 lymphoma cells by phorbol ester. Putaitive effect of С kinase on alpha s-GTF-catalytic subunit interection. J.Biol. Chem. 260:2625−2628.
  53. Berman E, Chacon L, House D, Koch В A, Koch WE, Leal J, Lovtrup S, Mantiply E, Martin AH, Martussi GA, Monakham JC, Sandstrom M, Shamsaifar K, Tell R, Trillo MA, Ubeda A, Wagner P. (1990)
  54. Development of chicken embryos in pulsed magnetic field. Bioelectromagnetics 11:169−187
  55. Blackman CF, Blanchard JP, Benane SG, House DE. (1994)Empirical test of an ion parametric resonance model for magnetic field interactions with PC-12 cells. Bioelectromagnetics 15:239−260
  56. Blackman CF, Blanchard JP, Benane SG, House DE (1995). The ion parametric resonance model predicts magnetic field parameters that affect nerve cells. FASEB J 9:547−551
  57. Blackman CF, Blanchard JP, Benane SG, House DE (1999) Experimental determination of hydrogen bandwidth for the ion parametric resonance model. Bioelectromagnetics, 20:5−12
  58. Blackman CF, Benane SG, House DE. (2001) The influence of 1.2 pT, 60 Hz magnetic fields on melatonin- and tamoxifen-induced inhibition of MCF-7 cell growth. Bioelectromagnetics 22:122−128
  59. Blanchard JP, Blackman CF. (1994) Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 15:217−238
  60. Brent RL (1999) Reproductive and teretological effects of low-frequency electromagnetic fields: a review of in vivo and in vitro studies using animal models. Teratology 59:261−286
  61. JP. (1998) Amphibian limb regeneration.: rebuilding a complex structure. Science 276:81−87
  62. HV. (1969) Planarian regeneration. London: Pergamon Press
  63. Cain CD, Thomas DL, Adey WR. (1993) 60 Hz magnetic field acts as co-promoter in focus formation of C3H/10T½ cells. Carcinogenesis 14:955−960
  64. Candia Carnevali MD, Bonasoro F, Lucca E, Thorndyke M C. (1995) Pattern of cell proliferation, in the early stages of regeneration in the feather star Antedon mediterranea. J Exp Zool 272:464−474
  65. Chen G, Upham BL, Sun W, Chang CC, Rotwell EJ, Chen KM, Yamaasaki H, Trosko JE (2000) Effect of electromagnetic field exposure on chemically induced differentiation of friend erythroleukemia cells. Environ Health Perspect, 108:967−972
  66. Cluck B, Guntzschel V, Berg H. (2001) Inhibition of proliferation of human lymphoma cells U937 by a 50 Hz electromagnetic field. Cell Mol Biol 47:115−117
  67. Conti P, Gigante GE, Cifone MG, Alesse E, Ianni G, Reale M, Angeletti PU. (1983) Redused mitogenic stimulation of human lymphocytes by extremely low frequency electromagnetic fields. FEBS Lett 162:156−160
  68. Cook LL, Persinger MA. (2000)Suppression of experimental allergic encephalomyelitis is specific to the frequency and intensity of nocturnally applied, intermittent magnetic fields in rats. Neurosci Lett 13, 292:171−174
  69. Cossarizza A, Monti D, Bersani F, Cantini M, Cadossi R, Saachi A, Franceschi C. (1989) Extremely low frequency pulsed electromagnetic fields increase cell proliferation in lymphocytes young aged subjects. Biochem Biophys Res Commun 160: 692−698
  70. Coulton LA, Barker AT, Van Lierop JE, Walsh MP. (2000) The effect of static magnetic fields on the rate of calcium/calmodulin-dependent phosphorylation of myosin light chain. Bioelectromagnetics 21:189−196
  71. Cox JA. (1988) Interactive properties of calmodulin. Biochem J 249:621−629
  72. Creti P, Copasso A, Grasso M, and Parisi A .(1992) Identification of a 5-HTja receptor positively coupled to planarian adenylate cyclase. Cell biol Intern Report 16 (5):427−431
  73. Daniel-Issakahi S, Spiegel AM, and Strulovici В (1989) Lipopolysaccharide responce is linked to the binding protein, Gi2, in the promonocytic cells line U937. J. Biol. Chem. 264:20 240−20 247
  74. MS. (1996) Effects of 60 Hz electromagnetic fields on early growth in three plant species and a replication of previous results. Bioelectromagnetics 17:154−161
  75. Davies MS, Dixey R, Green JC. (1998) Evaluation of the effects of extremely low frequency electromagnetic fields on movement in the marine diatom Amphora coffeaeformis. Biol Bull 194:194−223
  76. Delgado JM, Leal J, Monteagudo JL, Gracia MG. (1982) Embryological changes induced by weak, extremely low frequency electromagnetic fields. J Anat 134:533−551
  77. Divacar N1, Moinuddin M, Rathinam КС (1987) Preliminary studies of pulsed magnetic fields for prevention and treatment of sever cold injures. Int. Conf. on Energy Medicin. Madras, p. 18.
  78. Dixon SJ, Persinger MA. (2001) Suppression of analgesia in rats induced by morphine or L-NAME but not both drugs by microTesla, frequency-modulated magnetic fields. Int J Neurosci 108:87−97
  79. Durney CH, Rushforth CK, Anderson AA. (1988) Resonant DC-AC magnetic fields: Calculated response. Bioelectromagnetics 9:315−336
  80. Farrell JM, Litovitz TL, Penafiel M, Montrose С J, Doinov P, Barber M, Brown KM, Litovitz ТА. (1997) The effect of pulsed and sinusoidal magnetic fields on the morphology of developing chick embryos. Bioelectromagnetics 18:431−438
  81. Farrel JM, Barber M, Krause D, Litovitz ТА. (1998) The superposition of the temporary incoherent magnetic field inhibits 60-Hz inducedchanges in ODC activity of developing chick embryos. Biolectromagnetics 19:53−56
  82. Fitzsimmons RJ, Ryaby JT, Magee FP, Baylink DJ. (1994) Combined magnetic field increased net calcium flux in bone cells. Calcified Tissue International 55:376−380
  83. Fitzsimmons RJ, Ryaby JT, Magee FP, Baylink DJ. (1995) IGF-II receptor number is increased in TE-85 osteosarcoma cells by combined magnetic fields. Journal of Bone and Mineral Research 10:812−819
  84. Franquinet R (1981) Synthese d’ADN dans les cellules de planaires cultivees in vitro. Role de la serotonin. Biol Cell 40:41−46
  85. Franquinet R, Martelly I. (1981) Effects of serotonin and catecholamines on RNA synthesis in planarians: in vitro and in vivo studies. Cell Differentiation 10:201−209
  86. Franquinet R, Le Moigne A, Hanoune J. (1978) The adenylate cyclase system of Planarian Polycelis tenuis. Activation by serotonin and guanine nucleotides. Biochem Biophys Acta 538:88−97
  87. Franquinet R, Stengel D, and Hanoune J. (1976) The adenylate cyclase system in freshwater planarian {Polycelis tenuis iijima). Сотр. Biochem Physiol. 536:329−333
  88. Frazer A, Maayani S, Wolfe BB (1990) Subtypes of receptor for serotonin. AnnuRev Pharmacol Toxicol 30: 307−348
  89. Geissler PL, Dellago C, Chandler D, Hutter J, Parrinello M. (2001) Autoionization in liquid water. Science 291:2121−2124
  90. RJ. (1991) The natural history (and mystery) of regeneration. In: A history of regeneration research: milestones in the evolution of a science (Dinsmore CE, ed): Cambridge University Press, Cambridge pp. 7−23
  91. V. (1988) Planarian regeneration: An overview of some cellular mechanisms. Zool Sci 5:1153−1163
  92. Haiech J, Klee CB, Demaille JG. (1981) Effects of cations on affinity of calmodulin for calcium: ordered binding of calcium ions allows the specific activation of calmodulin-stimulated enzymes. Biochemistry 20:3890−3897
  93. B. (1988) On the cyclotron resonance mechanism for magnetic fields on transmembrane ion conductivity. Bioelectromagnetics 9:315 336
  94. Hansson Mild K, Sandstrom M. (1994) Health aspects of electric and magnetic fields from VDTs. Advances in Electromagnetic Fields in Living Systems. JC Lin, ed, New York: Plenum Press, 1:155−183
  95. Hansson Mild К. (1996) Measured 50 Hz electric and magnetic fields in Swedish and Norwegian residental buildings. IEEE Transactions on Instrumentation and Measurement 45:710−714
  96. Harland JD, Liburdy RP. (1997) Environmental magnetic fields inhibit the antiproliferation action of tamoxifen and melatonin in a human breast cancer cell line. Bioelectromagnetics 18:555−562
  97. Harland J, Eugstrom S, Liburdy R. (1999) Evidence for a slow time-scale of interaction for magnetic fields inhibiting tamoxifen’santiproliferative action in human breast cancer cells. Cell Biochem Biophys 31:295−306
  98. Harper JF, Sussman MR, Schaller GE, Putnam Evans C, Charbonnean H, Harmon AC. (1991) A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science 252:951−954
  99. Hendee SP, Faor FA, Christensen DA, Patrick B, Durney CH, Blumenthal D. (1996) The effects of weak extremely low frequency magnetic fields on calcium/calmodulin interaction. Biophys Journal 70:2915−2923
  100. Holstein TW, Hobmayer E, David CN. (1991) Pattern of epitelian cell cycling in hydra. Dev Biol 148:602−611
  101. I. (1997) Cytological approach to morphogenesis in the planarian blastema. II. The effect of neuropeptides. J Submicrosc Cytol Pathol 29:91−97
  102. J. (1921) Studies in dedifferentiation. II. Dedifferentiation and resorption in Perofora. Q J Microsc Sci, 65:643−698
  103. IshizukaJ, Beauchamp RD, Townsend CM, Greeley Jr, and Thompson JC. (1992) Receptor-mediated autocrine growth -stimulatory effect of 5-hydroxytryptamineon cultured human pancreatic carcinoid cells. J Cell Physiol 150: 1−7
  104. Iten LE, Bryant SV. (1976) Stages of tail regeneration in the adult newt, Notophatalmus viridescens. J Exp Zool 196:283−292
  105. JI. (1991) A look at the possible mechanism and potential of magnetotherapy. J Theor Biol 149:97−119
  106. Л. (1994) Pineal-hypothalamus tract mediation of picotesla magnetic fileds in the treatment of neurological disorders. Panminerva Med 36:201−205
  107. Jenrow KA, Smith CH, Liboff AR. (1995) Weak extremely-low-frequency magnetic fields and regeneration in the planarian Dugesia tinigra. Bioelectromagnetics 16:106−112
  108. Jenrow KA, Smith CH, Liboff AR. (1996) Weak extremely-low-frequency magnetic field-induced regeneration anomalies in the planarian Dugesia tigrina. Bioelectromagnetics, 17:467−474
  109. Jenrow KA, Zhang X, Renehan WE, Liboff AR. (1998) Weak ELF magnetic field effects on hippocampal rhythmic slow activity. Exp Neurol 153:328−234
  110. Juutilainen J, Laara E, Saali K. (1987) Relationship between field strength and abnormal development in chick embryos exposed to 50 Hz magnetic fields. Int J RadiatBiol 52:787−793
  111. Kaczmarek L, Levitan IB. (1987) Neuromodulation. The biochemical Control of Neuronal Excitability. Oxford University press.
  112. Konig HL (1974) Behavioural changes in human subjects associated with ELF electric fields. In «ELF and VLF electromagnetic field effects», (ed. Persinger MA) New York: Plenum Press pp. 142−148
  113. E. (1927) Regeneration and transplantation. Berlin: Borntraeger
  114. Lacy-Hulbert A, Metcalfe JC, and Hesketh R (1998) Biological responses to electromagnetic fields. FASEB J. 12: 395−420
  115. Ladurner P, Reiger R, Baguna J. (2000) Spatial distribution and differentiation potential of stem cells in hatchlings and adults in the marine platyhelminth Macrostomus sp.: a bromodeoxyuridine analysis. DevBiol 226:231−241
  116. MM. (1920) On the regeneration and finer structure of the arms of the cephalopods. J Exp. Zool. 31:1−57
  117. VV. (1991) Possible mechanism for influence of weak magnetic fields on biological systems. Bioelectromagnetics 12:71−75
  118. VV. (1995) Comments on «Clarification and application of ion parametric resonance model for magnetic field interactions with biological systems» by Blanchard and Blackman. Bioelectromagnetics 16:268−269
  119. Lednev VV, Malyshev SL. (2001) Effects of weak combined magnetic fields on actin-activated atpaseactivity of skeletal myosin. Abstract collection Bioelectromagnetics Society Annual Meeting, St Paul, Minnesota, USA. 3−4
  120. PM. (1973) Morphogenetic actions of 5-hydroxytriptamine and some analogous substances on the regeneration of the planarian worm Dugesia tigrina. Acta Zool 54:131−137
  121. Lester DS, Brumfeld V. (1991) Divalent cation-induced changes in conformation of protein kinase C. Biophys Chem 39:215−224
  122. AR. (1985) Cyclotron resonance in membrane transport. In: Interactions between Electromagnetic Fields and Cells (Chiabrera A, Nicolini C, Schwan H.P. eds.) pp. 281−296, Plenum Press, New York
  123. Liboff AR, Rozek RJ, Sherman ML, McLeod BR, Smith SD. (1987) Ca2±45 cyclotron resonance in human lymphocytes. J Bioelect 6:13−22
  124. Liboff AR, McLeod BR. (1988) Kinetics of channelized membrane ions in magnetic fields. Bioelectromagnetics 9:39−51
  125. Liboff AR, Thomas JR, Schrot J. (1989) Intensity threshold for 60Hz magnetically induced behavioral changes in rats.
  126. В ioelectromagnetics 10:111−113
  127. AR. (1992) Interaction Mechanism of Low Level Electromagnetic Fields and Living Systems (Norden B, Ramel C, eds): Oxford University Press, Oxford pp. 130−147
  128. Liboff AR, McLeod BR. (1995) Power lines and the geomagnetic field. Bioelectromagnetics 16:227−230
  129. Liburdy RP, Sloma TR, Sokolic R, Yaswen P. (1993) EMF magnetic fields, breast cancer, and melatonin: 60 Hz fields block melatonin’s oncostatic action of ER+ breast cancer cell proliferation. J Pineal Res 14: 89−97
  130. Liu YF and Albert PR (1991) Cell-specific signaling of 5-HT1A receptor. Modulation by protein kinases С and A. J Biol Chem 266(35): 23 689−23 697
  131. Markov MS, Muehsam DJ, Pilla AA. (1993a) Modulation of cell-free myosin phosphorylation with small ambient static magnetic field changes. In: Transaction of the 2nd Congress of the Europen Bioelectromagneyic Associaton. Bled-Slovenia, pp. 73−74
  132. Markov MS, Wang S, Pilla AA. (1993b) Effects of weak low frequency sinusoidal and DC magnetic fields on myosin phosphorylation in cell-free preparation. Bioelectrochem Bioenerg 30:119−125
  133. Markov MS, Pilla AA. (1997) Weak static magnetic fields modulation of myosin phosphorylation in a cell free preparation: calcium dependence. Bioelectrochem Bioenerg, 43:233−238
  134. Martelly I, Franquinet R, Le Moigne A. (1981) Relationship between variations of cAMP, neuromediators and stimulation of nucleic acid synthesis during planarian (Polycelis tenuis) regeneration. Hydrobiologia 84:195−201.
  135. Martelly I, Franquinet R. (1984) Planarian regeneration as a model for cellular activation studies. Trends Biochem. Sci. 9 :468−471
  136. Martelly I, Molla A., Thomasset M., Le Moigne A. (1983) Regeneration of Planarians: In vivo and in vitro effects of calcium and calmodulin on DNA synthesis. Cell differettiation 13:25−34
  137. I. (1984a) Calcium thresholds in the activation of DNA and RNA syntesis in cultured planarian cells: relationship with hormonaal and DB cAMF effect. Cell Differ 15:25−36
  138. Martelly 1.(1984b). Planarian regeneration: effect of the external calcium concentration on total calcium, hormonal contens and DNA syntesis. Comp Biochem Phisiol 78A:329−333
  139. AH. (1988) Magnetic fields and time dependent effects on development. Bioelectromagnetics 9:393−396
  140. AH. (1992) Development of chicken embryos following exposure to 60-Hz magnetic fields with differing waveforms. Bioelectromagnetics 13:223−230
  141. McLeod BR, Liboff AR. (1986) Dynamic characteristics of membrane ions in multifield configurations of low-frequency electromagnetic radiation. Bioelectromagnetics 7:177−189
  142. McLeod BR, Smith SD, Cooksey KE, Liboff AR. (1987a) Ion cyclotron resonance frequencies enhance Ca -dependent motility in diatoms. J Bioelect 6:1−12
  143. McLeod BR, Smith SD, Liboff AR. (1987b) Calcium and potassium cyclotron resonance curves and harmonics in diatoms (A. coffeaeformis) J. Bioelectricity 6:153−168
  144. McLeod BR, Liboff AR, Smith SD. (1992) Biological systems in transition: sensitivity to extremely low-frequency fields. Electro- and Magnetobiology 11:29−42
  145. Mevissen M, Kietzmann M, Loscher W. (1995). In vivo exposure of rats to a weak alternative magnetic field increases ornitine decarboxylase activity in the mammary gland by a similar extent as the carcinogen DMBA. Cancer Lett 90:207−214
  146. Michalopoulos GK, DeFrances MC. (1997) Liver regeneration. Science 276:60−66
  147. Montgomery JR, Coward S J. (1974) On the minimal size of a planarian capable of regeneration. Trans Am Microsc Soc 93:386−391
  148. J. (1981) Cell activation during regeneration of planarians. Hidrobiologia 84:203−207
  149. Moraczewski J, Franquinet R, Le Moigne A. (1983) Characterisation and activity during planarian regeneration of two types of protein kinases: cyclic AMP-dependent and calcium-dependent, cyclic AMP-independent. Biol Cell 47:171−178
  150. Moraczewski J, Martelly I, Franquinet R. (1986) Protein phosphorilation and the role of Ca in planarian turbellarian regeneration. Hydrobiologia 132:223−227
  151. Morawska E, Moraczewski J, Malczwska M, Duma A. (1981) Adenylate cyclase in regenerating tissues of planarians Dugesia liburdis. Hidrobiologia 84:209−212
  152. Morel F, Doussiere J, Vignais PV. (1991) The superoxide-generating oxidase of phagocytic cells. Physiological, molecular and pathophysiological aspects. Eur J Biochem 201:523−546
  153. TH. (1901) Regeneration. New York. The Macmillan Company
  154. Morita M, Best JB. (1984) Effects of photoperiods and melatonin on planarian asexual reproduction. J Exp Zool 231:273−282
  155. Morita M, Hall F, Best JB, Gem W. (1987) Photoperiodic modulation of cephalic melatonin in planarians. J Exp Zool 241:383 388
  156. M. (1995) Structure and function of the reticular cell in the planarian Dugesia dorotocephala. Hydrobiologia 305:189−196
  157. Morrison SJ, Shah NM, Anderson DJ. (1997) Regulatory mechanisms in stem cell biology. Cell 88:287−298
  158. Mullins JM, Penafiel LM, Juutilainen J, Litovitz ТА. (1999) Dose-response of electromagnetic field-enhhancced ornitine decarboxylase activity. Bioelectrochem Bioenerg 48:193−199
  159. Nafziger J, Desjobert H, Benamar B, Guilosson JJ, Adolphe M. (1993) DNA mutation and 50 Hz electromagnetic fields. Bioelectrochem Bioenerg 30:133−141
  160. AE. (1952) Regeneration and wound-healing. John Wiley & Sons, New York
  161. Nemechek GM, Coughlin DA, Handly DA, and Moskowitz MA. (1986) Stimulation of aortic smooth muscle cell mitogenesis by serotonin. PNAS USA 83:674−678
  162. Newmark PA, Alvarado S A. (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220:142−153
  163. DR. (1958) New (and better?) parts for old. New Biol 26:4762
  164. Y. (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607−614
  165. Ottani V, Monti MG, Piccinini G, Pernecco L, Zaniol P, Ruggeri A, Barbiroli В (1984). Pulsed electromagnetic fields increase the rate of rat liver regeneration after partial hepatectomy. Pros Soc Exp Biol Med 176(4):371−377
  166. Palmberg I Reuter M. (1983) Asexual reproduction in Microstomum lineare (Turbellaria) I. An autoradiographic and ultrastructural study. Int J Invert Reprod 6:197−206
  167. I. (1986) Cell migration and differentiation during wound healing and regenerationin in Microstomum lineare (Turbellaria). Hidrobiologia 132:181−188
  168. I. (1990) Stem cells in Microturbellarians. An autoradiographi and immunocytochemical study. Protoplasma 158:109 120
  169. Park HD, Ortmeyer AB, Blankenbaker DP. (1970) Cell division during regeneration in Hydra. Nature 227:617−619
  170. Parkinson WC, Sulik GL. (1992) Diatom response to extremely low-frequency magnetic fields. Radiat Res 130:319−330
  171. Paskolini R, Gargiulo AM, Spreca A, Ceccarelli P. (1982) Cytochemical localisation of the adenylate cyclase activity in planarian tissues. J Exper Zool 23:193−196
  172. KJ. (1959) Cytological studies on planarian neoblasts. Z Zellforsch 50:799−817
  173. KJ. (1972) Studies on regeneration blastemas of the planarian Dugesia tigrina with special reference to differentiation of the muscle-connective tissue filament system. Wilhelm Roux Arch Entw Mech 169:134−169
  174. RJ. (1976) Scanning electron microscopical observation on epidermal wound healing in the planarian Dugesia tigrina. Whilhelm Roux’s Arch 179:251−273
  175. Persinger MA, Belanger-Chellew G. (1999) Facilitation of seizures in limbic epileptic rats by complex 1 microTesla magnetic fields. Percept Mot Skills 89:486−492
  176. Persinger MA, Cook LL, Koren SA. (1999) Suppression of experimental allergic encephalomyelitis in rats exposed nocturnally to magnetic fields. Int J Neurosci, 100:107−116
  177. Persinger MA, Koren SA, O’Connor RP. (2001) Geophysical variables and behavior: CIV. Power-frequency magnetic field transients (5 microtesla) and reports of haunt experiences within an electronically dense house. Percept Mot Skills, 92:673−674
  178. Pezzetti F, De Mattei M, Caruso A, Cadossu R, Zucchini P, Carinci F, Traina GC, Sollazzo V. (1999) Effect of pulsed electromagnetic fields on human chondrocytes: an in vitro study. Calcif Tissue Int 65:396−401
  179. R. (1990) Is there an EMF-cancer connection? Science 249:1096−1098
  180. Potts MD, Parkinson WC, Nooden LD. (1997) Raphanus satinus and electromagnetic fields. Bioelectrochem Bioenerget 44:131−140
  181. Prasad AV, Miller MW, Carstensen EL, Cox C, Azadniv M. Brayman AA. (1991) Failure to reproduce increased calcium uptake in human lymphocytes at purported cyclotron resonance exposure conditions. Radiat Environ Biophys 30:305−320
  182. Prasad AV, Miller MW, Cox C, Carstensen EL, Hoops H, and Brayman AA. (1994) A test of the influence of cylotron resonance exposures on diatom motility. Health Phys 66:305−312
  183. Prato FS, Carson JJL, Ossenkopp K-P, Kavaliers M. (1995) Possible mechanisms by which extremely low frequency magnetic fields affect opioid function. FASEB J 9:807−814
  184. Prato FS, Kavaliers M, Thomas AW. (2000) Extremely low frequency magnetic fields can either increase or decrease analgaesia inthe land snail depending on field and light conditions Bioelectromagnetics 21:287−301
  185. DJ. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71−74
  186. DJ. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71−74
  187. Reese JA, Frazier ME, Morris JE, Buschbom RL, Miller DL. (1991) Evaluation of changes in diatom mobility after exposure to 16-Hz electromagnetic fields. Bioelectromagnetics 12:21−26
  188. Reiger R, Salvenmoser W, Legniti A, Simonsberger P, Adam H, Tyler S. (1991) Organization and differentiation of the body wall musculature in Macrostomum (Turbellaria, Macrostomidae). Hydrobiologia, 227:119−129
  189. Reiger RM, Legniti A, Ladurner P, Reiter D, Asch E, Salvenmoser W, Schurmann W, Peter R. (1999) Ultrastructure of neoblasts in micriturbellaria: Significance for understanding stem cells in free-living Platyhelminthes. Invertebr Reprod Dev 35:127−140
  190. RW. (1954) Regeneration in the lens in the amphibian eye. Q Rev Biol 29:1−46
  191. Rittenhouse SE, and Sasson JP (1985) Mass changes in myoinositol trisphosphate in human platelets stimulated by trombine. Inhibitory effect of phorbol ester. J.Biol. Chem. 260:8657−8660
  192. Rogdestvenskaya Z, Tiras Kh, Srebnitskaya 1, Lednev V. (2001) Modulation of regeneration of planarians Dugesia tigrina (Platyhelminthes, Triclada) by weak magnetic field. Belg. J.Zool., 131 (Supplement 1): 149−150
  193. Rogdestvenskaya Z. E, Kb. P. Tiras, Havrysh О. H.,. Radavsky Yu. L,. Lednev V. V (2000). Join action of weak combined magnetic fields and serotonin on planarian’s regeneration. In Abstracts of East European Conference «Simpler Nervous Systems», p. 104
  194. Z.E., Tiras Kh. P., Lednev V.V. (2002). Ultra weak alternating magnetic fields affect the regeneration in planarians. In Abstracts of International Conference «Mechanisms of ultra doses action «, Moscow, p. 201.
  195. Roy S, Noda Y, Eckert V, Traber MG, Mori A, Liburdy RP, Packer L. (1996) The phorbol 12-myristate 13-acetate (PMA) inducedoxidative burst in rat peritoneal neutrophils is increased by 0.1 mT (60 Hz) magnetic field. FEBS Lett 376:164−166
  196. Rozek RJ, Sherman ML, Liboff AR, McLeod BR, Smith SD. (1987) Nifedipine is an antagonist to cyclotron resonance enhancement of 45Ca incorporation in human lymphocytes. Cell Calcium 8:413−427
  197. Ryu SH, Kim UH, Wahl MI, Brown AB, Carpenter G, Huang KP, Phee SG (1990) Feedback regulation of phospholipase C-beta by protein kinase C. J. Biol Chem. 265:17 941−17 945
  198. Saffer JD, and Thurston SJ (1995) Cancer risk and electromagnetic fields. Nature 375:22−23
  199. Saitoh O, Yuruzume E, Nakata H. (1996) Identification of planarian serotonin receptor by ligand binding and PCR studies. NeuroReport, 8: 173−178
  200. Saitoh O, Yuruzume E, Watanabe K, Nakata H. (1997) Molecular identification of G protein-coupled receptors family which is expressed in planarians. Gene, 195: 55−61
  201. Salo E, Baguna J (1984) Regeneration and pattern formation in planarians. I. The pattern of mitosis in anterior and posterior regeneration in Dugesia (G) tigrina, and a new proposal for blastema formation. J Embryol Exp Morphol 83:63−80
  202. Salo E, Baguna J (1985) Cell movement in intact and regenerating planarians. Quantitation using chromosomal, nuclear and cytoplasmic markers. J Embryol Exp Morphol 89:57−70
  203. Salo E, Baguna J. (1986) Stimulation of cellular proliferation and differentiation in intact and regenerating planarian Digesia tigrina by neuropeptide substance P. J Exp. Zool. 237:129−135
  204. Salo E, Baguna J (1989) Regeneration and pattern formation in planarians. II. Local origin and role of cell movements in blastema formation. Development 107:69−76
  205. Sandstrom M, Mild KH, Lovtrup S. (1986) Effect of weak pulsed magnetic filelds on chick embryogenesis. In: «Work with display» units (Knave B, Wideback P-G. eds) pp. 135−140, Elsevier Science Publishers, Amsterdam
  206. J. (1990) On the cyclotron resonance model of ion transport. Bioelectromagnetics 11:203−205
  207. Sandyck R, Derpapas. (1993) Further observations on unique efficacy of picoTesla range magnetic fields in Parkinson’s disease. J Neuroscience, 69:167−183
  208. Sandyck R, Iacono RP. (1993) Reversal of visual neglet in Parkinson’s disease by treatment with picoTesla range magnetic fields. J Neuroscience 73:93−107
  209. R. (1993) Weak magnetic fields antagonize the effects of melatonin on blood glucose levels in Parkinson’s disease. J Neuroscience 68:85−91
  210. R. (1994) Rapid normalization of visual evoked potentials by picoTesla range magnetic fields in chronic progressive multiple sclerosis. J Neuroscience 77:243−259
  211. Sauzin-Morton MJ. (1973) Etude ultrastructurale des neoblastes de Dendrocoelum lacteum au cours de la regeneration. J Ultrastruct Res 45:206−222
  212. Sisken BF, Fowler I, Mayaund C, Ryaby JP, Ryaby J, Pilla A. (1986) Pulsed electromagnetic fileds and normal chick development. J Bioelect 5:25−34
  213. Slack JMW. (1980) The source of cells for regeneration. Nature 286:760
  214. Smith SD, McLeod BR, Liboff AR, Cooksey K. (1987) Calcium cyclotron resonance and diatom mobility. Bioelectromagnetics 8:215 227
  215. RF. (1988) Lithium as a normal metabolite: some implications for cyclotron resonance of ions in magnetic fields. Bioelectromagnetics, 9:387−391
  216. Smith SD, McLeod BR, Liboff AR. (1991) Effects ofresonant magnetic fields on chick femoral development in vitro. Bioelectromagnetics 10:81−99
  217. Smith SD, McLeod BR, Liboff AR. (1993)Effects of CR-tuned 60 Hz magnetic fields on sprouting and early growth of Raphanus satinus. Bioelectrochem Bioenerg 32:67−76
  218. Stern S, Laties VG, Nguyen QA, Сох С. (1996) Exposure to combined static and 60 Hz magnetic fields: failure to replicate a reported behavioral effect. Bioelectromagnetics, 17:279−292
  219. Subrahmayam, Sanker Narajan PY, Srinivasan TM (1985). Effects of magnetic micropulsation on the biological system, a bioenviromental study. Int. J. Biometeorol., 29(3): 293−305.
  220. Sanker Narajan PV, Subrahmajan S, Satjanrrajana M. (1984) Effects of pulsating magnetic fields on the physiology test animals and man. Curr. Sci. 53(18): 959−965.
  221. Supino R, Bottone MG, Pellicciari C, Caserini C, Bottoroli GM, Belleri M, Veicsteinas A. (2001) Sinusoidal 50 Hz magnetic fields do not affect structural morphology and proliferation of human cells in vitro. Histol Histopatol 16:719−726
  222. Thomas JR, Schrot J, Liboff AR. (1986) Low-intensity magnetic fields alter operant behavior in rats. Bioelectromagnetics 7:349−357
  223. Tofani S, Ferrara A, Anglessio L, Gilli G. (1995) Evidence for genotoxic effects of resonant ELF magnetic fields. Bioelectromagnetics 15:293−301
  224. Trillo MA, Ubeda A, Blanchard JP, House DE, Blackman CF.1996) Magnetic fields at resonant conditions for the hydrogen ion affect neurite outgrowth in PC-12 cells: A test of the ion parametric resonance model. Bioelectromagnetics 17:10−20
  225. Ubeda A, Leal J, Trillo MA, Jimenez MA, Delgado JM. (1983) Pulse shape of magnetic fields influences chick embryogenesis. J Anat 137:513−536
  226. Valberg PA, Kavet R, Rafferty CN. (1997) Can low-level 50/60 Hz electric and magnetic fields cause biological effects? Radiat Res 148:221
  227. Van Corven EJ, Groenink A, Jalink K, Eichholtz T, Moolenaar WH (1989) Lysophosphatidate-induced cell proliferation: identification and dissection of signalling pathways mediated by G proteins. Cell 59(l):45−54
  228. Villar D, Schaeffer DJ. (1993) Morphogenetic action of neurotransmitters on regenerating planarians. Biomed Environm Science 6:327−347
  229. Volpi M, Sha’afi RI, Epstein PM, Andrenyak DM, Feinstein MB (1981) Local anesthetics, mepacrine, and propranolol are antagonists of calmodulin. Proc Natl Acad Sci USA. 78:795−799
  230. Weinstein S, and Gavurin L (1977) The effect of 3,5 cyclic monophosphate on the mitotic rate in regenerating Dugesia dorotocephala. Cell Differ 5:311−322
  231. WeverR (1974) ELF-effects on human circadian rhythms. In «ELF and VLF electromagnetic field effects», (ed. Persinger MA) New York: Plenum Press pp. 101−141
  232. Wolff E, and Dubois F (1948) Sur la migration des cellules de regeneration chez les planaires. Rev Suisse Zool 55:219−227
  233. E. (1962) Recent researches on the regeneration of planaria. In: Regeneration. 20th Growth Simposium, (Rudnick D ed): Ronald press, New York. pp. 53−84
Заполнить форму текущей работой