Помощь в учёбе, очень быстро...
Работаем вместе до победы

Цитофизиологические последствия ультрафиолетового микрооблучения центросомы в клетках культуры ткани

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В последние годы центросома активно изучается в биохимическом плане. В составе центросомы сейчас описывают все новые и новые белки с различными свойствами, находящиеся там постоянно или в какой-либо промежуток клеточного цикла. Этот подход многое может прояснить в функциях центросомы. В то же время он подобен сложной мозаике — целостный взгляд может быть сформирован только при наличии большого… Читать ещё >

Содержание

  • 1. Введение
  • 2. Обзор литературы
    • 2. 1. Центросома в интерфазе
    • 2. 2. Центросома включает в себя сайты нуклеации микротрубочек
    • 2. 3. Система микротрубочек в интерфазной клетке: различные взгляды
    • 2. 4. Роль центросомы и системы микротрубочек в поддержании формы клеток
    • 2. 5. Роль центросомы и системы микротрубочек во внутриклеточном транспорте
    • 2. 6. Центросома в митозе
    • 2. 7. Переход клетки из митоза в интерфазу
    • 2. 8. Дальнейшее продвижение по клеточному циклу и переход в 8 период
    • 2. 9. Использование метода микрооблучения для изучения свойств центросомы
  • 3. Материалы и методы
    • 3. 1. Культивирование клеток и прижизненные наблюдения
    • 3. 2. Микрооблучение
    • 3. 3. Иммунофлуоресцентные исследования
      • 3. 3. 1. Визуализация белка В
      • 3. 3. 2. Визуализация системы микротрубочек
      • 3. 3. 3. Регистрация синтеза ДНК
    • 3. 4. Регистрация синтеза РНК
    • 3. 5. Оценка степени распластывания
    • 3. 6. Регистрация сальтаторных движений гранул
  • 4. Результаты
    • 4. 1. Ближайшие эффекты УФ микрооблучения центросомы
    • 4. 2. Особенности нуклеологенеза в клетках, содержащих облученную центросому
      • 4. 2. 1. Формирование ядрышек в клетках, содержащих облученную центросому
      • 4. 2. 2. Уровень синтеза РНК в клетках, содержащих облученную центросому
      • 4. 2. 3. Распределение ядрышкового белка В23 в клетках, содержащих облученную центросому
    • 4. 3. Сеть МТ в клетках, содержащих облученную центросому
    • 4. 4. Способность к распластыванию клеток с облученной центросомой
    • 4. 5. Сальтаторные движения гранул в клетках с облученной центросомой
    • 4. 6. Продвижение клеток, содержащих облученную центросому, по клеточному циклу
  • 5. Обсуждение
    • 5. 1. Фотоинактивация центросомы препятствует формированию нормальных функционирующих ядрышек
    • 5. 2. Фотоинактивация центросомы задерживает формирование радиальной сети микротрубочек после выхода из митоза
    • 5. 3. Фотоинактивация центросомы приводит к изменению характера сальтаторных движений в клетке
    • 5. 4. Фотоинактивация центросомы препятствует увеличению площади клеток после начального распластывания в ранней G1 фазе. 86 5.6 Фотоинактивация центросомы блокирует вступление клетки в S-фазу
  • 6. Выводы

Цитофизиологические последствия ультрафиолетового микрооблучения центросомы в клетках культуры ткани (реферат, курсовая, диплом, контрольная)

Цитоплазма клетки пронизана сетью филаментов — белковых нитей различной толщины: актиновых микрофиламентов, промежуточных филаментов и микротрубочек. Все они в совокупности составляют цитоскелет клетки. Центром организации микротрубочек в клетке является центросома — особая структура, обычно расположенная вблизи ядра в геометрическом центре клетки. Центросома присутствует практически во всех животных клетках. Морфологически центросома включает в себя две центриоли и перицентриолярное пространство.

Наверное, не найдется другой такой клеточной структуры, о роли которой существовали бы столь противоречивые мнения, как о роли центросомы в животной клетке: от предоставления ей более чем скромного места пассивного «пассажира» в клеточных процессах до представлений о центросоме как о структуре, координирующей и программирующей внутриклеточные процессы на всех этапах клеточного цикла.

В последние годы центросома активно изучается в биохимическом плане. В составе центросомы сейчас описывают все новые и новые белки с различными свойствами, находящиеся там постоянно или в какой-либо промежуток клеточного цикла. Этот подход многое может прояснить в функциях центросомы. В то же время он подобен сложной мозаике — целостный взгляд может быть сформирован только при наличии большого числа мелких фрагментов. Но для собирания этой подробной картины нужно иметь некий предварительный план, общее понятие о функциях всей структуры в целом, возможность выделить основные направления, по которым можно двигаться в поисках отдельных фрагментов.

В формировании такого общего понятия о функциях центросомы очень важными являются прижизненные эксперименты. Основной прием таких экспериментов — своего рода выключение центросомы, частично или полностью, из внутриклеточных событий и наблюдение реакции клетки на такое выключение. Примером подобных экспериментов могут служить инъекции антител к центросомным белкам, микрохирургическое удаление центросомы, фотоинактивация центросомы. В нашей работе мы использовали метод фотоинактивации центросомы ультрафиолетовым микрооблучением. Целью настоящей работы явился поиск связи центросомы с клеточным циклом, выяснение роли центросомы в процессах, происходящих в интерфазной клетке.

2. ОБЗОР ЛИТЕРАТУРЫ.

6. выводы.

1. Клетки, содержащие облученную центросому, нормально распластываются при переходе в интерфазу, но, в отличие от сестринских и интактных клеток, не увеличивают свою площадь после начального распластывания в раннем периоде.

2. Клетки, содержащие облученную центросому, не формируют в раннем С1 периоде радиальную сеть микротрубчек. Центр нуклеации микротрубочек формируется в клетках, содержащих облученную центросому, через 6 — 7 ч после облучения.

3. Клетки, содержащие облученную центросому, не способны формировать нормальные ядрышки. Синтез РНК в них снижен вдвое по сравнению с сестринскими клетками, они характеризуются аномальным распределением ядрышкового белка В23. Проядрышки в таких клетках сохраняются в течение всего времени их жизни.

4. Число треков сальтаторных движений гранул в цитоплазме клеток, содержащих облученную центросому, через 5−7 ч после анафазы значительно превышает число треков в сестринских клетках. Средняя длина треков в клетках, содержащих облученную центросому, короче, чем в сестринских клетках.

5. Клетки, перешедшие в интерфазу с облученной центросомой, не способны вступать в Б период. Их сестринские клетки и клетки, облученные в такой же дозе в цитоплазму, вступают в 8 период.

6. Различия в цитофизиологических параметрах между клетками, содержащими облученную центросому, и их сестринскими клетками усиливаются с течением времени, прошедшего после завершения митоза.

Показать весь текст

Список литературы

  1. С. С., Надеждина Е. С., Ченцов Ю. С. 1996. Морфогенез центросомы в раннем развитии мыши: иммунофлуоресцентное исследование с помощью антител к центросоме. Цитология, Т. 38, с. 5−13.
  2. Ю.А., Потапенко А. Я. 1989. Физикохимические основы фотобиологических процессов. М. Высшая школа. 199 с.
  3. И.А., Драчев В. А., Ченцов Ю. С. 1988. Инактивация центросом в митозе лазерным микрооблучением. Биополимеры и клетка. Т.4, N6. С.313−321.
  4. И.А., Надеждина Е. С. 1987. Центриолярный аппарат и его роль ворганизации микротрубочек. Итоги науки и техники. Серия «Общие проблемы физико-химической биологии.» Т.7. М.: ВИНИТИ. 126 С.
  5. О.И., Терских В. В., Захаров А. Ф. Радиоавтография. М.: Высшая школа, 1977. С.
  6. И.С., Чернобельская A.A., Воробьев И. А. 1997. Количественный анализ движений гранул в поляризованных фибробластах. Биологические мембраны. Т. 14, N.2, стр. 160−173.
  7. О.В., Желев Н., Джордан Г. Иммунолокализация ядрышкового белка В23 в центросомах в митозе. Мол. биол. 1995. Т. 29. С. 1359−1367.
  8. В.Н., Воронкова Л. Н. О последствиях локального облучения ядрышка живой клетки ультрафиолетовым микролучом. Генетика, 1966, N 6, стр. 144 148.
  9. В.Н., Воронкова Л. Н. Кинетика перехода к синтезу ДНК в клеточном цикле у сестринских клеток линии СПЭВ в культуре. Цитология. 1993. Т.35, Ъ6/7. С.79−85.
  10. Р.Э., Воробьев И. А. Влияние ультрафиолетового микрооблучения центросомы на поведение клеток. III. Ультраструктура центросомы после микрооблучения. Цитология. 1992. Т. 34. N 2. С. 62−67.
  11. Р.Э., Воробьев И. А. Влияние ультрафиолетового микрооблучения центросомы на поведение клеток. I. Облучение в метафазе: распад митотического веретена и нарушение деления. Цитология. 1991а. Т. 33. N 2. С. 15−22.
  12. Р.Э., Воробьев И. А. Влияние ультрафиолетового микрооблучения центросомы на поведение клеток. II. Последствия облучения в анафазе: завершение деления и судьба интерфазной клетки. Цитология. 19 916. Т. 33. N 10. С. 79−84.
  13. Р.Э., Воробьев И. А., Драчев В. А. Влияние лазерного микрооблученияклеточного центра на подвижность нейтрофилов. Цитология, 1989, Т 31, N 8, стр. 874−881.
  14. Adachi Y., Copeland T.D., Hatanaka М. and Oroszian S. Nucleolar targeting signal of Rex protein of human T-cell leukemia virus type I spesifically binds to nucleolar shuttle protein B-23. J. Biol. Chem. 1993. V. 268. P. 13 930−13 934.
  15. Ahmad, F.A., and P.W. Baas. 1995. Microtubules released from theneuronalcentrosome are transported into the axon. J Cell Scl, Vol.108, pp. 27 612 769.
  16. Ahmad, F.A., C.J. Echeverri, R.B. Vallee, and P.W. Baas. 1998. Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon. J. Cell Biol., Vol.140, N 2, pp. 391−401
  17. Allen C, Borisy GG, 1974 J Mol Biol 1974 Dec 5−90(2):381−402 Structural polarity and directional growth of microtubules of Chlamydomonas flagella.
  18. , L.A. 1982 Tubulin and assosiated proteins. In elictron microscopy ofproteins, vol.3. In (ed. J.R. Harris), pp. 207−250. Academic Press, London.
  19. A.S., 1982 Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis. J Cell Biol. 1982 Apr- 93(1): 33−48.
  20. Bajer AS, Cypher C, Mole-Bajer J, Howard HM Taxol-induced anaphase reversal: evidence that elongating microtubules can exert a pushing force in living cells. Proc Natl Acad Sci USA. 1982 Nov- 79(21): 6569−6573.
  21. Bajer AS, Mole-Bajer J Asters, poles, and transport properties within spindlelike microtubule arrays. Cold Spring Harb Symp Quant Biol 1982- 46 Pt 1:263−283
  22. Bajer AS. Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis. J Cell Biol. 1982 Apr- 93(1): 33−48.
  23. O., Murphy D.B. 1995. Microtubule-associated movement ofmitochondria and small particles in Acanthamoeba castellanii. Cell Motil. Cytoskeleton. 32(4): 305−317.
  24. Beckerle MC, Porter KR J Cell Biol 1983 Feb-96(2):354−362 Analysis of the role of microtubules and actin in erythrophore intracellular motility.
  25. Belmont LD, Hyman AA, Sawin KE, Mitchison TJ Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell. 1990 Aug 10- 62(3): 579−589.
  26. Bergen, L.G., Borisy, G.G. 1980 Head-to-tail polymerization of microtubules in vitro. Electron microscope analysis of seeded assembly. J. Cell Biol., 84, 141−150
  27. Berns et al., 1977 Berns MW, Richardson SM Continuation of mitosis after selective laser microbeam destruction of the centriolar region. J Cell Biol. 1977 Dec- 75(3): 977−982.
  28. Brinkley et al., 1981 Brinkley BR, Cox SM, Pepper DA, Wible L, Brenner SL, Pardue RL Tubulin assembly sites and the organization of cytoplasmic microtubules in cultured mammalian cells. J Cell Biol. 1981 Sep- 90(3): 554−562.
  29. Brinkley, B.R., E.M. Fuller, and D.P. Highfield. 1975. Cytoplasmic microtubules in normal and transformed cells in culture: analysis by tubulin antibody immunofluorescence. Proc. Natl. Acad. Sci. USA. 72: 4981−4985
  30. Brinkley, B.R., S.M. Cox, D.A. Pepper, L. Wible, S.L. Brenner, and R.L. Pardue. 1981. Tubulin assembly sites and the organization of cytoplasmic microtubules in cultured mammalian cells. J. Cell Biol. 90: 554−562
  31. Callarco-Gillam P.D., Siebert M.C., Hubble R" Mitchison T., Kirschner M. 1983. Centrosome development in early mouse embryos as defined by an autoantibody against pericentriolar material. Cell Vol. 35, pp. 621−629.
  32. S.L., Sheetz M.P. 1988. Cultured cell extracts support organelle movement on microtubules in vitro. Cell Moiil Cytoskeleton. 10(4): 482−495.
  33. De Brabander M., Geuens G., Nuydens R., Willebrords R., De Mey J. 1982. Microtubule stability and assembly in living cells: the influence of metabolic inhibitors, taxol and pH. Cold Spring Harb Symp Quant Biol.- 46 Pt 1: 227−240.
  34. G.A., Zicha D. 1995. Dynamics of fibroblast spreading. J Cell Sci Mar- 108(Pt 3): 1239−1249
  35. Euteneuer U., and M. Schliwa. 1984. Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature Jul 5−11- 310(5972):58−61
  36. Euteneuer, U., and J.R. Mcintosh. 1981. Polarity of some motility-related microtubules. Proc. Natl. Acad. Sci. USA. 78: 372−376
  37. Evans L., Mitchison, T. and Kirschner, M. 1985 Influence of the centrosome on the structure of nucleated microtubules. J. Cell Biol. 100, pp. 1185−1191.
  38. Fankhauser C., Izauralde E., Adachi Y., Wingfield P., Laemmli U. Spesific complex of human immunodeficiency virus type I Rev and nucleolar B23 proteins: dissotiation by the Rev response element. Mol. Cell. Biol. 1991. V. 11. P. 2567−2575.
  39. K.W., Jordan M.A., Miller H.P., Wilson L. 1987. Phase dynamics at microtubule ends: the coexistence of microtubule length changes and treadmilling. J. Cell Biol. Apr- 104(4): 1035−1046
  40. Felix M.A., Antony C., Wright M., and Maro B. 1994 Centrosome assembly in vitro: role of gamma-tubulin recruitment in Xenopus sperm aster formation. J. Cell Biol. Vol. 124, pp. 19−31.
  41. Folkman J., Moscona R., 1978 Role of cell shape in growth control. Nature, 273: 345−349
  42. Freed, Lebowitz, 1970 The association of a class of saltatory movements with microtubules in cultured cells. J Cell Biol. 1970 May- 45(2): 334−354.
  43. Gaglio T., M.A. Dionne, and D.A. Compton. 1997. Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes. J Cell Biol. Vol.138, N 5, pp. 1055−1066
  44. Gaglio, T., A. Saredi, and D.A. Compton. 1995. NuMA is required for the organization of microtubules into aster-like arrays. J. Cell Biol. 131: 693−708
  45. Gelfand, Bershadsky. 1991. Microtubule dynamics: mechanism, regulation, and function. Annu Rev Cell Biol. 1991- 7: 93−116.
  46. Geuens et al., 1983. The interaction between microtubules and intermediate filaments in cultured cells treated with taxol and nocodazole. Cell Biol Int Rep. Jan- 7(1): 35−47.
  47. , G.W. 1980. The controle of centrosome motion: UV microbeam irradiation of kinetochore fibers. Ph.D. thesis. University of Pensylvania, Philadelphia. 157pp.
  48. Harris, P., M. Osborn, and K. Weber. 1980. Distribution of tubulin-containing structures in the egg of the sea urchin Strongylocentrotus purpuratus from fertilization through first cleavage. J. Cell Biol. Vol.84, pp. 668−679.
  49. J.H., Allen R.D. 1984. Detection of single microtubules in living cells: particle transport can occur in both directions along the same microtubule. J Cell Biol. Nov- 99(5): 1785−1793.
  50. Heald R., Tournebize R., Habermann A., Karsenti E., and Hyman A. 1998. Spindle Assembly in Xenopus Egg Extracts: Respective Roles of Centrosomes and Microtubule Self-Organization J. Cell Biol., Vol.138, N.3, pp.615−628.
  51. Heald, R., R. Tournebize, T. Blank, R. Sandaltzopoulos, P. Becker, A. Hyman, and E. Karsenti. 1996. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature (Lond.). 382: 420−425
  52. Henson et al., 1992- Henson JH, Nesbitt D, Wright BD, Scholey JM1. munolocalization of kinesin in sea urchin coelomocytes. Association of kinesin with intracellular organelles. J Cell Sci. 1992 Oct- 103(Pt 2): 309−320.
  53. Hernandez-Verdun D., Gautier T. The chromosomes periphery during mitosis. BioEssays. 1994. V. 16. P. 179−185.
  54. Hollenbeck, P. J., Cande, W. Z. 1985. Microtubule distribution and reorganization in the first cell cycle of fertilized eggs of Lytechinus pictus. Eur. J. Cell Biol. 37, 140−148
  55. Horio T., Uzawa S" Jung M.K., Oakley B.R., Tanaka K., Yanagida M. 1991. The fission yeast gamma-tubulin is essential for mitosis and is localized at microtubule organizing centers. J. Cell ScL, 99, 693−700.
  56. Horio T., Hotani H. Nature 1986 Jun 5−321(6070):605−607 Visualization of the dynamic instability of individual microtubules by dark-field microscopy.
  57. Hyman, A. A., and E. Karsenti. 1996. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell. 84: 401−410
  58. Hyman, A.A., and J.G. White. 1987. Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J. Cell Biol. Vol.105, N.5, pp. 21 232 135
  59. Joshi HC, Palacios MJ, McNamara L, Cleveland DW Gamma-tubulin is acentrosomal protein required for cell cycle-dependent microtubule nucleation. Nature. 1992 Mar 5- 356(6364): 80−83. PMID: 1 538 786- UI: 92 168 168.
  60. Jung T., Moor R.M., and Fulka J. Jr. 1993. Kinetics of MPF and histone HI kinase activity differ during the G2- to M-phase transition in mouse oocytes. Int. J. Dev. Biol., Dec-37(4):595−600.
  61. Kachar B., Bridgman P.C., and Reese T.S. 1987. Dynamic shape changes of cytoplasmic organelles translocating along microtubules. J. Cell Biol., Sep- 105(3): 1267−71.
  62. Kalt A., Schliwa M. Molecular components of the centrosome. Trends Cell Biol.1993. V. 3. P. 118−128.
  63. Keating, T.J., J.G. Peloquin, V.I. Rodionov, D. Momcilovic, and G.G. Borisy. 1997. Microtubule release from the centrosome. Proc. Natl. Acad. Sci. USA. 94: 50 785 083
  64. Kirschner MW and Gard DL, A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end.
  65. Kirschner MW and Gard DL, Microtubule assembly in cytoplasmic extracts of Xenopus oocytes and eggs. J Cell Biol. 1987 Nov- 105(5): 2191−2201.
  66. M.W. 1980. Implications of treadmilling for the stability and polarity of actin and tubulin polymers in vivo./. Cell Biol., Jul-86(l):330−4.
  67. Kitanishi, Y.T., and Y. Fukui. 1987. Reorganization of microtubules during mitosis in Dictyostelium: dissociation from MTOC and selective assembly/disassembly in situ. Cell Motil. Cytoskeleton. 8: 106−117 .
  68. Komarova, Yu. A., Ryabov, E. V., Uzbekov R. E., Alieva I. B., Uzbekova S. V. and Vorobjev I. A. (1995). Gamma-tubulin is constantly associated with centrioles and not with microtubule organizing centers. Mol. Biol. Cell. 6:39a.
  69. Koonce M.P., CloneyR. A, Berns M.W. 1984. Laser irradiation of centrosomes in newt eosinophils: evidence of centriole role in motility. Journal of Cell Biology. 98(6): 1999−2010, Jun.
  70. Koonce M.P., and Schliwa M. 1985. Bidirectional organelle transport can occur in cell processes that contain single microtubules. J. Cell Biol., Jan-100(l):322−6.
  71. Maldonado-Codia G., Glover D.M. Cyclins A and В assotiate with chromatin and polar regions of spindles, respectively, and do not undergo complete degradation at anaphase in syncytial Drosophila embryos. J. Cell Biol, 1992, V 116, N 4, p. 967−976.
  72. Maniotis A., Schliwa M. Microsurgical removal of centrosomes blocks cellreproduction and centriole generation in BSC-1 cells. Cell, 1991, Vol.67, p.495−504.1. Matteoni, Kreis, 1987-
  73. Matthies, H.J.G., H.B. McDonald, L.S.B. Goldstein, and W.E. Theurkauf. 1996. Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein. J. Cell Biol. 134: 455−464. Mazia et al., 1981
  74. , D. 1984. Centrosomes and mitotic poles. Exp. Cell Res. 153:1−15.
  75. McBeath, E., and K. Fujiwara. 1990. Microtubule detachment from the microtubule-organizing center as a key event in the complete turnover of microtubules in cells. Eur. J. Cell Biol. 52: 1−16.
  76. Mcintosh J.R., and Koonce M.P. 1989. Mitosis. Science, Nov 3−246(4930):622−8.
  77. J.R., Euteneuer U. 1984. Tubulin hooks as probes for microtubule polarity: an analysis of the method and an evaluation of data on microtubule polarity in the mitotic spindle. J Cell Biol. Vol.98, N.2, pp.525−533.
  78. , J.R. 1983. The centrosome as organizer of the cytoskeleton. Mod. Cell Biol. 2: 115−142.
  79. McKim, K.S., and R.S. Hawley. 1995. Chromosomal control of meiotic cell division. Science (Wash. DC). 270: 1595−1601
  80. McNeil, P. A. and Berns M. W. 1981. Chromosome behavior after laser microirradiation of a single kinetochore in mitotic PtK2 cells. J. Cell Biol. 88, 543−553.
  81. McNiven M.A., M. Wang, and K.R. Porter. 1984. Microtubule polarity and the direcrion of pigment transport reverse simultaneously in surgically severed melanophore arms. Cell. Vol. 37, N.3, pp.753−765.
  82. Merdes, A., K. Ramyar, J.D. Vechio, and D.W. Cleveland. 1996. A complex of
  83. NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell. 87: 447−458
  84. Meredith S., Berns M.W. Light and electron microscopy of laser microirradiated nucleoli and nucleoplasm in tissue culture cells. J. Morph., 1976, V 150, N 4, p. 785−804.
  85. Mitchison T.J., and Sawin K.E. 1990. Tubulin flux in the mitotic spindle: where does it come from, where is it going? Cell Molil. Cyloskel. V. 16, pp. 93−98.
  86. Mitchison, T., and Kirschner M. 1984a. Microtubule assembly nucleated by isolated centrosomes. Nature (Lond.). Vol. 312, pp. 232−236.
  87. Mitchison, T., and Kirschner M. 1984b. Dynamic instability of microtubule growth. Nature (Lond.). 312: 237−242
  88. Ochs R., Lichwe M., O’Leary P., Busch H. 1983. Localization of nucleolarphosphoproteins B23 and C23 during mitosis. Exp. Cell Res. V. 146. P. 139 149.
  89. R.L., Lischwe M.A., Shen E., Carroll R.E., Busch H. 1985. Nucleologenesis: Composition and fate of prenucleolar bodies. Chromosoma (Berl). V. 92. P. 330−336.
  90. Osborn M., and Weber K. 1976. Tubulin-specific antibody and the expression of microtubules in 3T3 cells after attachment to a substratum. Further evidence for the polar growth of cytoplasmic microtubules in vivo. Exp. Cell Res., Dec- 103(2):331−40.
  91. Pepperkok, R., M.H. Bre, J. Davoust, and T.E. Kreis. 1990. Microtubules are stabilized in confluent epithelial cells but not in fibroblasts. J. Cell Biol. Ill: 3003−3012
  92. Pfister K.K., Wagner M.C., Stenoien D.L., Brady S.T., and Bloom G.S. 1989. Monoclonal antibodies to kinesin heavy and light chains stain vesicle-like structures, but not microtubules, in cultured cells. J Cell Biol., Vol. 108, pp. 1453−63.
  93. , K.R. 1966. Cytoplasmic microtubules and their function. Ciba Found. Symp. 8: 308−356
  94. Raff J.W., Kellogg D.R., and Alberts B.M. 1993. Drosophila gamma-tubulin is part of a complex containing two previously identified centrosomal MAPs. J. Cell Biol., Vol. 121, pp. 823−835.
  95. J.W. 1996. Centrosomes and microtubules: wedded with a ring. Trends Cell Biol. Vol.6, pp.248−251.
  96. Rattner J.B., and Berns M.W. 1976. Centriole behavior in early mitosis of rat kangaroo cells (PTK2). Chromosoma, Mar 10−54(4):387−95.
  97. Nature (Lond.). 386: 170−173 Rodionov, V.I., and G.G. Borisy. 1997b. Microtubule treadmilling in vivo. Science
  98. Sammak, P.J., and G.G. Borisy. 1988. Detection of single fluorescent microtubules and methods for determining their dynamics in living cells. Cell Moiil Cytoslceleton. 10: 237−245
  99. Sammak, P.J., G.J. Gorbsky, and G.G. Borisy. 1987. Microtubule dynamics in vivo: a test of mechanisms of turnover. J. Cell Biol. 104: 395−405
  100. Sawin, K.E., and T.J. Mitchison. 1991. Mitotic spindle assembly by two different pathways in vitro. J. Cell Biol. 112: 925−940
  101. Saxton, W.M., D.L. Stemple, R J. Leslie, E.D. Salmon, M. Zavortink, and J.R.
  102. Mcintosh. 1984. Tubulin dynamics in cultured mammalian cells. J. Cell Biol. 99: 2175−2186
  103. U., Benavente R. 1990. Functional and dynamic aspects of the mammalian nucleolus. BioEssays. V. 12. P. 14−21.
  104. U., Weisenberger D. 1994. The nucleolus. Current Opinion Cell Biol. V. 6. P. 354−359.
  105. Schmidt-Zachmann M.S., Hugle-Dorr B., Franke W.W. 1987. A constitute nucleolar protein identified as a member of the nucleoplasmin family. EMBO J. V. 6. P. 1881−1890.
  106. Schnapp B.J., Vale R.D., Sheetz M.P., and Reese T.S. 1985. Single microtubules from squid axoplasm support bidirectional movement of organelles. Cell, Vol. 40, N 2, pp. 455−462.
  107. Schroeder C.C., Fok A.K., and Allen R.D. 1990. Vesicle transport alongmicrotubular ribbons and isolation of cytoplasmic dynein from Paramecium. J. Cell Biol., Vol. 111, N 6, pp. 2553−2562.
  108. E., Asai D.J., Bulinski J.C., Kirschner M. 1997. Post-transcriptional modification and microtubule stability. J. Cell Biol. 105:2167−2177.
  109. Severin F.F., ShaninaN.A., Kuznetsov S.A., Gelfand V.I. 1991. MAP2-mediated binding of chromaffin granules to microtubules. FEBS Lett. Apr 22- 282(1): 6568.
  110. P.J., Jordan E.G. 1995. The nucleolus. Anna. Rev. Cell Dev. Biol. V. 11. P. 93 121.
  111. Sluder, G., and C.L. Rieder. 1985. Experimental separation of pronuclei in fertilized sea urchin eggs: chromosomes do not organize a spindle in the absence of centrosomes. J. Cell Biol. 100: 897−903
  112. J. A., Mcintosh J.R. 1975. Initiation and growth of microtubules from mitotic centers in lysed mammalian cells. J Cell Biol. Dec- 67(3): 744−760.
  113. Soltys, B.J., and G.G. Borisy. 1985. Polymerization of tubulin in vivo: directevidence for assembly onto microtubule ends and from centrosomes. J. Cell Biol. 100: 1682−1689
  114. D.L., Ochs R.L., Busch H. 1984. Silver staining, immunofluorence, and immunoelectron microscopic localisation of nucleolar phosphoproteins B23 and C23. Chromosoma. V. 90. P. 139−148.
  115. Spurck T.P., Stonington O.G., Snyder J.A., Pickett-Heaps J.D., Bajer A., Mole-Bajer J. 1990. UV microbeam irradiations of the mitotic spindle. II. Spindle fiber dynamics and force production. J Cell Biol. Oct- 111(4): 1505−1518.
  116. T., Evans L., Kirschner M. 1991. Gamma-tubulin is a highly conserved component of the centrosome. Cell. May 31- 65(5): 825−836.
  117. T., Kirschner M. 1994. In vitro reconstitution of centrosome assembly and function: the central role of gamma-tubulin. Cell. Feb 25- 76(4): 623−637.
  118. W., Fuge H., Dietz R., Bastmeyer M., Muller G. 1986. Aster-free spindle poles in insect spermatocytes: evidence for chromosome-induced spindle formation? J Cell Biol. May- 102(5): 1679−1687.
  119. C.E., Gomes R., Sampaio P., Perdigao J., Gonzalez C. 1995. Gamma-tubulin is required for the structure and function of the microtubule organizing centre in Drosophila neuroblasts. EMBO J. 14, 28−36.
  120. Takeda, S., Izutsu, K. 1960. Irradiation of the different parts of dividing cells with UV microbeam. Symp. Soc. Cellul. Chemistry, N 10, pp. 245−259.
  121. Takemura M., Ohta N., Furuichi Y., Takahacshi T., Yoshida S., Olson M.O.J., Umekawa H. 1994. Simulation of calf thymus DNA polymerase activity by nucleolar protein B23. Biochem. Biophys. Res. Com. V. 199. P. 46−51.
  122. Tanaka, E., T. Ho, and M.W. Kirschner. 1995. The role of microtubule dynamics in growth cone motility and axonal growth. J. Cell Biol. 128: 139−155.
  123. A.M., Celati C., Moudjou M., Bornens M. 1998. Characterization of the Human Homologue of the Yeast Spc98p and Its Association with gamma-Tubulin. J. Cell Biol, 141, pp. 689−701.
  124. Tilney LG, Porter KR Studies on microtubules in Heliozoa. I. The fine structure of Actinosphaerium nucleofilum (Barrett), with particular reference to the axial rod structure. Protoplasma. 1965- 60(4): 317−344.
  125. Tran, P.T., R.A. Walker, and E.D. Salmon. 1997b. A metastable intermediate state of microtubule dynamic instability that differs significantly between plus and minus ends. J. Cell Biol., 138: 105−117
  126. Umekawa H" Chang J.-H., Correia J.J., Wang D., Wingfield P.T., Olson M.O.J.1993. Nucleolar protein B23: bacterial expression, purification, oligomerization and secondary structure of two isoforms. Cell Mol. Biol. Res. V .39. P. 635 645.
  127. R.E., Votchal M.S., Vorobjev I.A. 1995. Role of the centrosome in mitosis: UV microirradiation study. J. Photochem. Photobiol. V. 29, pp. 163−170.
  128. Vale R.D., Schnapp B.J., Mitchison T., Steuer E" Reese T.S., Sheetz M.P. 1985. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell. Dec- 43(3 Pt 2): 623−632.
  129. Vandre D.D., Davis F.M., Rao P.N., Borisy G.G. 1984a. Phosphoproteins are components of mitotic microtubule organizing centers. Proc Nail Acad Sei U S A. Jul- 81(14): 4439−4443.
  130. D.D., Kronebusch P., Borisy G.G. 1984b. Interphase-mitosis transition: microtubule rearrangements in cultured cells and sea urchin eggs. In: Molecular biology of the cytoskeleton. Borisy G.G., Cleveland D.W., Murphy D.B. (eds.) pp. 3−16.
  131. Vasiliev, J.M., I.M. Gelfand, L.V. Domnina, O.Y. Ivanova, S.G. Komm, and L.V. Olshevskaja. 1970. Effect of colcemid on the locomotory behavior of fibroblasts. J. Embryol. Exp. Morphol. 24: 625−640
  132. Vasquez RJ, Howell B, Yvon AM, Wadsworth P, Cassimeris L 1997 Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro. Mol. Biol. Cell, Jun- 8(6): 973−985.
  133. Vogel J.M., Stearns T, Rieder C.L., Palazzo R.E. 1997. Centrosomes isolated from Spisula solidissima oocytes contain rings and an unusual stoichiometric ratio of alpha/beta tubulin. J Cell Biol. Apr 7- 137(1): 193−202.
  134. Vorobjev I.A., and Chentsov Yu. S. 1982. Centrioles in the cell cycle. I. Epithelial cells. J Cell Biol. 1982 Jun- 93(3): 938−949.
  135. , I. A. 1993. Role of the centrosome in regulation of mitotic progression. Europ. J. Cell Biol., 38 Suppl., 10.
  136. Vorobjev, I.A., Svitkina, T.M., and G.G. Borisy 1997. Cytoplasmic assembly of microtubules in cultured cells. J. Cell Sei., 110:2635−2645,
  137. Vorobjev, I. A., Chentsov, Yu. S. 1983. Eur. J. Cell Biol. 30, 149−153
  138. Wade, R.H., and A.A. Hyman. 1997. Microtubule structure and dynamics. Curr.
  139. R.E. 1970. Ultraviolet microbeam irradiation on newt cell cytoplasm: spindle distruction, false anaphase, and delay of true anaphase. Radiation Res., Vol. 41, pp. 516−537.
Заполнить форму текущей работой