Помощь в учёбе, очень быстро...
Работаем вместе до победы

Иммуноферментный анализ белка, связывающего жирные кислоты на основе рекомбинантных реагентов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Однако ни одна из имеющихся в настоящее время методик не удовлетворяют всем этим требованиям. Самыми распространенными методами получения конъюгатов являются химические методы, в которых используются бифункциональные химические сшивающие агенты, реагирующие с функциональными группами ферментов и антигенов или антител. Эти методы можно разделить на две группы по типу сшивающих реагентов… Читать ещё >

Содержание

  • I. ВВЕДЕНИЕ
  • II. ЛИТЕРАТУРНЫЙ ОБЗОР
  • Глава 1. РЕКОМБИНАНТНЫЕ КОНЪЮГАТЫ В АНАЛИЗЕ
    • 1. 1. Получение рекомбинантных конъюгатов и их физико-химические свойства
    • 1. 2. Конъюгаты фермент-антиген
    • 1. 3. Конъюгаты белок А-фермент
    • 1. 4. Конъюгаты ферментов с клонированными фрагментами антител
  • Глава 2. БИОХИМИЧЕСКИЕ МАРКЕРЫ ОСТРОГО ИНФАРКТА МИОКАРДА
    • 2. 1. Диагностика острого инфаркта миокарда
    • 2. 2. Ферментные маркеры ОИМ
    • 2. 3. Неферментные маркеры ОИМ
  • Глава 3. СТРУКТУРА И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА с-БСЖК
    • 3. 1. Структура и функции БСЖК
    • 3. 2. Роль сердечного типа БСЖК (с-БСЖК) в диагностике ОИМ
  • Глава 4. Методы определения с-БСЖК
    • 4. 1. Количественные методы определения с-БСЖК
    • 4. 2. Качественные методы определения с-БСЖК
    • III. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
  • Глава 5. МАТЕРИАЛЫ И МЕТОДЫ
    • 5. 1. Материалы и оборудование
    • 5. 2. Методы исследования."
    • 5. 2. Г Получение рекомбинантного человеческого с-БСЖК
      • 5. 2. 2. Получение рекомбинантного конъюгата ПХ с БСЖК
      • 5. 2. 3. Получение химического конъюгата ПХ с БСЖК
      • 5. 2. 4. Получение поликлональных антител, специфичных к с-БСЖК
      • 5. 2. 5. Тестирование антисывороток против с-БСЖК
      • 5. 2. 6. Проведение конкурентного ИФА-БСЖК на поликлональных антителах
      • 5. 2. 7. Проведение конкурентного ИФА-БСЖК на моноклональных антителах
      • 5. 2. 8. «Сэндвич» метод ИФА
      • 5. 2. 9. Определение характеристик ИФА-БСЖК
      • 5. 2. 10. Определение чувствительности и специфичности теста на с-БСЖК при ОКС
    • IV. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
  • Глава 6. ПОЛУЧЕНИЕ ИММУНОСПЕЦИФИЧЕСКИХ РЕАГЕНТОВ ДЛЯ ИФА-БСЖК
    • 6. 1. Получение рекомбинантного с-БСЖК
    • 6. 2. Получение и свойства рекомбинантного конъюгата
  • ПХ с БСЖК
    • 6. 2. 1. Введение
    • 6. 2. 2. Клонирование и экспрессия рекомбинантного конъюгата ПХ-БСЖК в клетках Е. соИ
    • 6. 2. 3. Физико-химические и иммунологические свойства рекомбинантного конъюгата ПХ-БСЖК
    • 6. 3. Получение конъюгата ПХ-БСЖК методом химического синтеза
    • 6. 4. Получение аффинно очищенных поликлональных антител, специфичных к с-БСЖК
  • Глава 7. РАЗРАБОТКА И ОПТИМИЗАЦИЯ ТВЕРДОФАЗНОГО ИММУНО-ФЕРМЕНТНОГО МЕТОДА ДЛЯ ОПРЕДЕЛЕНИЯ С-БСЖК В СЫВОРОТКЕ/ПЛАЗМЕ КРОВИ
    • 7. 1. Оптимизация конкурентного твердофазного иммуноферментного анализа для определения с-БСЖК
    • 7. 2. Твердофазный ИФА для определения с-БСЖК в сыворотке или плазме крови (ИФА-БСЖК).,
  • Глава 8. ДИАГНОСТИЧЕСКОЕ ЗНАЧЕНИЕ С-БСЖК ПРИ ОСТРОМ КОРОНАРНОМ СИНДРОМЕ
    • 8. 1. Определение диагностически значимого уровня с-БСЖК для диагностики ОИМ
    • 8. 2. Определение чувствительности и специфичности теста на с-БСЖК при остром коронарном синдроме
    • V. ВЫВОДЫ

Иммуноферментный анализ белка, связывающего жирные кислоты на основе рекомбинантных реагентов (реферат, курсовая, диплом, контрольная)

Одной из актуальных проблем при разработке высокочувствительных методов иммуноферментного анализа (ИФА) является обеспечение качества и стандартизации получения необходимых иммунохимических реагентов. Развитие молекулярной биологии и биотехнологии дало возможность получать методами генной инженерии рекомбинантные антигены белковой природыферменты, такие как щелочная фосфатаза, ß—галактозидаза, люцифераза, пероксидаза хрена (ПХ), использующиеся в качестве маркеров в методах ИФАрекомбинантные антитела и их фрагменты. Генноинженерные подходы имеют ряд существенных преимуществ по сравнению с выделением белков из природных источников. К ним относятся высокий выход готового препарата, его стоимость, воспроизводимость и технологичность полученияполученные препараты, как правило, имеют гомогенный состав.

Разработка методов ИФА связана с необходимостью получения конъюгатов ферментов-маркеров с антигенами или антителами, в которых антиген или антитело сохраняет иммунологическую активность и не происходит инактивации фермента. Однако, все основные подходы, используемые для химического коньюгирования белков и гаптенов, приводят к частичной инактивации ферментов и гетерогенности конъюгатов, что оказывает влияние на специфичность и чувствительность иммуноферментного анализа. С помощью методов генной инженерии можно, получать рекомбинантные конъюгаты с белковыми ¦ антигенами или антителами, которые имеют ряд преимуществ, а именно, они гомогенны по составу, имеют стехиометрию 1:1 и сохраняют функциональную активность как белка-маркера, так и антигена.

Ранее были получены рекомбинантные конъюгаты с бактериальными ферментами — ß—галактозидазой и щелочной фосфатазой, которые могут быть легко экспрессированы в растворимой форме в клетках Е. coli, а также с некоторыми другими ферментами. В то же время пероксидаза хрена может быть экспрессирована' в клетках Е. coli только в форме тел включения, что до недавнего времени, затрудняло получение активного фермента. Достижения последних лет в гетерологической экспрессиии гена ПХ в клетках E. coli, реактивации и рефолдинга рекомбинантной ПХ из тел включения дают возможность получения рекомбинантных конъюгатов с ПХ в качестве фермента-маркера для методов ИФА.

Это открывает новые перспективы применения широко используемого фермента-маркера ПХ в конкурентных схемах ИФА с использованием генноинженерных конъюгатов, в частности, в иммунохимических методах определения белка, связывающего жирные кислоты, из сердца человека (с-БСЖКhH-FABP — human Heart Fatty Acid-Binding Protein). с-БСЖК не так давно был предложен в качестве нового маркера ранней диагностики острого инфаркта миокарда (ОИМ) — одной из актуальных проблем современной кардиологии. Этот небольшой цитозолический белок с молекулярной массой около 15 кДа является представителем семейства внутриклеточных липид-связывающих белков, участвующих в метаболизме жирных кислот, и в большом количестве содержится в сердечных мышцах (0,56 мг/г сердечной ткани). Развитие ОИМ сопровождается обширным разрушением кардиомиоцитов, и, следовательно, большим выбросом в кровь многих специфических белков, в том числе и с-БСЖК. Было показано, что при повреждении миокарда, подобно миоглобину (Мг), концентрация с-БСЖК в крови значительно повышается в течение 3 часов после появления симптомов ОИМ и возвращается к нормальному уровню через 12−24 часа. Это, а также хорошая тканеспецифичность в сравнении с Мг делают с-БСЖК перспективным маркером ранней диагностики ОИМ.

Настоящая работа посвящена получению рекомбинантного конъюгата на основе ПХ для ИФАсозданию метода для количественного определения концентрации с-БСЖК в сыворотке/плазме крови с использованием рекомбинантных реагентов (рекомбинантного конъюгата ПХ-БСЖК и рекомбинантного с-БСЖК) и установлению диагностического значения разработанного теста на с-БСЖК в ранней диагностике ОИМ.

И. ЛИТЕРАТУРНЫЙ ОБЗОР ГЛАВА 1. РЕКОМБИНАНТНЫЕ КОНЪЮГАТЫ В АНАЛИЗЕ.

1.1. Получение рекомбииаитиых конъюгатов и их физико-химические свойства.

Для высокочувствительных методов иммуноферментного анализа необходимы конъюгаты ферментов маркеров с антигенами (в дальнейшем речь пойдет о белковых/пептидных антигенах) или с антителами, в которых антиген или антитело сохраняет иммунологическую активность и не происходит инактивация фермента. Таким требованиям наилучшим образом отвечает конъюгат белокфермент состава 1:1. При увеличении числа молекул фермента в конъюгате существенно уменьшается иммунологическая активность белка, так как при этом возрастают стерические препятствия для протекания иммунной реакции и увеличивается вероятность того, что фермент окажется связанным с активным центром антитела или антигенной детерминантой антигена. В то же время при уменьшении числа молекул фермента, связанных с белком, значительно понижается ферментативная активность по сравнению с ростом неспецифических взаимодействий, конъюгата. В этой связи можно сформулировать основные требования, которым должны удовлетворять методы получения конъюгатов [1,2]:

1. Должны сохраняться ферментативные, иммунологические или антигенные свойства конъюгата.

2. Конъюгат должен легко выделяться из реакционной смеси при использовании соответствующих методов очистки.

3. Полученный конъюгат должен быть стабильным при хранении.

4. Конъюгат должен быть гомогенным и определенного состава.

5. Выход конъюгата должен быть достаточно высоким.

Однако ни одна из имеющихся в настоящее время методик не удовлетворяют всем этим требованиям. Самыми распространенными методами получения конъюгатов являются химические методы, в которых используются бифункциональные химические сшивающие агенты, реагирующие с функциональными группами ферментов и антигенов или антител. Эти методы можно разделить на две группы по типу сшивающих реагентов гомобифункциональных (глутаровый альдегид, Н, Н'-о-фенилендималеимид) и гетеробифункциональных (М-оксисукцинимидные эфиры кислот, например, ммалеимидобензойной кислоты). Кроме того, для получения конъюгатов белков с пероксидазой хрена широко используется перйодатный метод [3]. Как правило, выбор подходящей методики связывания осуществляется методом проб и ошибок, при этом часто используются методы, которые ранее обеспечивали успешное получение конъюгата. Например, один из наиболее часто используемых гомобифункциональных сшивающих реагентов — глутаровый альдегид [4] - широко используется для конъюгирования щелочной фосфатазы, в то время как № 104 и реагенты, содержащие малеимидные группы, рекомендуются для конъюгирования пероксидазы хрена и Р-галактозидазы, соответственно [5].

Однако, химическая сшивка может быть иногда затруднительной. Например, часто образуются большие, объёмные и гетерогенные конъюгаты, которые могут приводить к ухудшению иммунологических свойств, а также уменьшать активность ферментов. Кроме того, получение химических конъюгатов часто бывает очень трудоемким и дорогостоящим процессом, так как требует предварительного выделения и очистки как антигена, так и фермента маркера. Поэтому были исследованы альтернативные методы получения конъюгатов. В последнее время все большее распространение получают нехимические методы синтеза конъюгатов белок-фермент, основанные на образовании высокоспецифичекой: иммунологической связи антиген-антитело [6]. Например, для получения конъюгата антител с пероксидазой хрена используют антивидовые антитела к ферменту, которые образуют так называемый иммунопероксидазный комплекс (пероксидаза-антитела к пероксидазе, ПАП) [1]. Еще одним перспективным способом получения конъюгатов является метод с использованием комплекса авидин/стрептавидин-биотин, который образуется с Ка ~ 1015 М" 1 [7].

С развитием генной инженерии появилась возможность создавать рекомбинантные конъюгаты фермента маркера с антителами и белковыми антигенами. Такие конъюгаты обладают рядом преимуществ по сравнению с химически полученными, в частности они гомогенны по составу, имеют 1:1 стехиометрию, воспроизводимы и достаточно легко получаются [2]. Кроме того, рекомбинантные конъюгаты, как правило, сохраняют 100% как ферментативную, так и иммунологическую активность.

Генетически сконструированные рекомбинантные конъюгаты получаются с помощью объединения структурных генов антигена/антитела и фермента (Рис. 1).

Ген 1 Ген 2.

Промотор Стоп Промотор Стоп.

5'-1//Л I-3' 5*-1/ЛИ I-3'.

Промотор

5'-777Г.

Область линкера.

Стоп.

3' ДНК.

Рис. 1. Трансляционный стоп-кодон на 3'-конце первого гена и область промотора на 5-конце второго гена удаляются и два гена затем лигируются в одной рамке. Оба гена транслируются в один химерный белок [2].

Полученный химерный ген кодирует первичную полипептидную цепь, обладающую как антигенной, так и ферментативной активностью. Выход получаемого рекомбинантного конъюгата зависит от ряда различных факторов, таких как выбор экспрессионного вектора, штамма экспрессии и конечной локализации продукта (цитоплазма, переплазма или культуральная среда), а также экспрессируется белок в растворимой форме или в телах включения. По литературным данным, как правило, получали от 5 до 15 мг очищенного конъюгата на литр клеточной культуры, продуцируемого внутриклеточно, и около 1−2 мг/л при продуцировании в переплазму клеток E. coli [2].

При экспрессии конъюгат может быть подвергнут протеолитическому расщеплению в зависимости от используемого штамма-продуцента. Этот нежелательный протеолиз может, однако, быть лимитирован использованием определенных штаммов-продуцентов, таких как /""-отрицательные бактериальные штаммы, которые, как было показано, заметно уменьшают протеолиз чужеродных белков [8]. На протеолитическую стабильность конъюгата также может оказывать влияние аминокислотный состав на N-конце белка и в области линкера. Было показано, что время полужизни белка может варьироваться от пары минут до более чем 10 часов в зависимости от природы аминоконцевого остатка, подтверждая тем самым, что успешная экспрессия чужеродных белков в бактериях зависит от «N-концевого правила», а именно N-концевые аргинин, лизин, лейцин, фенилаланин, тирозин и триптофан уменьшают стабильность белка, в то время как другие аминоконцевые аминокислотные остатки значительно увеличивают стабильность того же самого белка [9]. Другие сообщения показали, что удаление основных аминокислот в области линкера может защитить рекомбинантный белок от протеолитического расщепления в этой области [10].

На свойства рекомбинантных конъюгатов оказывает влияние структура линкера, разделяющего соответствующие домены бифункционального химерного белка. Проведённые исследования показали, что гибкость и гидрофильность линкера являются основными условиями, позволяющими сохранить функциональную активность связываемых доменов конъюгата [11−13]. Этот принцип успешно применяется при экспрессии рекомбинантных одноцепочечных антител (ScFv), где линкеры нерегулярной структуры способствуют беспрепятственному образованию активных комплексов между вариабельными доменами тяжелой и легкой цепей антитела. Однако, в некоторых работах при использовании гибкого линкера (например, [(Gly)4Ser]n, п=5) наблюдалась потеря функциональной активности одной из составных частей конъюгата (связывающая активность белка G в конъюгате с люциферазой), обусловленная по всей видимости возникающим взаимодействием двух субъединиц [14]. В таких случаях необходимо использовать линкеры с «жесткой структурой». Так, на примере конъюгата, состоящего из двух разновидностей зеленого флюорисцентного белка (EBFP и EGFP), была показана способность а-спиральных линкеров (Ala (GluAIaAlaAlaLys)nAla, п=2−5) эффективно.

разделять в пространстве две его составные части, что препятствовало «залипанию» двух белков друг на друга с потерей активности конъюгата [15].

Возможность связывания двух или более белков структурно посредством методов генной инженерии приводит к полному конъюгированию между ферментом маркёром и иммунореакционным антигеном/антителом. Это важно, поскольку даже небольшие количества свободных иммунореакционных молекул в препарате очищенного конъюгата может заметно уменьшать аналитический ответ. Кроме того, в данном случае повышается вероятность, что антигенный сайт сохраняет свою структуру, так как два белка связываются «конец к концу» с помощью стабильной пептидной связи, в отличие от химических методов получения конъюгатов, где, как правило, существует много точек конъюгирования. Это особенно важно, если антиген является небольшим пептидом.

Для многих рекомбинантных конъюгатов, изученных до сих пор, ферментативные и иммунологические свойства практически не изменялись. Обычно, более чем 50% специфической ферментативной активности сохраняется после пересчета для более высокой молекулярной массы химерного белка. Было замечено, что для сохранения высокой активности фермента допустимы только незначительные изменения в первичной структуре белка [16, 17]. При соблюдении этого основного правила наблюдались только незначительные изменения в Км, рН оптимуме фермента, термостабильности и стабильности к денатурации. Кроме того, иммунологическая активность антигена/антитела обычно полностью сохраняется. Предполагается, что каждая часть химерного рекомбинантного белка подвергается: фолдингу независимо друг от друга в его нативную активную форму.

V. ВЫВОДЫ:

1. Разработан метод получения рекомбинантного белка, связывающего жирные кислоты, сердечного типа (с-БСЖК). Общий выход очищенного препарата составил 32 мг с 1 литра культуры клеток Е.соИ.

2. Разработан метод получения рекомбинантного конъюгата белкового антигена (с-БСЖК) с пероксидазой хрена (ПХ) в качестве маркера для использования в конкурентном методе ИФА. Рекомбинантный конъюгат ПХ-БСЖК обладает как каталитическими свойствами ПХ, так и иммуногенными свойствами с-БСЖК, что позволяет использовать его в иммуноферментном анализе. Выход целевого продукта составил 12 мг с 1 литра культуры клеток Е.соИ.

3. Разработана методика выделения антител на основе сорбентов с иммобилизованным рекомбинантным с-БСЖК. Получены аффинно очищенные поликлональные кроличьи антитела, специфичные к с-БСЖК.

4. Разработана и оптимизирована тест-система для количественного определения с-БСЖК в сыворотке и плазме крови на основе твердофазного конкурентного ИФА с использованием рекомбинантного конъюгата. Данная тест-система характеризуется высокой чувствительностью (1,5 нг/мл с-БСЖК в анализируемом образце), широким диапазоном определяемых концентраций (1,5−500 нг/мл) и хорошей воспроизводимостью результатов анализа (К.В. < 8%).

5. На основе полученных данных измерений уровня с-БСЖК у пациентов с диагнозом острый коронарный синдром было установлено диагностическое значение уровня с-БСЖК в крови при ОИМ и получены следующие показатели: чувствительность теста составила 87%, специфичность — 86%. Было показано, что тест на с-БСЖК может быть использован для ранней диагностики ОИМ.

6. Изготовлена экспериментальная партия диагностической тест-системы «ИФА-БСЖК» для определения с-БСЖК в сыворотке крови и разработана научно-техническая документация.

Показать весь текст

Список литературы

  1. Теория и практика иммуноферментного анализа. (1991) М., «Высшая школа», 288 с.
  2. С., Mosbach К., Bulow L. (1993) Use of genetically prepared enzyme conjugates in enzyme immunoassay. Trends Biochem. Sci., 18,279−283.
  3. P. K., Kawaoi A. (1974) Peroxidase-labeled antibody. A new method of conjugation. J. Histochem. Cytochem., 22, 1084−1091.
  4. S. (1969) Indirect irrimunoenzyme techniques for the intracellular detection of antigens. Immunochemistry, 6, 43−52.
  5. P. (1988) Laboratory Techniques in Biotechnology and Molecular Biology, Practice and Theory of Enzyme Immunoassay. Elsevier Science Publishers.
  6. D.Y., Sammons R. (1978) Alkaline phosphatase and peroxidase for double immunoenzymatic labelling of cellular constituents. J.Clin.Pathol., 31,454−460.
  7. Т., Avrameas S. (1990) Avidin-biotin system in enzyme immunoassays. Methods Enzymol., 184,469−481.
  8. S., Zipser D. (1978) Deg phenotype of Escherichia coli Ion mutants. J. • Bacterid., 133, 844−851.
  9. J.W., Shrader Т.Е., Rocap G. Varshavsky A. (1991) The N-end rule in bacteria. Science, 254, 1374−1377.
  10. H., Murby M., Abrahmsen L., Uhlen M., Enforts S.O. (1989) Different approaches to stabilize a recombinant fusion protein. Bio/Technology, 7, 165−168.
  11. P. (1990) An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J. Mol. Biol., 211, 943 958.
  12. C.R., Sauer R.T. (1998) Optimizing the stability of single-chain proteins by linker length and composition mutagenesis. Proc. Natl. Acad. Sci. USA, 95,. 59 295 934.
  13. C.J., Feng J.A. (2000) LINKER: a program to generate linker sequences for fusion proteins. Protein Eng., 13, 309−312.
  14. Y., Ueda H., Kazami J., Kawano G., Suzuki E., Nagamune T. (1997) Engineering of functional chimeric protein G-Vargula luciferase. Anal. Biochem., 249, 147−152.
  15. R., Ueda H., Kitayama A., Kamiya N., Nagamune T. (2001) Design of the linkers which effectively separate domains of a Afunctional fision protein. Protein Eng., 14, 529−532.
  16. A.V., Zabin I. (1983) Purification, structure, and properties of hybrid beta-galactosidase proteins. J. Biol. Chem., 258,14 354−14 358.
  17. L. (1987) Characterization of an artificial bifiinctional enzyme, beta-galactozidase/galactokinase, prepared by gene fusion. Eur. J. Biochem., 163, 443 448.
  18. A., Mecklenburg M., Meussdoerffer F., Mosbach K. (1987) A Simple Competitive Enzyme-Linked Immunosorbent Assay Using Antigen-?-Galactosidase Fusions. Anal. Biochem., 163, 470−475.
  19. C., Persson M., Bulow L., Stahl S., Mosbach K. (1987) The Design of a Simple Competitive ELISA Using Human Proinsulin-Alkaline Phosphatase Conjugates Prepared by Gene Fusion. Biochem. Biophys. Res. Commun, 149, 607 614.
  20. Gillet D., Ezan E., Ducancel F., Gaillard C., Ardouin T., Istin M., Menez A., Boulain J.-C., Grogent J.-M. (1993) Enzyme immunoassay using a rat prolactin-alkaline phosphatase recombinant tracer. Anal. Chem., 65, 1779−1784.
  21. D., Ducancel F., Pradel E., Leonetti M., Menez A., Boulain J.C. (1992) Insertion of a disulfide-containing neurotoxin into E.coli alkaline phosphatase: the hybrid retains both biological activities. Protein Eng., 5, 273−278.
  22. Chanussot C., Bellanger L., Ligny-Lemaire C., Seguin P., Menez A., Boulain J.-C. (1996) Engineering of a recombinant colorimetric fusion protein for immunodiagnosis of insulin. J. Immunol. Methods, 197, 39−49.
  23. U.A., Wininger J.A., Lewis J.C., Ramanathan S., Daunert S. (2001) Using epitope-aequorin conjugate recognition in immunoassays for complex proteins. Anal. Boichem., 294, 132−140.
  24. J.C., Daunert S. (1999) Dual detection of peptides in a fluorescence binding assay by employing genetically fused GFP and BFP mutants. Anal. Chem., 71, 43 214 327.
  25. A., Rondahl H., Walum E., Wilcke M. (2000) Expression and intracellular localization of leptin receptor long isoform-GFP chimera. Biochim. Biophys. Acta, 1499, 130−138.
  26. Kerschbaumer R. J., Hirschl S., Schwager C., Ibl M., Himmler G. (1996) pDAP2: a vector for construction of alkaline phosphatase fusion-proteins. Immunotechnology, 2, 145−150.
  27. A., Daunert S., Kindy M.S., Bachas L.G. (1993) Enzyme-linked immunosorbent assay for an octapeptide based on a genetically engineered fusion protein. Anal. Chem., 65, 1147−1151.
  28. Schreiber A., Specht B., Pelsers M. M. A. L., Glatz J.F.C., Borchers T., Spener F. (1998) Recombinant Human Heart-Type Fatty Acid-Binding Protein as Standard’in Immunochemical Assays. Clin. Chem. Lab. Med., 36, 283−288.
  29. Fruh K., Muller H-M., Bujard H., Crisanti A. (1989) A new tool for the serodiagnosis of acute Plasmodium falciparum malaria in individuals with primary infection. J. Immunol. Methods, 122, 25−32.
  30. F., Georgiou G. (1989) Expression, purification and enzymatic characterization of a protein A-?-lactamase hybrid protein. Enzyme Microb. Technol., 11,559−567.
  31. F., Schmidt C., Georgiou G. (1990) Affinity immobilization of a genetically engineered bifunctional hybrid protein. Enzyme Microb. Technol., 12, 337−342.
  32. Strandberg L., Hober S., Uhlen M., Enfors S.-O. (1990) Expression and characterization of a tripartite fusion protein consisting of chimeric IgG-binding receptors and beta-galactosidase. J. Biotechnol., 13, 83−96.
  33. G., Deluca M. (1982) Bioluminescent assays of picomole levels of various metabolites using immobilized enzymes. Anal. Biochem., 127, 380−388.
  34. E. (1985) The preparation of bacterial luciferase conjugates for immunoassay and application to rubella antibody detection. Anal. Biochem., 148, 199−206.
  35. C., Mosbach K., Bulow L. (1991) Preparation of a genetically fused protein A/luciferase conjugate for use in bioluminescent immunoassays. J. Immunol. Methods, 137, 199−207.
  36. Y., Ueda H., Hara T., Kazami J., Kawano G., Suzuki E., Nagamune T. (1996) Expression of a bifunctional chimeric protein A-Vargula hilgendorfii luciferase in mammalian cells. Biotechniques, 20, 116−121.
  37. A. (1993) Bacterial expression of immunoglobulin fragments. Curr. Opin. Immunol., 5, 256−262.
  38. A., Pluckhun A. (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science, 240, 1038−1041.
  39. M., Chang C.P., Robinson R.R., Horwitz A.H. (1988) Escherichia coir secretion of an active chimeric antibody fragment. Science, 240, 1041−1043.
  40. Bird R.E., Hardman K.D., Jacobson J.W., Johnson S., Kaufman B.M., Lee, S.M., Lee T., Pope S.H., Riordan G.S., Whitlow M. (1988) Single-chain antigen-binding proteins. Science, 242, 423−426.
  41. Neuberger M.S., Williams G.T., Fox R.O. (1984) Recombinant antibodies possessing novel effector functions. Nature, 312, 604−608.
  42. J., Powell M.J., Kenten J.H. (1990) Expression and secretion of aequorin as a chimeric antibody by means of a mammalian expression vector. Proc. Natl. Acad. Sci. USA, 87,2047−2051.
  43. Huse W.D., Sastry L., Iverson S.A., Kang A.S., Alting-Mees M., Burton D.R., Benkovic S.J., Lerner R.A. (1989) Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science, 246, 1275−1281.
  44. C.F., Kang A.S., Lerner R.A., Benkovic S.J. (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl. Acad. Sci. USA, 88, 7978−7982.
  45. Т., Hoogenboom H.R., Griffiths A.D., Winter G. (1991) Making antibody fragments using phage display libraries. Nature, 352, 624−628.
  46. F., Gillet D., Menez A., Boulain J.C. (1992) Recombinant colorimetric antibodies: genetic construction and production in E. coli. С. R. Acad. Sei. Paris, 315, 221−224.
  47. C., Ueda H., Tsumoto K., Mahoney W.C., Kumagai I., Nagamune T. (1999) Open sandwich ELISA with V(H)-/V (L)-alkaIine phosphatasefusion proteins. J. Immunol. Methods, 224, 171−184.
  48. Rau D., Kramer K., Hock B. (2002) Single-chain Fv antibody-alkaline phosphatase fusion proteins produced by one-step cloning as rapid detection tools for ELISA. J. Immunoassay Immunochem., 23, 129−143.
  49. R., Ueda H., Tsumoto K., Mahoney W.C., Kumagai I., Nagamune T. (2000) Fluorolabeling of antibody variable domains with green fluorescent protein variants: application to an energy transfer-based homogeneous immunoassay. Protein Eng., 13, 369−376.
  50. D.E., Vrudhula V.M., Svensson H.P., Siemers N.O., Senter P.D. (1999) Comparison of recombinant and synthetically formed monoclonal antibody-beta-lactamase conjugates for anticancer prodrug activation. Bioconjug. Chem., 10, 10 841 089.
  51. Е.И. (1997) Пути повышения эффективности лечения больных ИБС. Терапев. архив, 69, № 9, 5−10.
  52. Ischaemic Heart Disease Registers: Report of the fifth working group. Copenhagen, WHO, 1971
  53. M.R. 3rd, Warner J.G.Jr. (2000) Non-Q wave myocardial infarction. Assessment and management of a unique and diverse subset. Postgrad. Med., 107, 87−93.
  54. A.L., Ashcom T.L., Whitney E.J., Rubal B.J., Wellford L.A., Moody J.M. (1993) Changing presentation of coronary hearth disease in an inpatient population within the U.S. military health care system. Mil. Med., 158, 598−603.
  55. Д.Б., Романов М. Ю. (2000) Миокардиальные маркеры. Лабораторная медицина, 3, 13−18.
  56. А.И., Бутко А. Л., Принцев Н. Д. (1997) Инфаркт миокарда. Медицинская лабораторная диагностика, под ред. Карпищенко А. И., С-Пт., 2129.
  57. Д.Б. (1982) Ферментная диагностика при заболеваниях сердца. Руководство по кардиологии, под ред. Чазова Е. И., М., 506−521.
  58. А.Л. (1998) Инфаркт миокарда. МИА, М., 180−196.
  59. Ферментная диагностика острого инфаркта миокарда. Метод, рекомендации. (1992) Министерство здравоохранения России, Саратов, 24 с.
  60. Внутренние болезни. Под ред. Браунвальда Е. (1995) Кн. 5, М., Медицина, 415 с.
  61. J.F., Krijnen P.M., Jablonsky G., Leung F.Y., Henderson A.R. (1988) Diagnostic efficiency of four lactate dehydrogenase isoenzyme-1 ratios in serum after myocardial infarction. Clin. Chem., 34, 1960−1965.
  62. Д., Шишмарев Ю., Грачев А. (1983) Динамика изменения содержания миоглобина и активности креатинфосфокиназы в сыворотке крови больных инфарктом миокарда и стенокардией. Терапевт. Архив, 15, № 5, 7−11.
  63. M.L., Carliner N.H., Becker L.C., Peters R.W., Plotnick G.D. (1983) Serum creatine kinase in the diagnosis of acute myocardial infarction, Optimal sampling frequency. JAMA, 249, 393−394.
  64. Creatine kinase enzymes. Ed. by Lang H. (1981) Springer Verlag, 317.
  65. P. S. (1993) Cardiovascular health and disease in women. Philadelphia, 3539.
  66. M.A. (1982) The CK isoenzymes: findings and their meaning. Lab. management, 20, 25−37.
  67. D. (1974) Separation of tissue and serum creatine kinase isoenzymes by ion -exchange chromatography. Clin.Chem., 20, 36−40.
  68. W., Waldenstrom J., Horder M., Hofvendahl S., Billstrom R., Ljungdahl R., Beming H., Bagger P. (1982) Creatine kinase and creatine kinase B-subunit activity in serum in cases of suspected myocardial infarction. Clin. Chem., 28, 277−283.
  69. Clerico A., Del Chicca M.G., Mariani G. (1982) Radioimmunological determination of mioglobin in biological fluids and tissues: A critical review of technical procedures and clinical usefulness. J. Nucl. Med. Allied Sci., 26, 117−134.
  70. Mair J., Smidt J., Artner-Dworzak E., Lechleitner P., Dienstl F., Puschendorf B. (1991) Rapid diagnosis of myocardial infarction by immunoturbidimetric myoglobin measurement. Lancet, 337, 1343−1344.
  71. P., Gergely J. (1984) Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction. CRC Crit. Rev. Biochem., 16, 235−305.
  72. Zot A.S., Potter J.D. (1987) Structural aspects of troponin-tropomozyn regulation of skeletal muscle contraction. Annu. Rev. Biophys. Biophys. Chem., 16, 535−559.
  73. W., Nordin G., Ljungdahl L. (1999) Can troponin T replace CK MB mass as «gold standard» for acute myocardial infarction (AMI)? Scand. J. Clin. Lab. Invest. Suppl., 230, 83−89.
  74. Katus H.A., Remppis A., Neumann F.J., Scheffold T., Diederich K.W., Vinar G., Noe A., Matern G., Kuebler W. (1991) Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation, 83, 902−912.
  75. A.S., Ravkilde J., Roberts R., Naslund U., Apple F.S., Galvani M., Katus H. (2000) It’s time for a change to a troponin standard. Circulation, 102, 1216−1220.
  76. Филатов B. JL, Катруха А. Г., Буларгина T.B., Гусев Н. Б. (1999) Тропонин: строение, свойства и механизм функционирования. Биохимия, 64, 1155−1174.
  77. Perry S.V. Troponin I: inhibitor or facilitator. (1999) Mol. Cell. Biochem., 190,9−32.
  78. Anderson P.A., Greig A., Mark T.M., Malouf N.N., Oakeley A.E., Ungerleider R.M., Allen P.D., Kay B.K. (1995) Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ. Res., 76, 681−686.
  79. А.А., Затейщиков Д. А. (1997) Кардиоспецифический тропонин T в диагностике поражений миокарда. Кардиология, 37, 53−57.
  80. A.S., Landt Y., Parvin C.A., Abendschein D.R., Geltman E.M., Ladenson J.H. (1996) Comparative sensitivity of cardiac troponin I and lactate dehydrogenase isoenzymes for diagnosis of acute myocardial infarction. Clin. Chem., 42, 1770−1776.
  81. Mair J., Artner-Dworzak E., Lechleitner P., Smidt J., Wagner I., Dienstl F., Puschendorf B. (1991) Cardiac troponin T in diagnosis of acute mocardial infarction. Clin. Chem., 37, 845−852.
  82. F., Lovis C., Chevloret J.C., Urban P., Unger P.F., Bouillie M., Gaspoz J.M. (1995) Rapid bedside whole blood cardiospecific troponin T immunoassay for diagnostic of acute myocardial infarction. Am. J. Cardiol., 75, 842.-845.
  83. S.C., Ladenson J.H., Mason J.W., Jaffe A.S. (1997) Elevation of cardiac troponin I associated with myocarditis. Experimental and clinical correlates. Circulation, 95, 163−168.
  84. Veerkamp J.H., Peeters R.A., Maatman R.G.H.J. (1991) Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. Biochim. Biophys. Acta, 1081, 1−24.
  85. Glatz J.F.C., Schaap F.G., Binas B., Bonen A., van der Vusse G.J., Luiken J.J.F.P. (2003) Cytoplasmic fatty acid-binding protein facilitates fatty acid utilization by skeletal muscle. Acta Physiol. Scand., 178, 367−371.
  86. J.I., Alpers D.H., Ockner R.K., Strauss A.W. (1983) The nucleotide sequence- of rat liver fatty acid binding protein mRNA. J. Biol. Chem., 258, 3356−3363.
  87. D.H., Strauss A.W., Ockner R.K., Bass N.M. Gordon J.I. (1984) Cloning of a cDNA encoding rat intestinal fatty acid binding protein. Proc. Natl. Acad: Sci. USA, 81,313−317.
  88. Kanda T., Nakatomi Y., Ishikawa H., Hitomi M., Matubara Y., Ono T., Muto T. (1992) Intestinal fatty acid-binding: protein as a sensitive marker of intestinal ischemia. Digest. Dis. Sci., 37, 1362−1367.
  89. G., Marks C., Marks W.H. (1993) Intestinal fatty acid binding protein in serum and urine reflects early ischemic injury to the small bowel. Surgery, 113, 545−551.
  90. V., Bernlohr D.A. (1988) Purification of murine adipocyte lipid-binding protein. Characterization as a fatty acid- and retinoic acid-binding protein. J. Biol. Chem., 263, 14 544−14 551.
  91. Dutta-Roy A.K., Huang Y., Dunbar B., Trayhum P. (1993) Purification and characterization of fatty acid-binding proteins from brown adipose tissue of the rat. Biochim. Biophys. Acta, 1169, 73−79.
  92. Peeters R.A., Veerkamp J.H., Van Kessel A.G., Kanda T., Ono T. (1991) Cloning of the cDNA encoding human skeletal-muscle fatty acid-binding protein, its peptide sequence and chromosomal localization. Biochem J., 276, 203−207.
  93. G.D., Troxler R.F., Brecher P. (1986) Characterization of a fatty acid-binding protein from rat heart. J. Biol. Chem., 261, 5584−5589.
  94. G.D., Brecher P., Sawlivich W.B., Costello C.E., Troxler R.F. (1988) Characterization and amino acid sequence of a fatty acid-binding protein from human heart. Biochem. J., 252,191−198.
  95. Claffey K.P., Herrera V.L., Brecher P., Ruiz-Opazo N. (1987) Cloning and tissue distribution of rat heart fatty acid binding protein mRNA: Identical forms in heart and skeletal muscle. Biochemistry, 26, 7900−7904.
  96. A.A., Burrier R.E., Brecher P. (1989) Rabbit heart fatty acid-binding protein. Isolation, characterization, and application of a monoclonal antibody. Circ. Res., 65, 981−988.
  97. T., Hojrup P., Nielsen S.U., Roepstorff P., Spener F., Knudsen J. (1990) Revision of the amino acid sequence of human heart fatty acid-binding protein. Mol. Cell. Biochem., 98, 127−133.
  98. Sacchettini J.C., Hauft S.M., Van Camp S.L., Cistola D.P., Gordon J.I. (1990) Developmental and structural studies of an intracellular lipid binding protein expressed in the ileal epithelium. J. Biol. Chem., 265, 19 199−19 207.
  99. R.M., Bass N.M., Ockner R.K. (1990) Functions of fatty acid-binding proteins. Experientia (Basel), 46, 617−630.
  100. T.A., Bergfors T., Sedzik J., Unge T. (1988) The three-dimensional structure of P2 myelin protein. EMBO J., 7, 1597−1604.
  101. J.C., Gordon J.I., Banaszak L.J. (1989) Crystal structure of rat intestinal fatty-acid-binding protein. Refinement and analysis of the Escherichia coli-derived protein with bound palmitate. J. Mol. Biol., 208,327−339.
  102. G., Spadon P., Mammi M., Zanotti G., Monaco H.L. (1990) Crystal structure of chicken liver basic fatty acid-binding protein at 2.7 A resolution. Mol. Cell. Biochem., 98, 95−99.
  103. Muller-Fahrnow A., Egner U., Jones T.A., Ruedel H., Spener F., Saenger W. (1991) Three-dimensional structure of fatty-acid-binding protein from bovine heart. Eur. J. Biochem., 199,271−276.
  104. Xu Z., Bernhlor D.A., Banaszak L.J. (1992) Crystal structure of recombinant murine adipocyte lipid-binding protein. Biochemistry, 31 j 3484−3492.
  105. G., Scapin G., Spadon P., Veerkamp J.H., Sacchettini J.C. (1992) Three-dimensional structure of recombinant human muscle fatty acid-binding protein. J. Biol. Chem., 267, 18 541−18 550.
  106. N.H., Jacobson B.L., Wesenberg G., Rayment I., Holden H.M. (1994) Three-dimensional structure of the muscle fatty-acid-binding protein isolated from the desert locust Schistocerca gregaria. Biochemistry, 33, 12 378−12 385.
  107. Benning M.M., Smith A.F., Wells M.A., Holden H. M- (1992) Crystallization, structure determination and least-squares refinement to 1.75 A resolution of the fatty-acid-binding protein isolated from Manduca sexta L. J. Mol. Biol., 228,208−219.
  108. C., Zhang F., Ruterjans H., Hamilton J.A., Sacchettini J.C. (1996) Flexibility is a likely determinant of binding specificity in the case of ileal lipid binding protein. Structure, 4, 785−800.
  109. Hohoff C., Borchers T., Rustow B., Spener F., Van Tilbeurgh H. (1999) Expression, Purification, and Crystal Structure Determination of Recombinant Human Epidermal-Type Fatty Acid Binding Protein. Biochemistiy, 38, 12 229−12 239.
  110. Balendiran G.K., Schnutgen F., Scapin G., Borchers T., Xhong N., Lim K., Godbout R., Spener F., Sacchettini J.C. (2000) Crystal Structure and Thermodynamic Analysis of Human Brain Fatty Acid-binding Protein. J. Biol. Chem., 275,27 045−27 054.
  111. A., Portillo V., Ehrlich R. (2003) Genomic structure and expression of a gene coding for a new faty acid binding protein from Echinococcus granulosus. Biochim. Biophys. Acta, 1631,26−33.
  112. J., Sacchettini J.C., Kromminga A., Gordon J.I. (1993) Escherichia coli-derived rat intestinal fatty acid binding protein with bound myristate at 1.5 A resolution and I
  113. FABPArg 106~>Gln with bound oleate at 1.74 A resolution. J. Biol. Chem., 268, 26 375−26 385.
  114. A.M., Storms S., Watts M. (1998) Transport of long-chain native fatty acids across human erythrocyte ghost membranes. Biochemistry, 37, 8011−8019.
  115. R.K. (1990) Historic overview of studies on fatty acid-binding proteins. Moll. Cell Biochem., 98, 3−9.
  116. Srimani B.N., Engelman R.M., Jones R., Das D.K. (1990) Protective role of intracoronary fatty acid binding protein in ischemic and reperfused myocardium. Circ. Res., 66, 1535−1543.
  117. R.A. (2002) Cytosolic fatty acid-binding proteins catalyze two distinct steps in intracellular transport of their ligands. Mol. Cell Biochem., 239, 35−43.
  118. J.F., Paulussen R.J., Veerkamp J.H. (1985) Fatty acid binding proteins from heart. Chem. Phys. Lipids, 38, 115−129.
  119. Crisman T.S., Claffey K.P., SaouafR., Hanspal J., Brecher P. (1987) Measurement of rat heart fatty acid binding protein by ELISA. Tissue distribution, developmental changes and subcellular distribution. J. Mol. Cell. Cardiol., 19,423−431.
  120. Paulussen R.J., Van Moerkerk H.T., Veerkamp J.H. (1990) Immunochemical quantitation of fatty acid-binding proteins. Tissue distribution of liver and heart FABP types in human and porcine tissues. Int. J. Biochem., 22, 393−398.
  121. T., Unterberg C., Rudel H., Robenek H., Spener F. (1989) Subcellular distribution of cardiac fatty acid-binding protein in bovine heart muscle and quantitation with an enzyme-linked immunosorbent assay. Biochim. Biophys. Acta, 1002, 54−61.
  122. Tanaka T., Hirota Y., Sohmiya K.-I., Nishimura S., Kawamura K. (1991) Serum and Urinary human heart fatty acid-binding protein in acute myocardial infarction. Clin. Biochem., 24, 195−201.
  123. Kleine A.H., Glatz J.F.C., Van Nieuwenhoven F.A., Van der Vusse G.J. (1992) Release of heart fatty acid-binding protein into plasma after acute myocardial infarction in man. Mol. Cell. Biochem., 116, 155−162.
  124. Glatz J.F.C., Kleine A.H., Van Nieuwenhoven F.A., Hermes W.T., Van Dieijen-Visser M.P., Van der Vusse G.J. (1994) Fatty acid-binding protein as a plasma marker for the estimation of myocardial infarct size in humans. Br. Heart J., 71, 135 140.
  125. Glatz J.F.C., Van der Vusse G.J., Simoons M.L., Kragten J.A., Van Dieijen-Visser M.P., Hermes W.T. (1998) Fatty acid-binding protein and the early detection of acute myocardial infarction. Clin. Chim. Acta, 272, 87−92.
  126. Knowlton A.A., Apstein C.S., SaoufR., Brecher P. (1989) Leakage of heart fatty acid binding protein with ischemia and reperfusion. in the rat. J. Mol. Cell. Cardiol., 21, 577−583.
  127. Wodzig K.W.H., Pelsers M.M.A.L., Van der Vusse G.J., Roos W., Glatz J.F.C. (1997) One-step enzyme-linked immunosorbent assay (ELISA) for plasma fatty acid-binding protein. Ann. Clin. Biochem., 34,263−268.
  128. Watanabe K., Wakabayashi H., Veerkamp J.H., Ono Т., Suzuki Т. (1993) Immunohistochemical distribution of heart-type fatty acid-binding protein immunoreactivity in normal human tissues and in acute myocardial infarction. J. Pathol., 170, 59−65.
  129. Zschiesche W., Kleine A.H., Spitzer E., Veerkamp J.H., Glatz J.F.C. (1995) Histochemical localization of heart-type fatty acid-binding protein in human and murine tissues. Histochemistry, 103, 147−156.
  130. Haastrup В., Gill S., Kristensen S.R., Jorgensen P.J., Glatz J.F.C., Haghfelt Т., Horder M. (2000) Biochemical markers of ischaemia for the early identification of acute myocardial infarction without ST segment elevation. Cardiology, 94, 254−261.
  131. R., Buhlmann С., Borchers Т., Spener F. (1996) Differentiation dependent expression of heart-type fatty acid-binding protein C2C12 muscle cells. Eur. J. Cell. Biol., 69, 135−142.
  132. Schaap F.G., Specht B., van der Vusse G.J., Borchers T., Glatz J.F.C. (1996) One-step purification of rat heart-type fatty acid-binding protein expressed in Escherichia coli. J. Chromatogr. B Biomed. Appl., 679, 61−67.
  133. Specht B., Oudenampsen-Kruger E., Indendoh A., Hillenkamp G., Lezius A.G., Spener F. (1994) N-termal variants of fatty acid-binding protein from bovine heart overexpressed in Escherichia coli. J. Biotechnol., 33, 259−269.
  134. Schreiber A., Feldbrugge R., Key G., Glatz J.F.C., Spener F. (1997) An immunosensor based on disposable elrctrodes for rapid estimation of fatty acid-binding protein, an early marker of myocardial infarction. Biosens. Bioelectron., 12, 1131−1137.
  135. Siegmann-Thoss C., Renneberg R., Glatz J.F.C., Spener F. (1996) Enzyme-immunosensor for diagnosis of myocardial infarction. Sensors Actuators B, 30, 71m 76
  136. Roos W., Eymann E., Symannek M., Duppenthaler J., Wodzig. K.W., Pelsers M., Glatz J.F. (1995) Monoclonal antibodies to human heart fatty acid-binding protein. J. Immunol. Methods, 183, 149−53.
  137. Speiger H., Laterveer-Vreeswijk R.H., Glatz J.F.C., Nieuwenhuizen W., Hermens W.T. (2004) One-step immunoassay for measuring protein concentrations in plasma, based on precipitate-enhanced ellipsometry. Anal. Biochem., 326, 257−261.
  138. T., Ohkubo Y., Matsuoka H., Kimura H., Sakai Y., Ohkaru Y., Tanaka T., Kitaura Y. (2001) Development of a simple whole blood panel test for detection of human heart-type fatty acid-binding protein. Clin. Biochem., 34, 257−263.
  139. U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680−685.
  140. P. (1953) The chemical nature of the second hydrogen peroxide compound formed by cytochrome с peroxidase and horseradish peroxidase. Biochemical Journal, 54, 267−271.
  141. R.E., Bardsley W.G. (1975) The steady-state kinetics of peroxidase with 2,2'-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem J., 145, 93−103.
  142. H.B., Stillman J.S. (1976) On the function and mechanism of action of peroxidases. Coordination Chemistry Reviews, 19, 187−251.
  143. E., Imagawa M., Hashida S., Yoshitake S., Hamaguchi Y., Ueno T. (1983) Enzyme-labeling of antibodies and their fragments for enzyme immunoassay and immunohistochemical staining. J. of Immunoassay, 4,209−227.
  144. V.G., Chubar T.A., Kapeliuch Yu.L., Borchers Т., Spener F., Egorov A.M., (1999) New approaches for functional expression of recombinant horseradish peroxidase С in Escherichia Coli., Biocatal. Biotransform., 17, 359−379.
  145. V., Andreeva I., Borchers T., Spener F., Egorov A. (2001) A genetically engineered fusion protein with horseradish peroxidase as a marker enzyme for use in competitive immunoasays. Anal. Chem., 73, 1134−1139.
  146. C.W. (1998) Progress in the diagnosis of unstable angina and perspectives for treatment. Eur. Heart J., 19, 48−50.
  147. F., Bonora R., Bonetti G., Panteghini M. (2002) Evaluation of sandwich enzyme-linked immunosorbent assay for the measurement of serum heart fatty acid-binding protein. Ann. Clin. Biochem., 39,404−405.
  148. De Groot M.J.M., Muijtjens A.M.M., Simoons M.L., Hermens W.T., Glatz J.F.C. (2001) Asessment of coronary reperfusion in patients with myocardial infarction using fatty acid binding protein concentrations in plasma. Heart, 85, 278−285.
Заполнить форму текущей работой