Помощь в учёбе, очень быстро...
Работаем вместе до победы

Получение, характеристика и генетическая модификация индуцированных плюрипотентных стволовых клеток крысы для применения в целях тканезаместительной терапии

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Полученные иПС клетки крысы, при использовании вирусных векторов с последующим их удалением, обладают нормальным кариотипом и плюрипотентными свойствами. О плюрипотентности полученных иПС клеток свидетельствуют экспрессия в них известных маркеров плюрипотентности (Nanog, Oct4, SSEA1, щелочной фосфатазы), а также способность этих клеток образовать тератомы и участвовать в формировании химерного… Читать ещё >

Содержание

  • I. Обзор литературы
    • 1. 1. Эмбриональные стволовые клетки
      • 1. 1. 1. Основные сигнальные пути, обеспечивающие самообновление клеток и поддержание плюрипотентного состояния в ЭС клетках
        • 1. 1. 1. 1. LIF/gpl30/STAT3 — сигнальный путь
        • 1. 1. 1. 2. BMP/Smad каскад
        • 1. 1. 1. 3. Wnt/p-Catenin/TCF
        • 1. 1. 1. 4. Фосфотидилинозитол-3 (PI3) киназный сигнальный путь
        • 1. 1. 1. 5. Ras/Raf/ERK сигнальный путь
        • 1. 1. 1. 6. Перекрещивание и совместное действие сигнальных путей
      • 1. 1. 2. Ключевые транскрипционные факторы, характерные для ЭС клеток, обеспечивающие контроль самоподдержания и плюрипотентного состояния
        • 1. 1. 2. 1. Oct
        • 1. 1. 2. 2. Nanog
        • 1. 1. 2. 3. Sox
        • 1. 1. 2. 4. Klf
        • 1. 1. 2. 5. сМус
      • 1. 1. 3. Эпигенетический статус ЭС клеток
      • 1. 1. 4. Влияние химически-синтезированных веществ на ЭС клетки
    • 1. 2. Индуцированные плюрипотентные стволовые клетки
      • 1. 2. 1. Предпосылки открытия феномена индуцированной плюрипотентности
      • 1. 2. 2. Открытие феномена индуцированной плюрипотентности
      • 1. 2. 3. Необходимые характеристики иПС клеток
        • 1. 2. 3. 1. Способы доставки репрограммирующих факторов в клетки: интегрирующие системы
        • 1. 2. 3. 2. Способы доставки репрограммирующих факторов в клетки: неинтеграрующие системы
        • 1. 2. 3. 3. Идентификация иПС клонов
      • 1. 2. 4. Механизмы, лежащие в основе формирования иПС клеток
        • 1. 2. 4. 1. Детерминистическая и стохастическая гипотезы перехода соматических клеток в плюрипотентное состояние
        • 1. 2. 4. 2. Предполагаемая последовательность событий при переходе клеток в плюрипотентное состояние
      • 1. 2. 5. Роль репрограммирующих транскрипционных факторов в процессе перестройки хроматина
      • 1. 2. 6. Перспективы использования иПС клеток в терапевтических целях
  • II. Материалы и методы
    • II. 1. Работа с клетками эукариот в культуре
  • II. 1.1. Получение МЭФ из 13.5-дневных плодов мыши
  • II.
    • 1. 2. Обработка МЭФ митомицином
  • II. 1.3. Культивирование ЭС клеток мыши
  • II. 1.4. Трансфекция кальций-фосфатным методом
  • II. 1.5. Упаковка вирусных частиц
  • II. 1.6. Титрование вирусов
  • II. 1.7. Заражение клеток лентивирусными частицами
  • II. 1.8. Модификации пластика для культивирования
  • II. 1.9. Получение иПС клеток крысы
  • II.
    • 1. 10. Получение иПС клеток мыши
  • II. 1.11.Электропорация ЭС клеток мыши и иПС клеток крысы
  • II. 1.12. Клональный анализ
  • II. 1.13. Реакция на щелочную фосфатазу
  • II. 1.14. Тест на формирование тератом
  • II. 1.15. Дифференцировка иПС клеток крысы in vitro
  • II. 1.16. Инъекция иПС клеток в эмбрион крысы
    • II. 2. Молекулярно-биологические методы
      • 11. 2. 1. Генотипирование клонов ЭС (иПС) клеток
      • 11. 2. 2. Кариотипирование ЭС (иПС) клеток
      • 11. 2. 3. Иммунофлуоресцентное окрашивание клеток, находящихся в культуре
      • 11. 2. 4. Реакция обратной транскрипции
      • 11. 2. 5. Полимеразная цепная реакция
      • 11. 2. 6. LacZ-окрашивание
      • 11. 2. 7. Проточная цитофлуореметрия (FACS)
  • II. 2.8 Молекулярное клонирование
  • III. Результаты и обсуждения
    • III. 1. Получение иПС клеток крысы
  • III. 1.1. Индукция плюрипотентного состояния в КЭФ
  • III. 1.2. Доказательства плюрипотентного статуса полученных иПС клеток крысы
    • 111. 1. 3. Особенности условий культивирования иПС клеток крысы
  • III. 1.4. Проведение генетических манипуляций с иПС клетками крысы
  • III. 1.5. Подбор условий для направленной дифференцировки иПС клеток крысы
  • III. 1.6. Обсуждение
    • III. 2. Метод генетической сенсибилизации
      • 111. 2. 1. Создание ДНК конструкций для генетической сенсибилизации
      • 111. 2. 2. Генетическая сенсибилизация через введение «маркера-самоубийцы»
      • 111. 2. 3. Мечение ТК-ЭС/иПС клеток
      • 111. 2. 4. Пример использования генетической сенсибилизации в терапевтических целях
        • 111. 2. 4. 1. Участие суицидальных ТК-ЭС клеток в восстановлении функций повреждённой поджелудочной железы
        • 111. 2. 4. 2. Участие суицидальных ТК-ЭС клеток в восстановлении гематопоэза у летально облучённых мышей
  • III. 2.5.Обсуждение
  • Выводы

Получение, характеристика и генетическая модификация индуцированных плюрипотентных стволовых клеток крысы для применения в целях тканезаместительной терапии (реферат, курсовая, диплом, контрольная)

В последнее время всё более возрастает потребность в новых экспериментальных моделях. В первую очередь это касается тех областей науки, которые близки к терапевтическим медицинским исследованиям. Одной из актуальных задач исследований, проводимых на стыке биологии и медицины, является выбор модельного организма. Крыса представляет собой удобную модель в физиологии, фармакологии, трансплантологии, иммунологии, онкологии, и изучении старения и сердечно-сосудистой системы. При сравнимой с мышиной продолжительностью репродуктивного цикла и стоимостью содержания, крыса имеет более подходящий размер, например, для рутинного отбора проб крови и сложных физиологических опытов. С другой стороны, полное понимание физиологических процессов невозможно без описания функции генов, что в свою очередь должно опираться на генный нокаут. Проведение генного нокаута на мыши стало возможным только благодаря возможности получения эмбриональных стволовых (ЭС) клеток (Evans et al., 1981). Однако проведение генного нокаута на крысе до недавнего времени не представлялось возможным, так как ЭС клетки этого вида были впервые получены только в 2008 году (Buehr et al., 2008). Помимо прочего, процесс их получения оказался очень трудоёмким и дорогостоящим.

Таким образом, получение индуцированных плюрипотентных стволовых (иПС) клеток крысы позволит обойти особо трудоёмкий процесс получения ЭС клеток и приблизит нас к проведению различных исследований, использующих крысу, как экспериментальную модель.

Эмбриональные стволовые клетки и индуцированные плюрипотентные стволовые клетки обладают рядом уникальных особенностей: способны неограниченно долго делиться в культуре, а также подвергаться генетическому манипулированию, сохраняя свои свойства. Путём изменения условий культивирования можно добиваться дифференцировки ЭС/иПС клеток in vitro практически во все клеточные типы тканей взрослого организма. При подсадке в доимплантационные эмбрионы, ЭС/иПС клетки способны встраиваться в ткани, происходящие из всех трех зародышевых листков. Описанные свойства, характерные для ЭС/иПС клеток обозначаются термином «плюрипотентность» и делают их ценным объектом, как для фундаментальных (изучение функции генов при проведении генного нокаута), так и для прикладных (заместительная клеточная/тканевая терапия) исследований.

Несмотря на значительный прогресс в области изучения биологии плюрипотентных стволовых клеток, одним из важнейших препятствий, стоящих на пути практического применения этих клеток в клинике является их туморогенность.

Известно, что попадание в организм взрослой мыши хотя бы нескольких ЭС клеток приводит к возникновению тератом. Кроме того, существующие протоколы направленной дифференцировки ЭС клеток in vitro позволяет получить весьма гетерогенные популяции клеток, в которых практически всегда присутствуют резидуальные недифференцированные клетки, обладающие высоким туморогенным потенциалом. Очевидно, что описанная выше ситуация в полной мере относится и к иПС клеткам. Таким образом, присутствие даже небольшого количества недифференцированных ЭС/иПС клеток (и даже одной такой клетки) в трансплантируемом пациенту клеточном материале недопустимо ввиду возможности возникновения тератомы. Соответственно, разработка технологий, гарантирующих полное удаление резидуальных ЭС/иПС клеток из гетерогенных клеточных суспензий или же обеспечивающих получение дифференцированных клеток для ткане-заместительной терапии вообще без использования ЭС/иПС клеток, остаётся одной из самых актуальных на сегодняшний день задач в области биологии стволовых клеток. Данная проблема особенно актуальна в свете бурно развивающегося направления заместительной клеточной/тканевой терапии.

Помимо наиболее актуальной проблемы туморогенности ЭС/иПС клеток, существует ряд проблем, связанных, непосредственно с получением и последующими манипуляциями именно с ЭС клетками. Помимо уже изложенных трудностей нельзя исключать возможность иммунного ответа при использовании искусственно полученного трансплантата из клеток донора. Эти и многие другие проблемы на сегодняшний день остаются нерешёнными.

Существует также морально-этический вопрос использования ЭС клеток в фундаментальных исследованиях и особенно, в тканезаместительной терапии человека. Так, что получение ЭС клеток сопряжено с необходимостью умерщвления эмбриона, что на сегодняшний день недопустимо при работе с человеческим материалом в ряде стран мира.

Данное исследование преследовало две цели: 1) получить и всесторонне охарактеризовать иПС клетки крысы- 2) предложить метод безопасного использования ЭС/иПС клеток в терапевтических целях.

Задачи исследования:

1. Разработать протокол эффективного репрограммирования крысиных эмбриональных фибробластов (КЭФ) в иПС клетки.

2. Генерировать иПС клетки из КЭФ и получить несколько независимых клеточных линий.

3. Изучить плюрипотентные свойства полученных линий иПС клеток крысы в экспериментах in vitro и in vivo.

4. Использовать полученные иПС клетки крысы для проведения генетических манипуляций, таких как стабильное внедрение в геном чужеродной ДНК (трансгенез).

5. Разработать стратегию контроля над туморогенностью ЭС/иПС клеток, заключающуюся в генетической сенсибилизации этих клеток за счет «суицидальной кассеты», несущей гена тимидин киназы (ТК).

6. Протестировать разработанную технологию в экспериментах по тканезамещению на модельных лабораторных животных (мышах).

I. Обзор литературы.

Выводы.

1. Новый, разработанный автором метод получения и поддержания в культуре иПС клеток крысы позволяет повысить выживаемость иПС клеток по меньшей мере в 2 раза по сравнению с опубликованными ранее протоколами.

2. Полученные иПС клетки крысы, при использовании вирусных векторов с последующим их удалением, обладают нормальным кариотипом и плюрипотентными свойствами. О плюрипотентности полученных иПС клеток свидетельствуют экспрессия в них известных маркеров плюрипотентности (Nanog, Oct4, SSEA1, щелочной фосфатазы), а также способность этих клеток образовать тератомы и участвовать в формировании химерного организма.

3. Возможно внедрение в геном иПС клетки крысы стабильного трансгена, что является необходимым шагом на пути к проведению генного нокаута путём гомологической рекомбинации.

4. Стабильное введение в геном ЭС/иПС клеток мыши и крысы «суицидальной кассеты» 2A 2Btk-TKiresPuro обеспечивает контроль над туморогенностью, что подтверждено в в экспериментах in vitro и in vivo.

5. Эксперимент по восстановлению кроветворения у летально облучённых мышей доказывает работоспособность предлагаемой «суицидальной стратегии» в тканезамещении.

Показать весь текст

Список литературы

  1. А.Н. Роль и механизм действия транскрипционного фактора Oct4 в поддержании плюрипотентности стволовых клеток млекопитающих: Диссертация д. биол. наук. Санкт-Петербург, 2009.-111с.
  2. Ahumada A., Slusarski D.C., Liu X., Moon R.T., Malbon C.C., Wang H.Y. Signaling of rat Frizzled-2 through phosphodiesterase and cyclic GMP // Science 2002. 298. 2006−2010.
  3. Annere’n C., Cowan C.A., Melton D.A. The Src Family of Tyrosine Kinases Is Important for Embryonic Stem Cell Self-renewal // J Biol Chem. 2004. 279(30): 31 590−31 598.
  4. Aoi Т., Yae K., Nakagawa M., Ichisaka Т., Okita K., Takahashi K., Chiba Т., Yamanaka S. Generation of pluripotent stem cells from adult mouse liver and stomach cells // Science. 2008. 321: 699−702.
  5. Aoki Т., Ohnishi H., Oda Y., Tadokoro M., Sasao M., Kato H., Hattori K., Ohgushi H. Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-MYC. Tissue Eng Part A. 2010. 16: 2197−2206.
  6. Araki R., Jincho Y., Hoki Y., Nakamura M., Tamura C., Ando S., Kasama Y., Abe M. Conversion of ancestral fibroblasts to induced pluripotent stem cells // Stem Cells. 2010. 28: 213−220.
  7. Aubert J., Dunstan H., Chambers I., Smith A. Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nat Biotechnol. 2002. 20: 12 401 245.
  8. Auernhammer C.J., Melmed S. Leukemia-inhibitory factor neuroimmune modulator of endocrine function // Endocr. Rev. 2000. 21: 313−345.
  9. Avilion A. A., Nicolis S. K., Pevny L. H., Perez L., Vivian N., Lovell-Badge R. Multipotent cell lineages in early mouse development depend on Sox2 function // Genes Dev. 2003. 17: 126−140.
  10. Bhutani N., Brady J.J., Damian M., Sacco A., Corbel S.Y., Blau H.M. Reprogramming towards pluripotency requires AID-dependent DNA demethylation // Nature. 2010. 463: 1042−1047.
  11. Blelloch R., Venere M., Yen J., Ramalho-Santos M. Generation of induced pluripotent stem cells in the absence of drug selection// Cell Stem Cell. 2007. 1: 245−247.
  12. Boeuf H., Hauss C., Graeve F.D., Baran N., Kedinger C. Leukemia inhibitory factor-dependent transcriptional activation in embryonic stem cells // J Cell Biol 1997. 138: 12 071 217.
  13. Boland M.J., Hazen J.L., Nazor K.L., Rodriguez A.R., Gifford W., Martin G., Kupriyanov S., Baldwin K.K. Adult mice generated from induced pluripotent stem cells // Nature. 2009. 461:91−94.
  14. Bottcher R.T., Niehrs C. Fibroblast growth factor signaling during early vertebrate development. Endocr Rev. 2005. 26: 63−77.
  15. Brambrink T., Foreman R., Welstead G.G., Lengner C.J., Wernig M., Suh H., Jaeniseh R. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic Cells // Cell Stem Cell. 2008. 2: 151−159.
  16. Brons G. M., Smithers L.E., Trotter M.W.B., Rugg-Gunn P., Sun B., Lopes S.M., Howlett S.K., Clarkson A., Ahrlund-Richter L., Pedersenl R.A., Vallier L. Derivation of pluripotent epiblast stem cells from mammalian embryos //Nature. 2007. 448: 191−195.
  17. Buehr M., and Smith A. Genesis of embryonic stem cells // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003. 358: 1397−1402.
  18. Buehr M., Meek S., Blair K" Yang J., Ure J., Silva J., McLay R" Hall J., Ying Q.L., Smith A. Capture of authentic embryonic stem cells from rat blastocysts // Cell. 2008. 135: 1287−1298.
  19. Burdon T., Stracey C., Chambers I., Nichols J., Smith A. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells // Dev Biol. 1999. 210: 3043.
  20. Bussmann L.H., Schubert A., Vu Manh T.P., De Andres L., Desbordes S.C., Parra M., Zimmermann T., Rapino F., Rodriguez-Ubreva J., Ballestar E., Graf T. A robust and highly efficient immune cell reprogramming system // Cell Stem Cell. 2009. 5: 554−566.
  21. Campbell P. A., Perez-Iratxeta C., Andrade-Navarro M.A., Rudnicki M.A. Oct4 Targets Regulatory Nodes to Modulate Stem Cell Function // PLoS ONE, 2007. 2(6): e553
  22. Cantley L.C. The phosphoinositide 3-kinase pathway // Science. 2002. 296: 1655−1657.
  23. Carey B.W., Markoulaki S., Hanna J., Saha K., Gao Q., Mitalipova M., Jaeniseh R. Reprogramming of murine and human somatic cells using a single polycistronic vector. // Proc Natl Acad Sci. 2009. 106: 157−162.
  24. Carlone D.L., Lee J.H., Young S.R., Dobrota E., Butler J.S., Ruiz J., Skalnik D.G. Reduced genomic Cytosine methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein // Mol Cell Biol. 2005. 25: 4881−4891.
  25. Cartwright P., McLean C., Sheppard A., Rivett D., Jones K., Dalton S. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism // Development. 2005. 132: 885−896.
  26. Chambers I., Colby D., Robertson M., Nichols J., Lee S., Tweedie S., Smith A. Functional expression cloning of nanog, a pluripotency sustaining factor in embryonic stem cells // Cell. 2003. 113: 643−655.
  27. Chang C.W., Lai Y.S., Pawlik K.M., Liu K" Sun C.W., Li C" Schoeb T.R., Townes T.M. Polycistronic lentiviral vector for 'hit and run' reprogramming of adult skin fibroblasts to induced pluripotent stem cells // Stem Cells. 2009. 27: 1042−1049.
  28. Chen S., Borowiak M., Fox J.L., Maehr R., Osafune K., Davidow L., Lam K., Peng L.F., Schreiber S.L., Rubin L.L., Melton D. A small molecule that directs differentiation of human ESCs into the pancreatic lineage // Nat Chem Biol. 2009. 4: 258−265.
  29. Chen S., Do J.T., Zhang Q., Yao S., Yan F., Peters E.C., Scholer H.R., Schultz P.G., Ding S. Self-renewal of embryonic stem cells by a small molecule // Proc Natl Acad Sci USA. 2006. 103(46): 17 266−17 271.
  30. Chin M.H., Mason M.J., Xie W., Volinia S., Singer M., Peterson C., Ambartsumyan G., Aimiuwu O., Richter L., Zhang J., Khvorostov I., Ott V., Grunstein M., Lavon N.,
  31. Benvenisty N., Croce C.M., Clark A.T., Baxter T., Pyle A.D., Teitell M.A., Pelegrini M., Plath K., Lowry W.E. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures // Cell Stem Cell. 2009. 5:111−123.
  32. Cowan C. A., Atienza, J., Melton, D.A., Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells // Science. 2005. 309: 1369−1373.
  33. Davis R.L., Weintraub H., Lassar A.B. Expression of a single transfected cDNA converts fibroblasts to myoblasts // Cell. 1987. 51: 987−1000.
  34. Desponts C., Ding S. Using small molecules to improve generation of induced pluripotent stem cells from somatic cells // Methods Mol Biol. 2010. 636: 207−218.
  35. Dhand R., Hara K., Hiles I., Bax B., Gout I., Panayotou G., Fry M.J., Yonezawa K., Kasuga M., Waterfield M.D. Pi 3-kinase: structural and functional analysis of intersubunit interactions//EMBO J. 1994. 13(3): 511 -521.
  36. Doetschman T., Gregg R.G., Maeda N., Hooper M.L., Melton D.W., Thompson S., Smithies O. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells // Nature. 1987. 330(6148):576−578.
  37. Egli D., Sandler V.M., Shinohara M.L., Cantor H., Eggan K. Reprogramming after chromosome transfer into mouse blastomeres // Curr Biol. 2009. 19: 1403−1409.
  38. Ehrhardt A., Ehrhardt G.R., Guo X., Schrader J.W. Ras and relatives -job sharing and networking keep an old family together // Exp Hematol. 2002. 30: 1089−1106.
  39. Eminli S., Utikal J., Arnold K., Jaenisch R., Hochedlinger K. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression // Stem Cells. 2008. 26: 2467−2474.
  40. Ernst M., Jenkins B.J. Acquiring signalling specificity from the cytokine receptor gpl30 // Trends Genet. 2004. 20: 23−32.
  41. Evans M.J., Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos //Nature. 1981. 292: 154−156.
  42. Evans P. M., Zhang W., Chen X., Yang J., Bhakat K.K., Liu C. Kriippel-like Factor 4 is Acetylated by p300 and Regulates Gene Transcription via Modulation of Histone Acetylation //J. Biol. Chem. 2007. 282: 33 994−34 002.
  43. Fernandez P. C., Frank S. R., Wang L., Schroeder M., Liu S., Greene J., Cocito A., Amati B. Genomic targets of the human c-Myc protein // Genes Dev. 2003. 17: 1115−1129.
  44. Gidekel S., Bergman Y. A unique developmental pattern of Oct-¾ DNA methylation is controlled by a cis-demodification element // J Biol Chem. 2002. 277: 34 521−34 530.
  45. Han D.W., Do J.T., Gentile L., Stehling M., Lee H.T., Scholer H.R. Pluripotential reprogramming of the somatic genome in hybrid cells occurs with the first cell cycle // Stem Cells. 2008. 26: 445−454.
  46. Hanna J., Saha K., Pando B., van Zon J., Lengner C.J., Creyghton M.P., van Oudenaarden A., Jaenisch R. Direct cell reprogramming is a stochastic process amenable to acceleration // Nature. 2009b. 462: 595−601.
  47. He Z., Li J.J., Zhen C.H., Feng L.Y., Ding X.Y. Effect of leukemia inhibitory factor on embryonic stem cell differentiation: implications for supporting neuronal differentiation // Acta Pharmacologica Sinica. 2006. 27.: 80−90.
  48. Heldin C.H., Miyazono K., Dijke P. TGF-b signalling from cell membrane to nucleus through SMAD proteins //Nature. 1997. 390: 465−471.
  49. Hochedlinger K., Plath K. Epigenetic reprogramming and induced pluripotency // Development. 2009. 136: 509−523.
  50. Hockemeyer D., Soldner F., Cook E.G., Gao Q., Mitalipova M., Jaenisch R. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency // Cell Stem Cell. 2008. 3: 346−353.
  51. Holubcova Z., Matula P., Sedlackova M., Vinarsky V., Dolezalova D., Barta T., Dvorak P, Hampl A. Human Embryonic Stem Cells Suffer from Centrosomal Amplification // Stem Cells. 2010. 29: 46−56.
  52. Hough S. R., Clements I., Welch P. J., Wiederholt K. A. Differentiation of mouse embryonic stem cells after RNA interference-mediated silencing of Oct4 and Nanog // Stem Cells. 2006. 24: 1467−1475.
  53. Huangfu D., Guo R. M. W., Eijkelenboom A., Snitow M., Chen A.E., Melton D.A. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds //Nat Biotechnol. 2008. 26: 795−797.
  54. Ieda M., Fu J.D., Delgado-Olguin P., Vedantham V., Hayashi Y., Bruneau B.G., Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors // Cell. 2010. 142: 375−386.
  55. Ito S., D’Alessio A.C., Taranova O.V., Hong K., Sowers L.C., Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES cell self-renewal and inner cell mass specification // Nature. 2010. 466: 1129−1133.
  56. Ivanova N., Dobrin R., Lu R., Kotenko I., Levorse J., DeCoste C., Schafer X., Lun, Y., Lemischka I. R. Dissecting self-renewal in stem cellswithRNA interference // Nature. 2006. 442: 533−538.
  57. Jabbari K., Bernardi G. Cytosine methylation and CpG, TpG (CpA) and TpA frequencies// Gene. 2004: 143−149.
  58. Jackson M., Krassowska A., Gilbert N., Chevassut T., Forrester L., Ansell J., Ramsahoye B. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells // Mol Cell Biol. 2004. 24: 8862−8871.
  59. Jia F., Wilson K.D., Sun N., Gupta D.M., Huang M., Li Z., Panetta N.J., Chen Z.Y., Robbins R.C., Kay M.A., Longaker M.T., Wu J.C. A nonviral minicircle vector for deriving human iPS cells //Nat Methods. 2010. 7: 197−199.
  60. Kaji K., Caballero I.M., MacLeod R., Nichols J., Wilson V.A., Hendrich B. The NuRD component Mbd3 is required for pluripotency of embryonic stem cells // Nat Cell Biol. 2006. 8: 285−292.
  61. Kaji K., Norrby K., Paca A., Mileikovsky M., Mohseni P., Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors // Nature. 2009. 458: 771— 775.
  62. Kang L., Wang J., Zhang Y., Kou Z., Gao S. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell. 2009. 5: 135−138.
  63. Kim D., Kim C.H., Moon J.I., Chung Y.G., Chang M.Y., Han B.S., Ko S" Yang E" Cha K.Y., Lanza R., Kim K.S. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins // Cell Stem Cell. 2009. 4: 472−476.
  64. Kim J., Chu J., Shen X., Wang J., Orkin S.H. An extended transcriptional network for pluripotency of embryonic stem cells // Cell. 2008. 132: 1049−1061.
  65. Kim J.B., Greber B., Araur zo-Bravo M.J., Meyer J., Park K.I., Zaehres H., Scholer H.R. Direct reprogramming of human neural stem cells by OCT4 // Nature. 2009b. 461: 649−643.
  66. Kim J.B., Zaehres H., Wu G., Gentile L., Ko K., Sebastiano V., Arauzo-Bravo M.J., Ruau D., Han D.W., Zenke M., Scholer HR. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors // Nature. 2008. 454: 646−650.
  67. Kim S.J., Cheon S.H., Yoo S.J., Kwon J" Park J.H., Kim C.G., Rhee K" You S., Lee J.Y., Roh S.I., Yoon H.S. Contribution of the PI3K/Akt/PKB signal pathway to maintenance of self-renewal in human embryonic stem cells // FEBS Lett. 2005. 579: 534−540.
  68. Koopman, P., Schepers, G., Brenner, S., Venkatesh, B. Origin and diversity of the Sox transcription factor gene family: genome-wide analysis in Fugu rubripes // Gene. 2004. 328: 177−186.
  69. Laiosa C.V., Stadtfeld M., Xie H., de Andres-Aguayo L., Graf T. Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBPa and PU. l transcription factors. Immunity. 2006. 25: 731−744.
  70. Lee J.H. Skalnik D.G. CpG-binding Protein Is a Nuclear Matrix- and Euchromatin-associated Protein Localized to Nuclear Speckles Containing Human Trithorax // J Biol Chem. 2002. 277: 42 259−42 267.
  71. Lee J.T., Jr, McCubrey J.A. The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia. // Leukemia 2002. 16: 486−507.
  72. Lei H., Oh S.P., Okano M., Juttermann R., Goss K.A., Jaenisch R., Li E. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells // Development. 1996. 122:3195−3205.
  73. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes // Diabetologia.2008. 51:216−226.
  74. Li E., Bestor T.H., Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality // Cell. 1992. 69: 915−926.
  75. Li W., Ding S. Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming // Trends Pharmacol Sci. 2010. 31: 3615.
  76. Li W., Wei W" Zhu S" Zhu J., Shi Y" Lin T., Hao E., Hayek A., Deng H" Ding S. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors // Cell Stem Cell. 2009. 4: 16−19.
  77. Li Y., McClintick J., Zhong L., Edenberg H. J., Yoder M.C., Chan R.J. Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4 // Blood. 2005. 105: 635−637.
  78. Lin C.H., Lin C., Tanaka H., Fero M.L., Eisenman R.N. Gene regulation and epigenetic remodeling in murine embryonic Induced pluripotency stem cells by c-Myc // PLoS ONE.2009. 4: e7839. doi: 10.1371/journal.pone.7 839.
  79. Lin T., Chao C., Saito S., Mazur S.J., Murphy M.E., Appella E., Xu Y. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression // Nat Cell Biol. 2004. 7: 165−171.
  80. Liu H., Ye Z., Kim Y., Sharkis S., Jang Y.Y. Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes // Hepatology. 2010. 51: 1810— 1819.
  81. Liu L., Luo G.Z., Yang W" Zhao X, Zheng Q., Lv Z., Li W" Wu H.J., Wang L., Wang X.J., Zhou Q. Activation of the imprinted Dlkl-Dio3 region correlates with pluripotency levels of mouse stem cells // J Biol Chem. 2010. 285: 19 483−19 490.
  82. Loh Y.H., Agarwal S., Park I.H., Urbach A., Huo H., Heffner G.C., Kim K., Miller J.D., Ng K., Daley G.Q. Generation of induced pluripotent stem cells from human blood // Blood. 2009. 113: 5476−5479.
  83. Lowiy W.E., Richter L., Yachechko R., Pyle A.D., Tchieu J., Sridharan R., Clark A.T., Plath K. Generation of human induced pluripotent stem cells from dermal fibroblasts // Proc Natl Acad Sci. 2008. 105: 2883−2888.
  84. Maherali N., Ahfeldt T., Rigamonti A., Utikal J., Cowan C., Hochedlinger K. A high-efficiency system for the generation and study of human induced pluripotent stem cells // Cell Stem Cell. 2008. 3: 340−345.
  85. Marion R.M., Strati K., Li H., Tejera A., Schoeftner S., Ortega S., Serrano M., Blasco M.A. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells // Cell Stem Cell. 2009b. 4: 141−154.
  86. Maruyama M., Ichisaka T., Nakagawa M., Yamanaka S. Differential roles for Soxl5 and Sox2 in transcriptional control in mouse embryonic stem cells // J. Biol. Chem. 2005. 280: 24 371−24 379.
  87. Matsuda T., Nakamura T., Nakao K., Arai T., Katsuki M., Heike T., Yokota T. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells // EMBO J. 1999. 18: 4261−4269.
  88. Matsui T., Leung D., Miyashita H., Maksakova I.A., Miyachi H., Kimura H., Tachibana M., Lorincz M.C., Shinkai Y. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET // Nature. 2010. 464: 927−931.
  89. Meissner A., Wernig M., Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells // Nat Biotechnol. 2007. 25:1177−1181.
  90. Messerschmidt D.M. and Kemler R. Nanog is required for primitive endoderm formation through a non-cell autonomous mechanism. Developmental Biology. 2010. 344. 129−137.
  91. Mikkelsen T.S., Hanna J., Zhang X., Ku M., Wernig M., Schorderet P., Bernstein B.E., Jaeniseh R., Lander E.S., Meissner A. Dissecting direct reprogramming through integrative genomic Analysis // Nature. 2008. 454: 49−55.
  92. Minina Iu. M., Zhdanova N.S., Shilov A.G., Tolkunova E.N., Liskovykh M.A., Tomilin A.N. Chromosomal instability of in vitro cultured mouse embryonic stem cells and induced pluripotent stem cells // Tsitologiia 2010. 52: 420−425.
  93. Mitsui K., Tokuzawa Y., Itoh H., Segawa K., Murakami M., Takahashi K., Maruyama M., Maeda M., Yamanaka S. The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells // Cell. 2003. 113: 631−642.
  94. Murabe M., Yamauchi J., Fujiwara Y., Hiroyama M., Sanbe A., Tanoue A. A novel embryotoxic estimation method of VPA using ES cells differentiation system // Biochemical and Biophysical Research Communications. 2006. 352: 164−169.
  95. Murakami G., Watabe T., Takaoka K., Miyazono K., Imamura T. Cooperative inhibition of bone morphogenetic protein signaling by Smurfl and inhibitory Smads // Mol Biol Cell. 2003. 14: 2809−2817.
  96. Nagy A., Rossant J., Nagy R., Abramow-Newerly W., Roder J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells // Proc Nat Acad Sci USA. 1993. 90: 8424−8428.
  97. Nakagawa M., Koyanagi M., Tanabe K., Takahashi K., Ichisaka T., Aoi T., Okita K., Mochiduki Y., Takizawa N., Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts // Nat Biotechnol. 2008. 26: 101−106.
  98. Nakashima K., Yanagisawa M., Arakawa H., Kimura N., Hisatsune T., Kawabata M., Miyazono K., Taga T. Synergistic signaling in fetal brain by STAT3-Smadl complex bridged by p300 // Science. 1999. 284: 479−482.
  99. Nichols J., Zevnik B., Anastassiadis K., Niwa H., Klewe-Nebenius D., Chambers I., Scholer H., Smith A. Formation of pluripotent stem cells in the mammalian embry. o depends on the POU transcription factor Oct4 // Cell. 1998. 95: 379−391.
  100. Niwa H., Burdon T., Chambers I., Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3 // Genes Dev. 1998. 12: 2048−2060.
  101. Niwa H., Miyazaki J., Smith A.G. Quantitative expression of Oct-¾ defines differentiation, dedifferentiation or self-renewal of ES cells //Nat Genet. 2000. 24: 372−376.
  102. O’Donnell K. A., Wentzel E. A., Zeller K. I., Dang C. V., Mendell J. T. c-Myc-regulated microRNAs modulate E2F1 expression //Nature. 2005. 435: 839−843.
  103. O’Brien S.J., Menninger J.C., Nash W.G. Atlas of mammalian chromosomes // Hoboken NJ: Wiley-Liss. 2006. xlii, 714 p. p.
  104. Okamoto K., Okazawa H., Okuda A., Sakai M., Muramatsu M., Hamada H. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells // Cell. 1990. 60: 461−472.
  105. Okita K. and Yamanaka S. Intracellular Signaling Pathways Regulating Pluripotency of Embryonic Stem Cells // Current Stem Cell Research & Therapy. 2006. 1: 103−111.
  106. Okita K., Ichisaka T., Yamanaka S. Generation of germline-competent induced pluripotent stem cells //Nature. 2007. 448: 313−317.
  107. Okita K., Nakagawa M., Hyenjong H., Ichisaka T., Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors // Science. 2008. 322: 949−953.
  108. Okumura-Nakanishi S., Saito M., Niwa H., Ishikawa F. Oct-¾ and Sox2 regulate Oct-¾ gene in embryonic stem cells // J Biol Chem. 2005. 280: 5307−5317.
  109. Paling N.R., Wheadon H., Bone H.K., Welham M.J. Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinasedependent signaling // J Biol Chem. 2004. 279: 48 063−48 070.
  110. Pan G. and Thomson J.A. Nanog and transcriptional networks in embryonic stem cell pluripotency // Cell Research. 2007. 17: 42−49.
  111. Park I.H., Arora N., Huo H., Maherali N., Ahfeldt T., Shimamura A., Lensch M.W., Cowan C., Hochedlinger K., Daley G.Q. Disease-specific induced pluripotent stem cells // Cell. 2008a. 134: 877−886.
  112. Popp C., Dean W., Feng S., Cokus S.J., Andrews S., Pellegrini M., Jacobsen S.E., Reik W. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency //Nature. 2010. 463: 1101−1105.
  113. Qi X., Li T.G., Hao J., Hu J., Wang J., Simmons H., Miura S., Mishina Y., Zhao G.Q. BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways // Proc Natl Acad Sci USA. 2004. 101: 6027−6032.
  114. Qu C.K., Feng G.S. Shp-2 has a positive regulatory role in ES cell differentiation and proliferation//Oncogene. 1998. 17: 433−439.
  115. Rajan P., Panchision D.M., Newell L.F., McKay R.D. BMPs signal alternately through a SMAD or FRAP-STAT pathway to regulate fate choice in CNS stem cells // J Cell Biol. 2003. 161:911−921.
  116. Reya T., Clevers H. Wnt signalling in stem cells and cancer // Nature. 2005. 434: 843 850.
  117. Reya T., Duncan A.W., Ailles L., Domen J., Scherer D.C., Willert K., Hintz L., Nusse R., Weissman I.L. A role for Wnt signalling in self-renewal of haematopoietic stem cells // Nature 2003. 423: 409−414.
  118. Rodda D. J., Chew J. L" Lim L. H" Loh Y. H" Wang B" Ng H. H" Robson, P. Transcriptional regulation of nanog by OCT4 and SOX2 // J Biol Chem. 2005. 280: 2 473 124 737.
  119. Rodriguez-Viciana P., Warne P.H., Dhand R., Vanhaesebroeck B., Gout I., Fry M.J., Waterfield M.D., Downward J. Phosphatidylinositol-3-OH kinase as a direct target of Ras // Nature. 1994. 370: 527−532.
  120. Rowland B. D., Bernards R., Peeper D.S. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene // Nat Cell Biol. 2005.7: 1074−1082.
  121. Sambrook, Russell. Molecular Cloning: a Laboratory Manual. 3rd edition. 2001. v 1−3
  122. Sato N., Sanjuan I.M., Heke M., Uchida M., Naef F., Brivanlou A.H. Molecular signature of human embryonic stem cells and its comparison with the mouse // Dev Biol. 2003. 260: 404−413.
  123. Schein P. S., Cooney D.A., Vernon M.L. The use of nicotinamide to modify the toxicity of streptozotocin diabetes without loss of antitumor activity // Cancer Res. 1967. 27:23 242 332.
  124. Scholer H.R., Ruppert S., Suzuki N., Chowdhury K., Gruss P. New type of POU domain in germ line-specific protein Oct-4 // Nature. 1990. 344: 435−439.
  125. Schuldiner M., Yanuka O., Itskovitz-Eldor J., Melton D.A., Benvenisty N. From the cover: effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells // Proc Natl Acad Sci USA. 2000. 97: 11 307−11 312.
  126. Sears R., Nuckolls F., Haura E., Taya Y., Tamai K., Nevins J.R. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability // Genes Dev. 2000. 14: 2501−1514
  127. Shi Y., Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus // Cell. 2003. 113: 685−700.
  128. Silva J., Chambers I., Pollard S., Smith A. Nanog promotes transfer of pluripotency after cell fusion // Nature. 2006. 441: 997- 1001.
  129. Silva J., Nichols J., Theunissen T.W., Guo G., van Oosten A.L., Barrandon O., Wray J., Yamanaka S., Chambers I., Smith A. Nanog is the gateway to the pluripotent ground state // Cell. 2009. 138: 722−737.
  130. Simonsson S., Gurdon J. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei // Nat Cell Biol 2004. 6: 984−990
  131. Smith A. Cell therapy: in search of pluripotency // Curr Biol. 1998. 8: 802−804.
  132. Smith A.G., Heath J.K., Donaldson D.D., Wong G.G., Moreau J., Stahl M., Rogers D. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides // Nature. 1988. 336: 688−690.
  133. Smith Z.D., Nachman I., Regev A., Meissner A. Dynamic single-cell imaging of direct reprogramming reveals an early specifying event // Nat Biotechnol. 2010. 28: 521−526.
  134. Sommer C.A., Stadtfeld M., Murphy G.J., Hochedlinger K., Kotton D.N., Mostoslavsky G. Induced pluripotent stem cell generation using a single lentiviral stem cell cassette // Stem Cells. 2009. 27: 543−549.
  135. Souchelnytskyi S., Runnstrand L., Heldin C.H., Dijke P. Phosphorylation of Smad Signaling Proteins by Receptor Serine/Threonine Kinases // Methods in Molecular Biology. 1997. 124.: 107−120.
  136. Sridharan R., Tchieu J., Mason M.J., Yachechko R., Kuoy E., Horvath S., Zhou Q., Plath K. Role of the murine reprogramming factors in the induction of pluripotency // Cell. 2009. 136: 364−377.
  137. Stadtfeld M., Apostolou E., Akutsu H., Fukuda A., Follett P., Natesan S., Kono T., Shioda T., Hochedlinger K. Aberrant silencing of imprinted genes on chromosome 12qFl in mouse induced pluripotent stem cells //Nature. 2010b. 465: 175−181.
  138. Stadtfeld M., Brennand K., Hochedlinger K. Reprogramming of pancreatic b cells into induced pluripotent stem cells // Curr Biol. 2008a. 18: 890−894.
  139. Stadtfeld M., Hochedlinger K. Induced pluripotency: history, mechanisms, and applications // Genes Dev. 2010. 24(20):2239−2263.
  140. Stadtfeld M., Hochedlinger K. Without a trace? PiggyBac-ing toward pluripotency. Nat Methods. 2009. 6: 329−330.
  141. M., Maherali N., Breault D.T., Hochedlinger K. 2008b. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse // Cell Stem Cell. 2: 230 240.
  142. Stadtfeld M., Nagaya M., Utikal J., Weir G., Hochedlinger K. Induced pluripotent stem cells generated without viral integration // Science. 2008c. 322: 945−949.
  143. Stahl N., Farruggella T.J., Boulton T.G., Zhong Z., Darnell J.E., Yancopoulos G.D. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors // Science. 1995. 267: 1349−1353.
  144. Sugawara A., Goto K., Sotomaru Y., Sofuni T., Ito T. Current status of chromosomal abnormalities in mouse embryonic stem cell lines used in Japan // Comp Med. 2006. 56: 3134.
  145. Sumi T., Fujimoto Y., Nakatsuji N., Suemori H. STAT3 is dispensable for maintenance of self-renewal in nonhuman primate embryonic stem cells // Stem Cells. 2004. 22: 861−872.
  146. Tada M., Takahama Y., Abe K., Nakatsuji N., Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells // Curr Biol. 2001. 11: 1553−1558.
  147. Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H., Brudno Y., Agarwal S., Iyer L.M., Liu D.R., Aravind L., Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 // Science. 2009. 324: 930−935.
  148. Takahashi K. and Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors // Cell. 2006. 126: 663−676.
  149. Takahashi K., Mitsui K., Yamanaka S. Role of ERas in promoting tumour-like properties in mouse embryonic stem cells //Nature. 2003. 423: 541−545.
  150. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors // Cell. 2007. 131:861−872.
  151. Takai Y., Sasaki T., Matozaki T. Small GTP-binding proteins // Physiol Rev. 2001. 81: 153−208.
  152. Tesar P. J., Chenoweth J.G., Brook F.A., Davies T.J., Evans E.P., Mack D.L., Gardner R.L., McKay R.D.G. New cell lines from mouse epiblast share defining features with human embryonic stem cells //Nature. 2007. 448: 196−199.
  153. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., Jones, J.M. Embryonic stem cell lines derived from human blastocysts // Science. 1998.282: 1145−1147
  154. Tsai S.Y., Clavel C., Kim S., Ang Y.S., Grisanti L., Lee D.F., Kelley K., Rendl M. Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Stem Cells. 2010. 28: 221−228.
  155. Tsuji-Takayama K., Inoue T., Ijiri Y., Otani T., Motoda R., Nakamura S., Orita K. Demethylating agent, 5- azacytidine, reverses differentiation of embryonic stem cells // Biochem Biophys Res Commun. 2004. 323: 86−90.
  156. Utikal J., Maherali N., Kulalert W., Hochedlinger K. Sox2 is ispensable for the reprogramming of melanocytes and elanoma cells into induced pluripotent stem cells // J Cell Sci. 2009. 122: 3502−3510.
  157. Utikal J., Polo J.M., Stadtfeld M" Maherali N" Kulalert W" Walsh R.M., Khalil A., Rheinwald J.G., Hochedlinger K. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells // Nature. 2009b. 460: 1145−1148.
  158. Valasek M.A., Repa J.J. The power of real-time PCR // Advanced Physiological Education. 2005. 29: 151−159.
  159. Veeman M.T., Axelrod J.D., Moon R.T. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling // Dev Cell. 2003. 5: 367−377.
  160. Vierbuchen T., Ostermeier A., Pang Z.P., Kokubu Y., Sudhof T.C., Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors // Nature. 2010. 463: 1035— 1041.
  161. Viswanathan S.R., Daley G.Q., Gregory R.I. Selective blockade of microRNA processing by Lin28 // Science. 2008. 320: 97−100.
  162. Wang J., Rao S., Chu J., Shen X., Levasseur D.N., Theunissen T.W., Orkin S.H. A protein interaction network for pluripotency of embryonic stem cells // Nature. 2006.444: 364−368.
  163. Watanabe K., Ueno M., Kamiya D., Nishiyama A., Matsumura M., Wataya T., Takahashi J.B., Nishikawa S., Nishikawa S., Muguruma K., Sasai Y. A ROCK inhibitor permits survival of dissociated human embryonic stem cells // Nat Biotechnol. 2007. 6:681 686.
  164. Wernig M., Lengner C.J., Hanna J., Lodato M.A., Steine E., Foreman R., Staerk J., Markoulaki S., Jaenisch R. A druginducible transgenic system for direct reprogramming of multiple somatic cell types // Nat Biotechnol. 2008a. 26: 916−924.
  165. Wernig M., Meissner A., Cassady J.P., Jaenisch R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts // Cell Stem Cell. 2008b. 2: 10−12.
  166. Wernig M., Meissner A., Foreman R., Brambrink T., Ku M., Hochedlinger K., Bernstein B.E., Jaenisch R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state //Nature. 2007. 448: 318−324.
  167. Wernig M., Meissner A., Foreman R., Brambrink T., Ku M., Hochedlinger K., Bernstein B.E., Jaenisch R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state //Nature. 2007. 448(7151): 318−24.
  168. Williams M.R., Arthur J.S., Balendran A., van der Kaay J., Poli V., Cohen P., Alessi D.R. The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells // Curr Biol. 2000. 10: 439−448.
  169. Wiznerowicz M., Trono D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference // J. Virol. 2003. 77: 8957−8961.
  170. Wnt receprors and pathways: статья Электронный ресурс./ First Published in R&D Systems, 2005. режим доступа: http://www.rndsystems.com/minireviewdetailobjectnameMR05WntReceptors.aspx
  171. Wobus A.M., Boheler K.R. Embryonic stem cells: prospects for developmental biology and cell therapy // Physiol Rev. 2005. 85: 635−678.
  172. Xie H., Ye M., Feng R., Graf T. Stepwise reprogramming of В cells into macrophages // Cell. 2004. 117: 663−676.
  173. Xu D., Alipio Z., Fink L.M., Adcock D.M., Yang J., Ward D.C., Ma Y. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy // Proc Natl Acad Sci. 2009. 106: 808−813.
  174. Xu R.H., Peck R.M., Li D.S., Feng X., Ludwig Т., Thomson J.A. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells // Nat Methods. 2005.2: 185−190.
  175. Yamanaka S. Elite and stochastic models for induced pluripotent stem cell generation // Nature. 2009. 460: 49−52.
  176. Yamanaka S. Pluripotency and nuclear reprogramming // Philosophical Transactions of The Royal Society B. 2008. 363: 1−9.
  177. Ying Q.L., Nichols J., Chambers I., Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3 // Cell 2003. 115:281−292.
  178. Ying Q.L., Wray J., Nichols J., Batlle-Morera L., Doble B., Woodgett J., Cohen P., Smith A. The ground state of embryonic stem cell self-renewal // Nature. 2008. 453: 519 523.
  179. Yoshida-Koide U., Matsuda T., Saikawa K., Nakanuma Y., Yokota T., Asashima M., Koide H. Involvement of Ras in extraembryonic endoderm differentiation of embryonic stem cells // Biochem Biophys Res Commun. 2004. 313: 475−481.
  180. Yu J., Hu K., Smuga-Otto K., Tian S., Stewart R., Slukvin I.I., Thomson J.A. Human induced pluripotent stem cells free of vector and transgene sequences // Science. 2009. 324: 797−801.
  181. Yusa K., Rad R., Takeda J., Bradley A. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon // Nat Methods. 2009. 6: 363−369.
  182. Zaehres H., Lensch M.W., Daheron L., Stewart S.A., Itskovitz-Eldor, J., Daley, G.Q. High-efficiency RNA interference in human embryonic stem cells // StemCells. 2005. 23: 299−305.
  183. Zhao W., Hisamuddin I. M., Nandan M. O., Babbin B. A., Lamb N. E., Yang V. W. Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer // Oncogene. 2004. 23: 395−402.
  184. Zhao X.Y., Li W" Lv Z., Liu L., Tong M" Hai T., Hao J., Guo C.L., Ma Q.W., Wang L., Zeng F., Zhou Q. iPS cells produce viable mice through tetraploid complementation // Nature. 2009. 461:86−90.
  185. Zhou H., Wu S., Joo J.Y., Zhu S., Han D.W., Lin T" Trauger S., Bien G., Yao S" Zhu Y., Siuzdak G., Scholer H.R., Duan L., Ding S. Generation of induced pluripotent stem cells using recombinant proteins // Cell Stem Cell. 2009. 4: 381−384.
  186. Zhou Q., Brown J., Kanarek A., Rajagopal J., Melton D.A. In vivo reprogramming of adult pancreatic exocrine cells to b-cells // Nature. 2008. 455: 627−632.
  187. Zhou W., Freed C.R. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells // Stem Cells. 2009. 27: 2667−2674.
Заполнить форму текущей работой