Развитие методов анализа и синтеза нечетких супервизорных систем автоматического управления
Диссертация
Получены условия, при выполнении которых устойчивость в малом нечеткой супервизорной САУ может быть определена по ее непрерывной усредненной модели. Впервые показана возможность применения частотного критерия абсолютной устойчивости для анализа устойчивости в целом непрерывных нечетких супервизорных САУ. ф 4. Разработаны рекомендации по синтезу НС САУ, позволяющая получать системы, оптимальные… Читать ещё >
Содержание
- 1. СОСТОЯНИЕ НАУЧНЫХ ИССЛЕДОВАНИЙ В ОБЛАСТИ АНАЛИЗА И СИНТЕЗА НЕЧЕТКИХ СУПЕРВИЗОРНЫХ САУ
- 1. 1. Системы, управления с нечеткой логикой
- I. 1) I
- 1. 2. Обзор научных работ, посвященных нечетким супервизорным САУ
- 1. 3. Подходы к анализу и синтезу нечетких супервизорных САУ
- 1. 4. Конкретизация постановки задач исследования
- 1. 5. Выводы по главе
- 2. АНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ НЕЧЕТКИХ СУПЕРВИЗОРНЫХ СИСТЕМ УПРАВЛЕНИЯ
- 2. 1. Математическая модель и статика системы
- 2. 2. Линеаризация системы и критерий устойчивости в «малом»
- 2. 3. Коэффициент передачи разомкнутой системы
- 2. 4. Анализ устойчивости в целом
- 2. 5. Анализ НС САУ с помощью непрерывных моделей
- 2. 5. 1. Непрерывная модель и условия ее применимости
- 2. 5. 2. Условия устойчивости для непрерывной НС САУ на основе ф частотного критерия Попова
- 2. 6. Пример аналитического исследования НС САУ
- 2. 7. Выводы по главе
- 3. СИНТЕЗ И ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ НЕЧЕТКИХ СУПЕРВИЗОРНЫХ СИСТЕМ УПРАВЛЕНИЯ
- 3. 1. Рекомендации по синтезу нечетких супервизорных САУ
- 3. 2. Программный комплекс для анализа и синтеза НС САУ
- 3. 3. Численное исследование нечетких супервизорных САУ
- 3. 4. Выводы по главе
- 4. НЕЧЕТКИЕ СУП^}Щ10ЕЦЬ1Е СИШ: Ши
- АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ЛАБОРАТОРНЫМ ТЕРМОСТАТОМ
- 4. 1. Описание лабораторного термостата
- 4. 2. Методика синтеза нечеткой супервизорной САУ лабораторным термостатом
- 4. 3. Выводы по главе
Список литературы
- Алиев Р.А., Церковный А. З., Мамедова Г. А. Управление производством при нечеткой исходной информации. М.: Энергоатомиздат, 1991. 2. У сков А. А., Кузьмин А. В. Интеллектуальные технологии управления. Искусственные нейронные сети и нечеткая логика. М.: Горячая Линия Телеком, 2004.
- Ульянов СВ. Нечеткие модели интеллектуальных систем управления: теоретические и прикладные аспекты (обзор) Изв. АН. Техническая кибернетика. 1991. 3. 3−28.
- Захаров В.И., Ульянов СВ. и Нечеткие систем модели интеллектуальных I. Научно- промышленных регуляторов управления: организационные, технико-экономические и прикладные системы Изв. АН. Техническая кибернетика. 1992. 5. 171−196.
- Захаров В.И., Ульянов СВ. Нечеткие модели интеллектуальных промышленных регуляторов и систем управления: П. Эволюция и принципы построения Изв. АН. Техническая кибернетика. 1993. 4. 171−196.
- Захаров В.И., Ульянов СВ. Нечеткие модели интеллектуальных промышленных регуляторов и систем управления: III. Методология проектирования Изв. АН. Техническая кибернетика. 1993. 5. 197 216.
- Захаров В! И., Ульянов СВ. Нечеткие модели интеллектуальных промышленных регуляторов и систем управления: IV. Имитационное моделирование Изв. АН. Техническая кибернетика. 1994. 5. 168 210.
- Нечеткие множества в моделях управления и искусственного интеллекта Под. ред. ДА. Поспелова. М.: Наука, 1986.
- Интеллектуальные системы автоматического управления Под. ред. И. М. Макарова, В. М. Лохина. М.: Физматлит, 2001.
- Усков А.А., Круглов В. В. Интеллектуальные системы управления на основе методов типография, 2003.
- Усков А.А. Принципы построения систем управления с нечеткой логикой Приборы и системы. Управление, контроль, диагностика. 2004. 6. 7−13.
- Осовский Нейронные сети для обработки информации. М.: Финансы и статистика, 2002.
- Лукас В. А., Панько М. А. Fuzzy-управление от эйфории к разумному применению// Сборник трудов 16-й международной конференции нечеткой логики. Смоленск: Смоленская городская «Математические методы в технике и технологии». Ростов-на-Дону. 2003.
- Лукас В. А. Теория управления техническими системами. Екатеринбург. УГГГА, 2002.
- Fuzzy Control. Theory and Practice. Physika-Verlag. A Company. 2000.
- Бобко В.Д., Золотухин Ю. Н., Нестеров А. А. О нечеткой динамической коррекции параметров ПИД-регулятора. Автометрия. 1998. 1. 5055.
- Бобко В.Д., Золотухин Ю. Н., Нестеров А. А. Оптимальная траектория как основа построения базы знаний нечеткого логического контроллера. Труды Шестого Международного семинара «Распределенная обработка информации РОИ-98″, Новосибирск. 1998.
- Бесекерский В.А., Попов Е. П. Теория систем автоматического Springer-Verlag регулирования. М.: Наука, 1972.
- Ульянов С. Информационные технологии проектирования баз знаний: проблемы создания и защиты интеллектуальной собственности. Программные продукты и системы. 2005. 2. 2−8.
- Программная проектирования управления./ поддержка баз процессов формирования, извлечения и знаний робастных Л.В. интеллектуальных К. систем А. Панфилов, Литвинцева, Такахаши,
- Построение робастных баз знаний нечетких регуляторов для интеллектуального управления существенно-нелинейными динамическими системами. I. Применение технологии мягких вычислений./ И. Кураваки, Л. В. Литвинцева, А. Панфилов, Г. Г. Ризотто, К. Такахаши, И. С. Ульянов, Т. Хагивара, А. В
- Язенин Изв. РАН. Теория и системы управления. 2004. 4 127−145.
- Intelligent Robust Control Design based on New. Types of Computations/ L.V. Litvintseva, K. Takahashi, S.A. Panfllov, I.S. Ulyanov, S.S. Ulyanov. Universita, degli Studi di Milano, Dipartimento di Tehnologie dell Informazione. Polo Didattico e di Ricerva diCrema. Vol. 60. 2004.
- Tzafestas S., Papanikolopoulos N.P. Incremental fuzzy expert PID control. IEEE Transactions on Industrial Electronics. 1990. 37(5). P. 365−371. 24. Van Nauta Lemke Y.R., DE-ZHAO W. Fuzzy PID supervisor. In Proceedings of the 24th IEEE Conference on Decision and Control. Fort Lauderdale. Florida. USA. 1985. 25. Van Nauta Lemke H.R., Krijgsman A. J. Design of fuzzy PID supervisors for systems with different performance requirements. In Proceedings IMACS
- Dublin. Ireland. 1991. 26. Li M. X., Bruijn P. M., Verbruggen H. В. Tuning cascade PID controllers using fuzzy logic. Mathematics and Computers in Simulation. 1994. № 37. P. 143−151.
- Fink A., Fischer M., Nelles O. Supervision of Nonlinear Adaptive Controllers Based on» Fuzzy Models. 14th IF AC World Congress. Beijing, China. Volume Q, P. 335−340. 1999: 26. Takagi Т., Sugeno M. Fuzzy Identification of Systems and Its Applications to Modeling and Control IEEE Trans. SMC. 1985. Vol. 15, No. 1, P. 116−132.
- Isermann R., Lachmann K.-H., D. Matko. Adaptive Control Systems. Prentice Hall. Englewood Cli.s. 1992.
- Ljung L. System Identification Englewood Cli.s. 1
- Fortescue T.R., Kershenbaum L.S., Ydstie B.E. Implementation of self-tuning regulators with variable forgetting factor. Automatica. 1981. 17(6). P. 831— 835.
- Babuska R. Fuzzy Modeling for Control. Kluwer, 1998.
- Driankov D., Palm R. Advances in Fuzzy Control. Physica-Verlag. Heidelberg. Germany, 1998.
- Pedrycz W., Gomide F. An Introduction to Fuzzy Sets: Analysis and Design. MIT Press. Hardcover, 1998.
- Pham Т., Chen G. Introduction to Fuzzy Sets, Fuzzy Logic and Fuzzy Control Systems. Lewis Publishers, 2000.
- Wang L.X. A Course in Fuzzy Systems and Control. Prentice Hall PTR. CliEs. NJ, 1997.
- Lotfi A. Learning Fuzzy Interference Systems: Ph.D. University of Queensland. Department of Electrical and Computer Engineering. Australia, 1995.
- Jager R. Fuzzy logic in control: Ph.D. Technische Universiteit Delft. 1995.
- Особенности нечетких преобразований в задачах обработки информации и управления. Часть 1 И. М. Макаров, В. М. Лохин, В. Манько, М. П. Романов, А. А. Васильев, А. А. Хромов Информационные технологии. 1999. № 10.
- Особенности нечетких преобразований в задачах обработки информации и управления. Часть 2 И. М. Макаров, В. М. Лохин, В. Манько, М. П. Романов, А. А. Васильев, А. А. Хромов Информационные технологии. 1999. 11.
- Brae М., Rutherford D.A. Teoretical and Linguistic Aspects of the Fuzzy Logic Controller//Automation. Pergamon Press. 1979. Vol. 12. P. 553−557.
- Ротштейн А.П. Интеллектуальные технологии идентификации: нечеткая логика, генетические алгоритмы, нейронные сети. Винница: УНИВЕРСУМ-Винница, 1999.
- Синтез нечетких регуляторов на основе вероятностных моделей В. М. Лохин, И. М. Макаров, В. Манько, М. П. Романов Изв. РАН. ТиСУ. 2000. 2.
- Кудинов Ю.И. Нечеткие системы управления Изв. АН СССР. Техническая кибернетика. 1990. 5. 196−206.
- Коломейцева М.Б., Хо Д.Л. Адаптивные системы управления динамическими объектами на базе нечетких регуляторов. М.: Компания Спутник+, 2002. 46. Хо Д.Л. Синтез адаптивных систем управления нелинейными динамическими объектами на базе нечетких регуляторов и нейросетевой технологии. Дисс. доктора техн. наук. М.: МЭИ, 2002.
- Коломейцева М.Б., Хо Д.Л. Синтез адаптивного нечеткого регулятора для нелинейной динамической системы Вестник МЭИ. 2000. 9. 85−88.
- Коломейцева М.Б., Хо Д.Л. Синтез адаптивной системы на базе нечеткого регулятора для многомерного динамического объекта Приборы и системы. Управление. Контроль. Диагностика. 9. 85−88.
- Bobko V.D., Nesterov А.А., Zolotukhin Yu.N. An the PID-parameters Fuzzy Dynamic Correction. Optoelectronics, Instrumentation, and Data Processing, 1998, 1.
- Kohn-Rich S., Flashner H. Robust fuzzy logic control of mechanical systems Fuzzy Sets and Systems. 2003. 133. P. 77−108.
- Справочник по теории автоматического управления Под. ред. А. А. Красовского. М.: Наука, 1987.
- Видаль П. Нелинейные импульсные системы. М.: Энергия, 1974.
- Кунцевич В.М., Чеховой Ю. Н. Нелинейные системы управления с частотно- и широтно-импульсной модуляцией. Киев: Техшка, 1970.
- Кунцевич В.М., Лычак М. М. Синтез систем автоматического управления с помощью функций Ляпунова. М.: Наука, 1977.
- Воронов А.А. Устойчивость, управляемость, наблюдаемость. М.: Наука, 1979.
- Хлыпало Е.И. Нелинейные корректирующие устройства автоматических систем. Л.: Энергия, 1973.
- Пальтов И.П. Качество процессов и синтез корректирующих устройств в нелинейных автоматических системах. М.: Наука, 1975.
- Цыпкин ЯЗ., Попков Ю. С. Теория нелинейных импульсных систем. М.: Наука, 1973.
- Круглов В.В., Борисов В. В. Гибридные нейронные сети. Смоленск: Русич, 2001.
- Круглов В.В., Борисов, В.В. Искусственные нейронные сети. Теория- и практика. М.: Горячая линия- ТЕЛЕКОМ, 2001. 6 Г. Круглов В. В., Борисов В. В. Нечеткие нейронные сети- М.: ИПРЖР, 2003.
- Круглов В.В., Дли М.И. Интеллектуальные информационные системы: компьютерная поддержка систем нечеткой логики и нечеткого вывода. М.: Физматлит, 2002.
- Круглов В.В., Дли М.И., Голунов Р. Ю. Нечеткая логика и искусственные нейронные сети. М.: Физматлит, 2001.
- Yongsheng Ding, Нао Ying, Shihuang Shao. Typical Takagi-Sugeno PI and PD fuzzy controllers: analytical structures and stability analysis Information Sciences. 2003. 151. P. 245−262.
- Takagi Т., Sugeno M. Stability Analysis and Design of Fuzzy Control Systems Fuzzy Sets and Systems. 1992. Vol. 45. 2. P. 135−156.
- Akar M., Ozguner U. Stability and Stabilization of Takagi-Sugeno systems Proc. CDC99. 1999. P. 4840−4845.
- Ning Li, Shao Yuan Li, Yu Geng Xi, Sam Shuzhi Ge. Stability Analysis of T-S Fuzzy System Based on Observers International Journal of Fuzzy Systems. 2003. Vol. 5. 1. P: 22−30:
- Piecewise quadratic stability of fuzzy systems M. Johansson, et al. IEEE Trans. Fuzzy Systems. 1999. 7. P. 713−722.
- Sugeno M., On stability of fuzzy systems expressed by fuzzy rules with singleton consequents IEEE Trans. Fuzzy Systems. 1999. 7. P. 201−224. fuzzy
- Sugeno M. On stability of fuzzy systems expressed by fuzzy rules with singleton consequents IEEE Trans. FuzzySystems. 1999. 7. P. 201−224.
- Johansson M., Rantzer A., Arzen K.E. Piecewise quadratic stability of fuzzy systems IEEE Trans. Fuzzy Systems. 1999. 7. P. 713−722.
- Chen C.L., Wang S.N., Hsieh СТ., Chang F.Y. Theoretical analysis of a fuzzylogic controller with unequallyspaced triangular membership functions Fuzzy Sets and Systems. 1999. 101. P. 87−108.
- Margaliot M., Langholz G. Fuzzy Lyapunov-based approach to the design of fuzzy controllers Fuzzy Sets and Systems 1999. 106. P. 49−59. 75. Ray K.S., Majumder D.D. Application of circle criteria for stability analysis of linear SISO and MIMO systems associated with fuzzy logic controller IEEE Trans on Systems Man and Cybernetics. SMC-14. 1984. P. 345−349.
- Takahara S., Ikeda K., Miyamoto S. Fuzzy control rules and stability condition Conference on Fuzzy Logic and Neural Networks. Iizuka. Japan. 1992. 77. Lim J.T. Absolute stability of class of nonlinear plants with fuzzy logic controllers //Electronic letters. 28. 1992. P. 1968−1970.
- Усков A.A., Круглов B.B. Устойчивость систем с блоками нечеткого логического вывода в объекте управления Вестник МЭИ. 2003. 3.
- Усков А.А. Устойчивость систем управления с гибридными (нечеткими) нейронными сетями Нейрокомпьютеры: Разработка и применение. 2003. 3−4.
- Усков А.А. Устойчивость замкнутых систем управления с нечеткой логикой Приборы и системы. Управление, контроль, диагностика. 2003. 9. 8−9.
- Анализ нечетких систем управления методом гармонической линеаризации Б. Г Ильясов, Р. А. Мунасыпов, О. В. Даринцев, Л.П.
- Шумихин А.Г., Игушев В. Н. Математическое моделирование и частотные методы при параметрическом синтезе АСР с нечеткими, регуляторами. Сборник трудов 15-й международной конференции «Математические методы в технике и технологии». ММТТ77. Тамбов: 2002. Т. 5. 131−133.
- Smith S.M., Comer D.J. Self-tuning of a fuzzy logic controller using a cell state space algorithm IEEE Internat. Conf. on Fuzzy Systems. San Diego. 1992. P. 615−622.
- Gurocak H.B. Fuzzy rule base optimization of a compliant wrist sensor for robotics J. Robotic Systems. 1996. 13. P. 475−487.
- Wang L.-X. Stable adaptive fuzzy control of nonlinear systems IEEE Trans. Fuzzy Systems 1993. 1 (2). P-146−155.
- Spooner J.T., Passino K.M. Stable adaptive control using fuzzy systems and neural networks IEEE Trans. Fuzzy Systems. 1996. 4 (3). P. 339−359.
- Gurocak H.B. A genetic-algorithm-based method for tuning fuzzy logic controllers. Fuzzy Sets and Systems. 1999. 108. P. 39−47.
- Herrera F., Lozano M., Verdegay J.L. Tuning fuzzy controllers by genetic algorithms //Internat. J. Approx. Reasoning. 1995. L P 299−315. 89. Wu J.C., Liu T.S. Fuzzy control of rider-motorcycle system using a genetic algorithmand autotuning//Mechatronics. 1995. 5. P. 441−455.
- Shimojma K., Fukuda Т., Hasegama Y. A self tuning fuzzy modeling with adaptive membership functions, rules and hierarchical structure based genetic algorithm //Fuzzy Sets and Systems. 1995. 71. P. 295−309.
- Jang R. Neuro-Fuzzy Modeling: Architectures, Analyses and Applications: Ph.D. University of California. Department of Electrical Engineering and Computer Science. Berkeley, 1992.
- Изерман P. Цифровые системы управления. M.: Мир, 1984.
- Математические основы теории автоматического"1 регулирования. Под ред. Б. К. Чемоданова. М.: Высшая школа, 1971.
- Директор Ф, Рорер Р. Введение
- Теория автоматического управления. 4.
- Теория линейных систем автоматического управления. Под ред. А. А. Воронова. М.: Высшая школа, 1977.
- Джури Э.И., Ли Б. Об абсолютной устойчивости систем с многими нелинейностями Автоматика и телемеханика. 1965. Т. XXVI. 6. 945−965.
- Основные математические формулы: Справочник. Под ред. Ю. С. Богданова. Минск: Вышэйшая школа, 1995.
- Островский М.Я., Чечурин А. с Стационарные модели систем Л.: автоматического управления периодическими параметрами. Энергоатомиздат, 1989.
- Попов Е.П. Теория нелинейных систем автоматического регулирования и управления. М.: Наука, 1988.
- Стронгин Р.Г. Численные методы в многоэкстремальных задачах. М.: Наука, 1978.
- Растригин Л. А. Современные принципы управления сложными объектами. М.: Советское радио, 1980.
- Дьяконов В. П., Круглов В. В. MATLAB 6.5 SP1/7/7 SP1/7 SP2 Simulink 5/
- Инструменты биоинформатики и искусственного интеллекта. М.: Солон-Пресс, 2005.
- Дьяконов В.П. MATLAB 6/6.1/6.5 Simulink 4/
- Основы применения. Полное руководство пользователя. М.: Солон-Пресс, 2002.
- Имитационное моделирование в среде Windows: Практическое пособие. СПб.: КОРОНА принт, 2001.
- Специальный справочник. СПб: Питер, 2002.
- Дьяконов В.П., Круглов В.В. MATLAB. Анализ, идентификация и моделирование систем. Специальный справочник. СПб.: Питер, 2002.
- Потемкин В. Г. MATLAB. Справочное пособие. М.: ДИАЛОГ-МИФИ, 1997.
- Потемкин В. Г. MATLAB 5 для студентов. М.: ДИАЛОГ-МИФИ, 1998.
- Потемкин В. Г. Система инженерных и научных расчетов MATLAB 5.x. Том 1 и 2. М.: ДИАЛОГ-МИФИ, 1999.
- Дьяконов В. П. MATLAB. Учебный курс. СПб.: Питер, 2000. Ш. Дьяконов В. П., Абраменкова И. В., Круглов В. В. MATLAB 5.3.1 с пакетами расширений. М.: Нолидж, 2001.
- Лазарев Ю. Ф. MATLAB 5.x. К.: «Ирина», BHV, 2000.
- Круглов В.В., Дли М.И. Идентификация динамических систем. Смоленск: Моск. энерг. ин-т, фил-л в г. Смоленске, 1998.
- Вентцель Е.В. Теория вероятностей. М.: Высшая школа, 1969.
- Лабораторный термостат ЛТН-02М. Паспорт АИЛ 2.828.015 ПС. ОАО «Нефтехимавтоматика-С-Петербург», 2001.
- Лабораторный термостат ЛТН-02М. Техническое описание и инструкция по эксплуатации. АИЛ 2.828.015 ТО ОАО «Нефтехимавтоматика-СПетербург», 2002.
- Киселев Е.В., Усков А. А. Аппроксимационный подход к анализу устойчивости систем с нечеткими логическими регуляторами Сборник трудов 15-й международной конференции «Математические методы в технике и технологии». Тамбов. 2002. Т. 5. 44−45.
- Усков А.А., Киселев Е. В. Устойчивость систем с алгоритмами нечеткого логического вывода в объекте управления ГОУВПОСФМЭИ(ТУ). Смоленск. 2002. Деп. в ВИНИТИ РАН 27.11.02. № 2047 В2002.
- Усков А.А., Киселев Е. В. Устойчивость систем управления с нечеткой логикой Сборник трудов 16-й международной конференции «Математические методы в технике и технологии». Ростов-на-Дону. 2003. Т. 4. 144−145.
- Киселев Е.В. Математическая модель системы управления с экспертным регулятором на основе нечеткой логики Материалы IV регионального межвузовского научно-технического семинара «Актуальные вопросы современной теории управления Смоленск. 2004. 15−18.
- Усков А.А., Киселев Е. В. Анализ систем управления с нечеткими комплексными моделями. I. Применение теории линейных интервальных динамических систем Вестник МЭИ. 2004. 4. 98−103.
- Усков А.А., Киселев Е. В. Анализ систем управления с нечеткими комплексными моделями. П. Применение частотных методов Вестник МЭИ. 2004. 5 53−57.
- Усков А.А., Киселев моделями Е.В. и Системы их управления с нечеткими и комплексными устойчивость Автоматизация современные технологии. 2005. 2. 20−24.
- Киселев Е.В. Устойчивость систем управления с экспертными регуляторами на основе нечеткой логики Информационные технологии моделирования и управления. 2005. №
- Усков А.А., Киселев Е. В. Системы управления с нечеткими супервизорными ПИД-регуляторами Приборы и системы. Управление, контроль, диагностика. 2005. 9. 31−33.