Помощь в учёбе, очень быстро...
Работаем вместе до победы

Эконометрика 2 задния

КонтрольнаяПомощь в написанииУзнать стоимостьмоей работы

В обоих случаях с ростом дохода растет среднее значение потребления. Но на рисунке 1.1, а дисперсия остается одной и той же для различных уровней дохода, а на рисунке 1.1, б дисперсия потребления не остается постоянной, а увеличивается с ростом дохода. Фактически это означает, что во втором случае субъекты с большим доходом в среднем потребляют больше, чем субъекты с меньшим доходом, и, кроме… Читать ещё >

Содержание

  • ЗАДАНИЕ
  • Раскройте содержание вопроса, суть и содержание Гомоскедастичности, Гетероскедастичности остатков; автокорреляции в остатках. Эконометрические (количественные) выводы и их последующие интерпретация
  • ЗАДАНИЕ
  • Решите задачу. Имеются данные, характеризующие последовательность изменения цен в зависимости от факторов
  • Требуется определить, по каким ценам можно выставлять товары на потребительский рынок, если тенденция спроса и насыщенность рынка сохранится на прежнем уровне. Оцените адекватность выводов

Эконометрика 2 задния (реферат, курсовая, диплом, контрольная)

При практическом проведении регрессионного анализа при помощи метода МНК следует обратить серьезное внимание на проблемы, связанные с выполнимостью свойств случайных отклонений моделей. Свойства оценок коэффициентов регрессии напрямую зависят от свойств случайного члена в уравнении регрессии. Для получения качественных оценок необходимо следить за выполнимостью предпосылок МНК, так как при их нарушении МНК может давать оценки с плохими статистическими свойствами. Одной из ключевых предпосылок МНК является условие постоянства дисперсий случайных отклонений. Выполнимость данной предпосылки называется гомоскедастичностью (постоянством дисперсии отклонений), невыполнимость данной предпосылки называется гетероскедастичностью (непостоянством дисперсии отклонений).

Случайные отклонения принимают произвольные значения некоторых вероятностных распределений. Но, несмотря на то что при каждом конкретном наблюдении случайное отклонение может быть большим либо меньшим, положительным либо отрицательным, не должно быть причины, вызывающей большие отклонения при одних наблюдениях и меньшие при других.

На рисунке 1.1 приведены два примера линейной регрессии зависимости потребления от дохода: .

В обоих случаях с ростом дохода растет среднее значение потребления. Но на рисунке 1.1, а дисперсия остается одной и той же для различных уровней дохода, а на рисунке 1.1, б дисперсия потребления не остается постоянной, а увеличивается с ростом дохода. Фактически это означает, что во втором случае субъекты с большим доходом в среднем потребляют больше, чем субъекты с меньшим доходом, и, кроме того, разброс в их потреблении более существенен для большего уровня дохода. Люди с большим доходом имеют больший простор для его распределения. Реалистичность данной ситуации не вызывает сомнений.

Рис. 1.1

Гетероскедастичность приводит к тому, что выводы, полученные на основе — истатистик, а также интервальные оценки будут ненадежными.

Обнаружение гетероскедастичности

Обнаружение гетероскедастичности является довольно сложной задачей. В настоящее время существует ряд методов, позволяющих определить наличие гетероскедастичности.

1. Графический анализ остатков

В этом случае по оси абсцисс откладываются значения объясняющей переменной, а по оси ординат либо отклонения, либо их квадраты. Примеры таких графиков представлены на рисунке 1.2.

На рисунке 1.2, а все отклонения находятся внутри полуполосы постоянной ширины, параллельной оси абсцисс. Это говорит о независимости дисперсий от значений переменной и их постоянстве, т. е. в этом случае выполняются условия гомоскедастичности.

На рисунках 1.2, б  12, д наблюдаются некоторые систематические изменения в соотношениях между и. Рисунок 1.2, б соответствует примеру из главы 1.1. Рисунок (в) отражает линейную, рисунок 1.2, г квадратичную, рисунок 1.2, д гиперболическую зависимости между квадратами отклонений и значениями объясняющей переменной. Другими словами, ситуации 1.2, б  1.2, д отражают большую вероятность наличия гетероскедастичности для рассматриваемых

Показать весь текст
Заполнить форму текущей работой