Помощь в учёбе, очень быстро...
Работаем вместе до победы

Жидкофазный синтез ацетато-, оксалато-и гидроксотитанилов некоторых nS2 металлов, физико-химические характеристики их термических превращений и электрореологические свойства

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Титанаты бария, стронция и кальция представляют собой перспективный класс материалов с сегнетои параэлектрическими свойствами, нашедших широкое применение в качестве активных элементов пьезоэлектрических преобразователей, оптических модуляторов, сегнетоэлектрических запоминающих устройств, конденсаторов с высокой диэлектрической постоянной, СВЧ-устройств, фотокатализаторов. Миниатюризация изделий… Читать ещё >

Содержание

  • 1. ЛИТЕРАТУРНЫЙ ОБЗОР
    • 1. 1. Структура титанатов
  • Структурно-фазовые переходы в сегнетоэлектриках на примере титаната бария
    • 1. 3. Диэлектрическая проницаемость
    • 1. 4. Размерный эффект в сегнетоэлектриках
    • 1. 5. Методы синтеза наноразмерных материалов
      • 1. 5. 1. Твердофазный метод синтеза
      • 1. 5. 2. Метод пиролиза
      • 1. 5. 3. Механохимический метод синтеза ^ ^ Жидкофазные методы синтеза сегнетоэлектрических ^ материалов
      • 1. 5. 5. Метод (Печини) полимерного прекурсора
      • 1. 5. 6. Гидротермальный метод
      • 1. 5. 7. Оксалатный метод
      • 1. 5. 8. Золь-гель метод
      • 1. 5. 9. Низкотемпературный синтез
      • 1. 5. 10. Электрохимический метод
    • 1. 6. Умные материалы
    • 1. 7. Электрореологические жидкости
  • Неорганические наполнители электрорсологических жидкостей
  • I. у 2 Органические наполнители электрореологических 45 жидкостей у 2 Гибридные наполнители электрореологических 47 материалов
    • 1. 7. 4. Поверхностно-активные вещества
  • I. у 5 Мезопористые наполнители электрореологических 49 жидкостей
    • 1. 8. Механизмы электрореологического эффекта
      • 1. 8. 1. Механизм поляризации
      • 1. 8. 2. Механизм Максвелла-Вагнера
      • 1. 8. 3. Модель водных мостов
      • 1. 8. 4. Механизм проводимости
    • 1. 9. Реологические аспекты электрореологического эффекта
  • Обоснование выбора сегнетоэлектрических материалов в
    • 1. 10. качестве дисперсной фазы электрореологически активных 57 жидкостей
  • 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
    • 2. 1. Показатели качества используемых веществ и реагентов
  • Методы синтеза наноразмерных материалов
    • 2. 2. ацетатотитанилов бария, стронция, кальция и смешанные 61 формы, оксалатотитанил бария, гидроксотитанила бария
      • 2. 2. 1. Синтез порошка ВаТЮ (СН3СОО)
      • 2. 2. 2. Синтез порошка ВаТЮ (С204)
  • 223. Синтез порошка ВаТЮ3 методом соосаждения в ^ щелочной среде
    • 2. 2. 4. Синтез ацетатотитанила бария-стронция и бария-кальция
    • 2. 2. 5. Синтез ацетатотитанила стронция
    • 2. 2. 6. Синтез ацетатотитанила кальция
    • 2. 3. Описание методов исследования физико-химических свойств материалов
    • 2. 3. 1. Просвечивающая электронная микроскопия
    • 2. 3. 2. Атомно-силовая микроскопия
    • 2. 3. 3. Инфракрасная спектроскопия
    • 2. 3. 4. Рентгепофазовый анализ
    • 2. 3. 5. Термический анализ
    • 2. 3. 6. Дифференциальная сканирующая калориметрия
    • 2. 3. 7. Низкотемпературная адсорбция/десорбция азота
    • 2. 3. 8. Диэлектрические измерения
    • 2. 3. 9. Электрореологические измерения
  • 3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
  • 3. | Физико-химические характеристики полученных уу материалов
  • 2. | і Физико-химические характеристики порошка уу
  • ВаТіО (СН3СОО)4, полученного золь-гель методом
  • 3. | 2 Физико-химические характеристики порошка ^
  • ВаТЮ (С204)

3 ^ з Физико-химические характеристики синтезированного gQ порошка ВаТіОз в щелочной среде Физико-химические характеристики синтезированного 3.1.4. золь-гель методом ацетатотитанила бария-стронция и бария-кальция

Физико-химические характеристики синтезированного ^ золь-гель методом ацетатотитанила стронция и кальция 3 2 Анализ диэлектрических характеристик и исследование | эффективности применения полученных материалов в качестве наполнителем электрореологических жидкостей 30% суспензий полученных материалов в силиконовом масле ПМС

2 2 і Электрореологические и диэлектрические характеристики ^ ^ суспензий с дисперсной фазой ВаТіО (СН3СОО)

3 2 2 Электрореологические и диэлектрические характеристики | ^ суспензий с дисперсной фазой ВаТЮ (С204)2 Электрореологические и диэлектрические характеристики суспензий с дисперсной фазой порошка ВаТіОз в 11 щелочной среде

Электрореологические и диэлектрические характеристики 3.2.4. суспензий с дисперсной фазой ацетатотитанила бария- ' ^ ^ стронция и бария-кальция

Электрорсологические и диэлектрические характеристики т о с і ОД суспензий с дисперсной фазой ацетатотитанила стронция и кальция

Жидкофазный синтез ацетато-, оксалато-и гидроксотитанилов некоторых nS2 металлов, физико-химические характеристики их термических превращений и электрореологические свойства (реферат, курсовая, диплом, контрольная)

В последнее десятилетие большой интерес представляют исследования, направленные разработку новых сегнетоэлектрических материалов с заданными функциональными свойствами.

Титанаты бария, стронция и кальция представляют собой перспективный класс материалов с сегнетои параэлектрическими свойствами, нашедших широкое применение в качестве активных элементов пьезоэлектрических преобразователей, оптических модуляторов, сегнетоэлектрических запоминающих устройств, конденсаторов с высокой диэлектрической постоянной, СВЧ-устройств, фотокатализаторов. Миниатюризация изделий микроэлектроники, микро-электромеханических систем, переход к нанотехпологиям требуют разработки новых высокоэффективных процессов получения титанатов, позволяющих формировать высококачественные, однородные по составу материалы в виде нанопорошков или пленок с контролируемой морфологией, содержащие минимальное количество примесей. Несмотря на известные достижения в данной области, интерес к разработке новых подходов получения наноструктурированных и наноразмерных материалов группы перовскитов и установлению закономерностей влияния условий синтеза и размерных эффектов на свойства данных материалов, поиску новых областей их практического применения непрерывно растет.

Разработка новых высокоэффективных путей синтеза нанопорошков титанатов, анализ процессов эволюции структуры данных материалов при различных температурах, а также установление взаимосвязи их структурных и поляризационных характеристик является актуальной задачей современной неорганической химии:

Титанаты бария, стронция и кальция с различной кристаллической структурой, обладая высокими значениями диэлектрических проницаемостей и различными поляризационными характеристиками, являются превосходными объектами для проверки базовых положений 6 поляризационных моделей электрореологического эффекта. Изменение поляризационных характеристик данных материалов позволяет выявить тонкие эффекты взаимосвязи их структуры с электрореологической активностью, что может послужить основой для разработки критериев получения высокоэффективных электрореологических жидкостей.

Целью работы являлся жидкофазный синтез ацетатотитанилов, оксалатотитаиилов и гидроксотитанилов в качестве предшественников материалов общей формулы МТ1О3 (М = Са, Бг, Ва), Ва0,9М0лТЮз (М = Са, 8г) и проведение сравнительного анализа особенностей изменения их структуры, физико-химических и диэлектрических свойств в процессе отжига, а также изучение эффективности полученных материалов в качестве наполнителей электрореологических жидкостей.

Задачи исследования:

1. Синтезировать золь-гель методом в среде уксусной кислоты, оксалатным и соосаждением в щелочной среде наноразмерные предшественники перовскитов — ацетатотитанилов бария, стронция, кальция и смешанных формоксалатотитанила бария, гидроксотитанила бария.

2. Установить влияние условий синтеза, соотношения концентрации реагентов на изменение физико-химических свойств материалов в процессе их термической эволюции в титанаты щелочноземельных металлов с применением методов просвечивающей и атомно-силовой электронной микроскопии, ИК-спектроскопии, дифракции рентгеновских лучей, термического анализа, адсорбции азота.

3. Получить комплекс диэлектрических и вольтамперных характеристик суспензий синтезированных наноматериалов в полидиметилсилоксане ПМС-20, а также физико-механических характеристик электрореологического эффекта в зависимости от скорости сдвига и напряженности электрического поля (до 7 кВ/мм). Выявить особенности влияния на эти характеристики условий синтеза, термической эволюции структуры, а также типа катиона п82металла в составе титаната.

Научная новизна работы. Впервые проведен сравнительный анализ влияния различных путей жидкофазного синтеза (золь-гель метода в среде уксусной кислоты, оксалатного и соосаждения в щелочной среде) на особенности термической эволюции структуры, физико-химических и диэлектрических свойств, размеры и морфологию частиц наноматериалов общей формулы МТЮз (М = Са, Бг, Ва), Ва0,9Мо, 1ТЮз (М = Са, Бг). Установлены закономерности влияния условий синтеза, структурно-фазовых переходов при различных температурах, а также типа катиона п82металла в составе титанатов на электрореологический эффект в суспензиях нанопорошков в силиконовом масле ПМС-20.

Практическая значимость работы.

Выявлены особенности синтеза наноразмерных ацетатотитанилов кальция, стронция и бария золь-гель методом в среде уксусной кислоты, оксалатотитанила бария оксалатным методом, а также гидроксотитанила бария соосаждением в щелочной среде. Показана перспективность данных методов при получении наноразмерных порошков перовскитов МТЮз (М = Са, Бг, Ва), Вао^Мо^ТЮз (М = Са, 8г) в процессе термической обработки. Получены новые данные о термических превращениях, изменении структуры, фазового состава и размеров кристаллитов в процессе отжига продуктов жидкофазного синтеза, являющиеся ключевыми при разработке технологии получения наноматериалов с сегнетои параэлектрическими свойствами. Получен комплекс диэлектрических и вольтамперных характеристик синтезированных наноматериалов в полидиметилсилоксане ПМС-20, а также физико-механических характеристик электрореологического эффекта, представляющих интерес для оценки потребительских качеств полученных материалов в качестве диэлектриков и наполнителей электрореологических жидкостей.

Личный вклад автора состоит в проведении экспериментальных исследований, обработке и расшифровке экспериментальных данных. Постановка задачи исследования, обсуждение результатов и написание 8 научных публикаций проведены при участии научного руководителя и соавторов.

Работа выполнена в рамках плана НИР Учреждения Российской Академии наук ИХР РАН по теме «Формирование структуры и свойств жидкофазных дисперсных систем и наноматериалов с использованием химических и физических воздействий № Гос. регистрации 1 200 950 829», поддержана программами Президиума РАН № 21, 22, 27, грантом РФФИ № 09−03−12 219 ОФИ М.

Апробация работы. Основные положения и результаты работы докладывались на следующих конференциях:

II Конференция молодых ученых «Реология и физико-химическая механика гетерофазных систем», Звенигород, 2009 г., Вторая конференция с элементами научной школы для молодежи «Органические и гибридные наноматериалы», Иваново, 2009 г., Третья международная конференция «Деформация и разрушение материалов и наноматериалов», Москва, 2009 г., IV Региональная конференция молодых ученых «Теоретическая и экспериментальная химия жидкофазных систем», Иваново, 2009 г., XVII Международная конференция студентов, аспирантов и молодых ученых «Ломоносов», Москва, 2010 г., VIII Региональная студенческая научная конференция «Фундаментальные науки — специалисту нового века», Иваново, 2010 г., VII Всероссийская конференция «Керамика и композиционные материалы», Сыктывкар, 2010 г., 25 Симпозиум по реологии, Осташков, 2010 г., VI Международная научная конференция «Кинетика и механизм кристаллизации. Самоорганизация при фазообразовании», Иваново, 2010 г., II Международная научная конференция «Наноструктурные материалы-2010: Беларусь-Россия-Украина», Киев, 2010 г., VII Российская ежегодная конференция молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов», Москва, 2010 г., V Региональная конференция молодых ученых «Теоретическая и экспериментальная химия жидкофазных систем», Иваново, 2010 г., Первая всероссийская конференция 9.

Золь-гель синтез и исследование неорганических соединений, гибридных функциональных материалов и дисперсных систем", Санкт-Петербург, 2010 г., III Конференция молодых ученых «Реология и физико-химическая механика гетерофазных систем», Суздаль, 2011 г., XXV Международная Чугаевская конференция по координационной химии, Суздаль, 2011 г.

Публикации. По теме диссертации опубликовано 19 печатных работ из них 2 статьи в рецензируемых научных журналах из перечня, рекомендованного ВАК РФ, и 17 тезисов докладов на научно-технических конференциях.

Достоверность результатов и научная обоснованность выводов обеспечены применением комплекса современных физико-химических методов для анализа синтезированных материалов, хорошего согласия ряда характеристик полученных материалов с имеющимися в литературе надежными данными, взаимной согласованностью результатов, полученных разными методами. Результаты работы прошли апробацию на научных конференциях и опубликованы в рецензируемых научных журналах.

1. ЛИТЕРАТУРНЫЙ ОБЗОР.

Сегнетоэлектрический материал со структурой перовскита — титанат бария — обладает высокой диэлектрической проницаемостью при комнатной температуре (табл. 1) и малыми диэлектрическими потерями и находит широкое применение в микроэлектронике, СВЧ-устройствах, высокоскоростных модуляторах, оптических усилителях, компьютерной технике для создания оперативно запоминающих устройств, карт памяти, твердотельных жестких дисков, конденсаторов и в других различных устройствах. С быстрым темпом развития микроэлектроники и устройств, работающих на основе титаната бария, возникает потребность создания материалов с заданными свойствами и уменьшения размеров деталей микроустройств. [1−6] Важной задачей является получение ультрадисперсного и высокочистого порошка титаната бария, который проявляет сегнетоэлектрические свойства в нанодиапазоне. На сегнетоэлектрические свойства существенное влияние оказывает метод синтеза, температура прокаливания синтезированных предшественников материала, время выдержки, степень чистоты, площадь поверхности, дисперсность материала, пористость и т. д.

Таблица 1.1. [7].

Щелочно-земельный металл Тип кристаллической решетки Диэлектрическая проницаемость.

Кальций Перовскит 115.

Стронций 155.

Барий >1500.

Магний Ильменит 17.

Кадмий 62.

Титанат стронция наряду с титанатом бария относится к классу перовскитных материалов, но в отличие от ВаТЮ3 он является виртуальным сегнетоэлектрическим материалом. Переход из параэлектрического в сегнетоэлектрическое состояние для БгТЮз осуществляется при температуре порядка -165°С и сопровождается структурно-фазовымом переход из кубической в тетрагональную сингонию. Титанат стронция находит широкое применение в создании сегнетоэлектрической керамики, СВЧ-техники, антенн, усилителей и других устройств, используемых в микроэлектронике. [В, 9].

Титанат кальция, также как и вышепредставленные титанаты стронция и бария является материалом со структурой перовскита, который при нормальных условиях находится в орторомбической сингонии. Фазовый переход второго рода, протекающий с изменением кристаллической структуры СаТЮ3 из орторомбической в кубическую, осуществляется при температуре порядка 210 °C. Титанат кальция, в отличие от БгТЮз и ВаТЮз, не обладает сегнетоэлектрическими свойствами и является диэлектрическим материалом. СаТЮз благодаря своим диэлектрическим свойствам находит применение в микроэлектронике для создания на его основе конденсаторов. Помимо того, что данный материал широко используется в микроэлектронике, он находит применение как биоматериал. Используемый для изготовления искусственных суставов, зубных имплантатов и т. д., что обусловлено его высокими прочностными характеристиками, биосовместимыми свойствами, т. е. высокой однородностью с органическими тканями и химической устойчивостью. [10−16].

Еще одним перспективным направлением в создании и разработке устройств для микроэлектроники является синтез наноразмерных перовскитных материалов со смешанной структурой. (Такая структура представляет собой титанат бария, допированный щелочноземельными металлами). Смешанные структуры титанатов позволяют получать материал с заданными диэлектрическими свойствами и фазовым переходом второго рода, т. е. переходом из сегнетоэлектрического состояния в параэлектрическое. Также установлено, что перовскитные материалы со.

12 смешанной структурой обладают более высокой диэлектрической проницаемостью. [17−19].

Титанаты бария, стронция и кальция представляют собой перспективный класс материалов с сегнетои параэлектрическими свойствами, нашедших широкое применение в качестве активных элементов пьезоэлектрических преобразователей, оптических модуляторов, сегнетоэлектрических запоминающих устройств, конденсаторов с высокой диэлектрической постоянной, СВЧ-устройств, фотокатализаторов. Миниатюризация изделий микроэлектроники, микроэлектромеханических систем, переход к нанотехнологиям требуют разработки новых высокоэффективных процессов получения титанатов, позволяющих формировать высококачественные, однородные по составу материалы в виде нанопорошков или пленок с контролируемой морфологией, содержащие минимальное количество примесей. Традиционная технология, основанная на процессе спекания механических смесей карбонатов щелочноземельных металлов и диоксида титана, не способна обеспечить получение данных материалов с необходимым для современной техники химическим составом, уровнем чистоты и размером частиц. В связи с этим разработка новых высокоэффективных путей синтеза нанопорошков титанатов, анализ процессов эволюции структуры данных материалов при различных температурах, а также установление взаимосвязи их структурных и поляризационных характеристик является актуальной задачей современной неорганической химии.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ •Золь-гель методом в среде уксусной кислоты, оксалатным, и соосаждением в щелочной среде получены наноразмерные предшественники перовскитов — ацетатотитанилы бария, стронция, кальция и смешанные формы (Ва0,98го, 1ТЮ (СНзСОО)4, Ва0,9Са0.1ТЮ (СНзСОО)4), оксалатотитанил бария, гидроксотитанил бария. Синтез ацетатотитанилов в предложенных условиях приводит к формированию в системах прочных структур прозрачных гелей за счет образования трехмерных полимерных сеток комплексами тетраизобутилата титана с уксусной кислотой. При получении оксалатотитанил, а и гидроксотитанила бария образуются рыхлые осадки.

•Получен комплекс физико-химических характеристик (термоаналитические кривые ДТА, ТГ, ДТГРФА, ИКС, адсорбция азота по БЭТ, электронная микроскопия), отражающих изменение состава, эволюцию структуры и фазовые превращения синтезированных материалов в титанаты бария, стронция и кальция, а также Вао. дСаолТЮз, Вао. дЗголТЮз при 1-часовом отжиге при температурах 200°, 400°, 600°, 800° и 1200 °C.

•Высушенные при 120 °C гели ацетатотитанилов образуют рентгеноаморфные порошки, порошки оксалатотитанила бария включают кристаллы диоксида титана анатазной модификации. Гидроксотитанил бария кристаллизуется в форме перовскита непосредственно в процессе синтеза. Все высушенные при 120 °C материалы имеют порошкообразную форму с размерами частиц менее 200 нм.

•Термические превращения ВаТЮ (СН3СОО)4, Ва0,98го, 1ТЮ (СН3СОО)4 и Ва0,9Са0,1Т1О (СН3СОО)4 протекают по сходному сценарию. Значимые количества кристаллических фаз материалов появляются в результате отжига при 600 °C. При этом формируются преимущественно фазы с кубической сингонией. Сдвоенный рефлекс в рентгеновском спектре при 20 = 51,01°, характерный для тетрагональной модификации, появляется у материалов, отожженных при 800 °C. ВаТЮ3, полученный отжигом ВаТЮ (СН3СОО)4 при 800 °C, имеет рефлекс (110) при 20 = 31,61°, при этом у ВаТЮ3,.

130 допированного кальцием, происходит смещение данного рефлекса в сторону меньших углов 20 = 31,55°, а у допированного стронцием — в сторону больших углов 20 = 31,75°.

•При отжиге ацетатотитанилов кальция и стронция значимые количества орторомбической СаТЮ3 и кубической фаз 8гТЮз появляются при температуре 400 °C. В итоге при температуре 800 °C получаются материалы, содержащие значительное количество целевого продукта. Отожженный при 800 °C порошок СаТЮз обладает орторомбической сингонией, а ЭгТЮз — кубической.

•Показано, что особенности термической эволюции оксалатотитанила бария в титанат бария связаны с термическими превращениями полиморфных форм диоксида титана, завершающимися при 800 °C формированием фазы рутила, которая при взаимодействии с продуктом разложения карбоната бария — оксидом бария образует титанат бария тетрагональной сингонии, накапливающийся в значительных количествах при 1200 °C.

•Установлено, что с изменением температуры термообработки гидроксотитанила бария происходит изменение углов и числа пиков раздвоенных рентгеновских рефлексов, характерных для тетрагональной фазы, которое свидетельствует о нелинейной зависимости соотношения кубической и тетрагональной фаз в материале при его термообработке. Это может быть связано с тем, что при воздействии температуры на процессы кристаллизации накладываются эффекты, вызываемые удалением гидроксильных групп из кристаллической решетки материала, что приводит к немонотонному изменению размера кристаллитов.

•Установлено, что диэлектрические спектры полидиметилсилоксановых суспензий порошков всех непрокаленных материалов, полученных в среде уксусной кислоты, имеют вид, характеризующий наличие в системах релаксационных процессов, возникающих под действием переменного электрического поля, частотные.

131 зависимости е и для суспензии порошка оксалатотитанила бария имеют вид, присущий системам со сквозной проводимостью без релаксационных эффектов, а диэлектрические характеристики гидроксотитанила бария мало изменяются с частотой электрического поля. Дана интерпретация влияния термообработки синтезированных материалов на характер диэлектрических спектров суспензий.

•Вольтамперные характеристики суспензий полученных материалов в силиконовом масле ПМС-20 свидетельствуют о реализации механизма протекания токов, ограниченных пространственным зарядом в данных системах.

•Обнаружен нелинейный эффект влияния электрического поля на диэлектрические характеристики ВаТЮ (СН3СОО)4, Ва0,98г0,1ТЮ (СН3СОО)4), Ва0,9Сао, ТЮ (СН3СОО)4.

•Установлено, что относительное приращение предела текучести 30% суспензий порошков ВаТЮ (СН3СОО)4, Ва0,98г0.1ТЮ (СН3СОО)4), Вао-9Сао, 1ТЮ (СН3СОО)4 в силиконовом масле ПМС-20 в постоянном электрическом поле напряженностью бкВ/мм увеличивается более чем в 200 раз.

Показать весь текст

Список литературы

  1. Bell A. .J. Ferroelectrics: The role of ceramic science and engineering // J. European Ceramic Society. 2008. — V. 28. — P. 1307- 1317.
  2. Zhigang S., Weiwei Z., Jianfeng H. and Yun J. Low temperature one step synthesis of barium titanate: Particle formation mechanism and large-scale synthesis // J. Chem. Eng. 2006. — V. 14, № 5. — P. 642 — 648.
  3. Firek P., Werbowy A., Szmidt J. MIS field effect transistor with barium titanate thin film as a gate insulator // J. Materials Science and Engineering. -2009.-V. 165.-P. 126- 128.
  4. Kobayashi Y., Saito H., Kinoshita Т., Nagao D., Konno M. Low temperature fabrication of barium titanate hybrid films and their dielectric properties // J. Thin Solid Films. 2011. — V. 519. — P. 1971 — 1975.
  5. А. В. Титанат бария новый сегнетоэлектрик II Ж. Успехи физических наук. — 1949. — Т. 38, Вып. 4. — С. 461 — 489.
  6. D. С., Prieto A. L. Use of strontium titanate (SrTi03) as an anode material for lithium-ion batteries // J. Power Sources. 2011. — V. 196. — P. 7736- 7741.
  7. Lahiry S., Mansingh A. Dielectric properties of sol-gel derived barium strontium titanate thin films // J. Thin Solid Films. 2008. — V. 516. — P. 1656- 1662.
  8. Villalpando-Reyna A., Cortes-Hernandez D.A., Gorokhovsky A., at all. In vitro bioactivity assessment and mechanical properties of novel calcium titanate/borosilicate glass composites // J. Cer. Inter. 2011. — V. 37. — P. 1625 — 1629.
  9. Zhang D., Zhang C.-L., Zhou P. Preparation of porous nano-calcium titanate microspheres and its adsorption behavior for heavy metal ion in water*// J. Hazardous Mater. 2011. — V. 186. — P. 971 — 977.
  10. Murashkina A. A., Demina A. N., Demin A. K., Maragou V. I., Tsiakaras P. E. The influence of Fe, Cu, A1 -doping on the crystal structure, thermal and electrical properties of calcium titanate // J. Solid State Ionics. 2008. — V. 179.-P. 1615- 1619.
  11. GoIovko Y. I., Mukhortov V. M., Yuzyuk Y. I'., at all. Structural phase transitions in nanosized ferroelectric barium strontium titanate films // J. Physics of the Solid State. 2008. — V. 50. — P. 485 — 489.
  12. Mohammad M. R., Fray D. J. Sol-gel derived nanocrystalline and mesoporous barium strontium titanate prepared at room temperature // J. Particuology. 2011. — V. 9. — P. 235 — 242.
  13. Dong D., Liu X., Yu H. Fabrication of highly dispersed crystallized nanoparticles of barium strontium titanate in the presence of N, N-dimethylacetamide // J. Cer. Inter. 2011. — V. 37. — P. 579 — 583.
  14. Vijatovic M. M., Bobic J. D., Stojanovic B. D. History and Challenges of Barium Titanate: Part 1 // J. Science of Sintering. 2008. — V. 40. — P. 155 -165.
  15. Xiao S. H., Jiang W. F., Luo K., Xia J. H., Zhang L. Structure and • ferroelectric properties of barium titanate films synthesized by sol gel method // J. Mater. Chem. and Physics. — 2011. — V. 127. — P. 420 — 425.
  16. Yashima M., Ali R. Structural phase transition and octahedral tilting in the calcium titanate perovskite СаТіОз // J. Solid State Ionics. 2009. — V. 180. -P. 120- 126.
  17. Tkacz Smiech K., Kolezynski A., Ptak W. S. Crystal-chemical aspects of phase transitions in barium titanate // J. Solid State Communications. — 2003. -V. 127.-P. 557−562.
  18. Zheng Y., Wang B., Woo C. H. Thermodynamic modeling of nanoscale ferroelectric systems // J. Acta Mechanica Solida Sinica. 2009. — V. 22, №. 6. — P. 524 — 549.
  19. Badheka P., Qi L., Lee В. I. Phase transition in barium titanate nanocrystals by chemical treatment // J. European Ceramic Society. 2006. — V. 26. — P. 1393 — 1400.
  20. Wersing W., Heywang W., Beige H., Thomann H. The role of ferroelectricity for piezoelectric materials // J. Springer Series in Materials Science. 2008. — V. 114. — P. 37 — 87.
  21. Sidorov T. A. Specific features of structure and ferroelectric properties of ВаТіОз phases // J. Crystallography Reports. 2004. — V. 49, №. 4. — P. 619 -625.
  22. Trainer M. Ferroelectrics and the Curie Weiss law // J. Eur. J. Phys. — 2000. — V. 21.-P. 459−464.
  23. Guerra J. D. S. Anomalous dielectric properties induced by mechanical and electric fields in ferroelectric materials // J. OP Physics. 2009. — V. 4. — P. 1 -4.
  24. Peter Y. Y., Cardona M. Fundamentals of semiconductors: Physics and materials properties, Springer, Berlin, 2008.
  25. Mailadil T. S. ABO3 Type Perovskites // Dielectric Materials for Wireless Communication, 2008, P. 161−203.
  26. Lichtensteiger C., Dawber M., Triscone J.-M. Ferroelectric Size Effects // J. Appl. Physics. 2007. — V. 105. — P. 305 — 338.
  27. Lookman A., Bowman R. M., Gregg J. M., Kut J., Rios S., Dawber ML, Ruediger A., Scott J. F. Thickness independence of true phase transition temperatures in barium strontium titanate films // J. Appl. Phys.- 2004. V. 96. — P. 555 — 562.
  28. Feuersanger A. E., Lublin P. Electrical properties and structure of barium titanate films // J. Electrochem. Soc. 1963. — V. 1 10., P. 192.
  29. Feuersanger A. E.,. Hagenlocher A. K, Solomon A. L. Preparation and properties f thin barium titanate films // J. Electrochem. Soc. 1964. — V. 111.-P. 1387- 1391.
  30. Slack J. R., Burfoot J. C. Electrical properties of flash evaporated ferroelectric BaTi03 thin films // J. Phys. J. 1971. — V. 4. — P. 898 — 909.
  31. Tomashpolski Y. Y., Sevostia M. A., Pentegov M. V. Ferroelectric vacuum deposits of complex oxide type structure // J. Ferroelectrics. 1974. — V. 7. -P. 257 — 258.
  32. Tomashpolski Y. Y., Sevostia M. A. Ferroelectric nucleus in barium-titanate // J. Fiz. Tverd. Tela. 1974. — V. 16. P. 2689 — 2692.
  33. Jiang B., Peng J. L., Bursill L. A., Zhong W. L. Size effects on ferroelectricity of ultrafine particles of PbTiOi // J. Appl. Phys. 2000. — V. 87. — P. 3462 — 3467.
  34. Zhong W. L., Jiang B., Zhang P. L., Ma J. M., Cheng H. M., Yang Z. H., Li L. X. Phase transition in PbTiOs ultrafine particles of different sizes // J. Phys. Condens. Matter. 1993. — V. 5. — P. 2619 — 2624.
  35. Liu C., Zou B., Rondinone A. J., Zhang Z. J. Sol-gel synthesis of free -standing ferroelectric lead zirconate titanate nanoparticles // J. Am. Ceram. Soc. -2001. V. 123.-P. 4344−4345.
  36. Uchino K., Sadanaga E., Hirose T. Dependence of the crystal structure on particle size in barium titanate // J. Am. Ceram. Soc. 1989. — V. 72. — P. 1555.
  37. Wada S., Hoshina T., Yasuno H., Nam S.-M., Kakemoto H., Tsurumi T. Yashima M. Size Dependence of dielectric properties for nm-sized barium titanate crystallites and its origin // J. Korean Phys. Soc. 2005. — V. 46, №. 1. — P. 303 -307.
  38. Xinghua F., Lianwei S., Biyan D., Wenping H., Zhou F., Zhengyi F. Progress of (Sr, Ba) Ti03 ferroelectric thin film and tenability // J. Bull. Mater. Sci. 2004. — V. 27, №. 5. — P. 433 — 439.
  39. Buzea C., Blandino I. I. P., and Robbie K. Nanomaterials and nanoparticles: Sources and toxicity // J. Biointerphases. 2007. — V. 2 — P. 1 — 103.
  40. Kozawa T., Onda A., Yanagisawa K. Preparation of alkaline-earth titanates by accelerated solid-state reaction in water vapor atmosphere // J. Eur. Cer. Soc. 2010. — V. 30 — P. 3435 — 3443.
  41. Phule P. P. Risbud S. H. Low-temperature synthesis and processing of electronic materials in the Ba0-Ti02 system // J. Mat. Sci. 1990. — V. 25 -P. 1169 — 1183.
  42. Uedalra S., Yamanoi H., Tamura H. E.P. Patent 0,104,002. 1983.
  43. Kozawa T., Onda A., Yanagisawa K. Accelerated formation of barium titanate by solid state reaction in water vapour atmosphere // J. Eur. Cer. Soc. — 2009. — V. 29. — P. 3259 — 3264.
  44. Tangboriboon N. Synthesis of barium titanate as an electroceramic raw materials//J. Kasetsart Nat. Sci. 2003. V. 37. P. 117 — 121.
  45. Manzoor U., Kim D. K. Synthesis of nano-sized barium titanate powder by solid-state reaction between barium carbonate and titania // J. Mater. Sci. Technol. 2007. V. 23, №. 5. P. 655 — 658.
  46. Dong D., Liu X., Yu H., Hu W. Fabrication of highly dispersed crystallized nanoparticles of barium strontium titanate in the presence of N, N-dimethylacetamide // J. Ceram. Inter. 2011. — V. 37. — P. 579−583.
  47. Brankovic G., Brankovic Z., Goes M. S., Paiva-Santos C. O., Cilense M., Varela J.A., Longo E. Barium strontium titanate powders prepared by spray pyrolysis // J. Mater. Sci. and Engineering: B. 2005. — V. 122. — P. 140 -144.
  48. Jung D. S., Hong S. K., Cho J! S., Kang Y. C. Nano-sized barium titanate powders with tetragonal crystal structure prepared by flame spray pyrolysis // J. Eur. Cer. Soc. 2008. — V. 28. P. 109 — 115.
  49. Lee K. K, Kang Y. C., Jung K. Y., Kim J. H. Preparation of nano-sized BaTi03 particle by citric acid-assisted spray // J. Alloys and Compounds. -2005.-V. 395. P. 280−285.
  50. Anuradha T. V., Ranganathan S., Mimani T., Patil K. C. Combustion synthesis of nanostructured barium titanate // J. Scripta Mater. 2001. V. 44. -P. 2237−2241.
  51. S. В., Khollam Y. В., Bhoraskar S. V., at all. Synthesis and characterization of micro wave-hydrothermally derived BaixSrNTi03 powders // J. Mater. Lett. 2005. — V. 59. — P. 293 — 296.
  52. Jung W.-S., Min B.-K., Park J., Yoon D.-H. Formation mechanism of barium titanate by thermal decomposition of barium titanyl oxalate // J. Ceram. Int. 2011. — V. 37. — P. 669 — 672.
  53. Patil В. M., Srinivasa R. S., Dhardwadkar S. R. Synthesis of CaTi03 from calcium titanyl oxalate hexahydrate (СТО) as precursor employing microwave heating technique // J. Bull. Mater. Sci. 2007. — V. 30, № 3. P. 225 — 229.
  54. Malghe Y. S. Nanosized SrTi03 powder from oxalate precursor microwave aided synthesis and thermal characterization // J. Therm. Anal. Calorim. -2010. V. 102. — P. 831 — 836.
  55. Li M.-I., Xu M.-X. Preparation of cauliflower-like shaped Bao6Sro4Ti03 powders by modified oxalate co-precipitation method // J. Alloys and Compounds. 2009. V. 474. P. 311 — 315.
  56. Malghe Y. S., Gurjar A. V., Dharwadkar S. R. Synthesis of BaTi03 powder from barium titanyl oxalate (BTO) precursor employing microwave heating technique //J. Bull. Mater. Sci. 2004. — V. 27, №. 3. — P. 217 — 220.
  57. А. И., Онорин С. А., Пономарев В. Г. Исследование процессов, происходящих при нагревании титанилоксалатов металлов 2А-группы // Изв. ВУЗ. Химия и химическая технология. 2008. — Т. 51. -В. 1.-С. 19−21.
  58. Kim J.-H., Jung W.-S., Kim H.-T., at all. Properties of BaTi03 synthesized from barium titanyl oxalate // J. Ceramics International. 2009. — V. 35. — P. 2337 — 2342.
  59. Li M.-I., Xu M.-X. Effect of dispersant on preparation of barium-strontium titanate powders through oxalate co-precipitation method // J. Materials Research Bulletin. 2009. — V. 44. — P. 937 — 942.
  60. Kudaka K., Iizumi K., Sasaki K., Preparation of stoichiometric barium titanyl oxalate tetrahydrate // J. Ceram. Bull. 1982. V. 61. P. 1136.
  61. Zhang S., Jiang F., Qu G., Lin C. Synthesis of single-crystalline perovskite barium titanate nanorods by a combined route based on sol gel and surfactant — templated methods // J. Mater. Lett. — 2008. — V. 62. — P. 2225 -2228.
  62. Mohammadi M. R., Fray D. J. Sol gel derived nanocrystalline and mesoporous barium strontium titanate prepared at room temperature // J. Particuology. — 2011. — V. 9. — P. 235 — 242.
  63. Moreno J., Dominguez J.M., Montoya A., at all. Synthesis and characterization of MTi03 (M = Mg, Ca, Sr, Ba) sol gel // J. Mater. Chem. — 1995. -V. 5, №. 3.- P. 509 — 512.
  64. Ahuja S., Kutty T.R.N. Nanoparticles of SrTi03 prepared by gel to crystallite conversion and their photocatalytic activity in the mineralizationof phenol // J. Photochemistry and Photobiology A: Chemistry. 1996. — V. 97.-P. 99- 107.
  65. Deshpande S.B., Godbole P.D., Khollam Y.B., Potdar H.S. Characterization of barium titanate: BaTi03 (BT) ceramics prepared from sol-gel derived BT powders // J. Electroceramics. 2005. — V. 15. — P. 103 -108.
  66. Wang L., Liu L., Xue D., at all. Wet routes of high purity BaTi03 nanopowders // J. Alloys and Compounds. 2007. — V. 440. — P. 78 — 83.
  67. Qi J. Q., Sun L., Wang Y., Chen W. P., at all. Low-temperature synthesis and analysis of barium titanate nanoparticles with excess barium // J. Advanced Powder Technology. 2011. — V. 22. — P. 401 — 404.
  68. Sreekantana S., Noora A. F. M., Ahmad Z. A., at all. Structural and electrical characteristic of crystalline barium titanate synthesized by low temperature aqueous method // J. Materials Processing Technology. 2008. -V. 195. — P. 171 — 177.
  69. He P., Cheng H.-R., Le Y., at all. Preparation and characterization of nano-sized Sr0,7Ca0,3TiO3 crystallines by low temperature aqueous synthesis method //J. Mater. Lett. 2008. — V. 62. — P. 2157 — 2160.
  70. Paula M. A. W., Gonzalez V. M. Synthesis and characterization of barium strontium titanate nano powders by low temperature ambient pressure sol process //J. Nanopart Res. 2010. — V. 12. — P. 2221 — 2231.
  71. Kobayashi Y., Saito H., Kinoshita T., at all. Low temperature fabrication of barium titanate hybrid films and their dielectric properties // J. Thin Solid Films. 2011. — V. 519. — P. 1971 — 1975.
  72. Tao J., Ma J., Wang Y., at all. Synthesis of barium, titanate nanoparticles via a novel electrochemical route // J. Mater. Research Bulletin. 2008. — V. 43 — P. 639 — 644.
  73. He X, Hu C., Xi Y. at all. Electroless deposition of BaTi03 nanocubes for electrochemical sensing // J. Sensors and Actuators B. 2009. -V. 137-P. 62−66.
  74. Matsumoto Y., Morikawa T., Adachi H., Hombo J. A new preparation method of barium titanate perovskite film using electrochemical reduction // J. Mater. Research Bulletin. 1992. — V. 27 — P. 1319 — 1327.
  75. Coulson C.A. Electricity // New York: Interscience 1961, P. 42−43.
  76. Yin J. B., Zhao X. P. Temperature effect of rare earth-doped Ti02 electrorheological fluids // J. Phys. D: Appl. Phys. 2001. — V. 34. — P. 2063.
  77. Hao T. The role of the dielectric loss of dispersed material in the electrorheological effect // J. Appl. Phys. Lett. 1997. — V. 70. — P. 1956 -1958.
  78. Yin J. B., Zhao X. P. Preparation and electrorheological characteristic of Y-doped BaTi03 suspension under dc electric field // J. Solid State Chemistry. 2004. — V. 177. — P. 3650 — 3659.
  79. Gong X., Wen. W. Polydimethylsiloxane-based conducting composites and their applications in microfluidic chip fabrication7/ J. Biomicrofluidics.- 2009. V. 3. — P. 12 007−1-12 007−14.
  80. Jiang W., Jiang G., Gong X., Zhang Z. Structure and electrorheological' properties of nanoporous BaTi03 crystalline powders prepared by sol- gel method // J. Sol — Gel Sci- Technol. — 2009. — V. 52. — P. 8 — 14.
  81. Wei J. IT., Shi- J. Synthesis and. electrorheological effect of Pan -BaTiC)3 nanocomposite // J. Mater. Sci. 2004. — V! 39. — P. 3457 — 3460- .
  82. Radonjic. L., Todorovic M., Miladinovic J. Structural evolution of nanostructured barium titanate thin film sol gel derived // J. Sol-Gel Sci. Technoh — 2008-.-V. 45v- P: 125 — 132:
  83. Gomii K., Tanaka K., Kamiya H. Effect of mixing condition- on sol- -gel synthesis of barium titanate ultrafine particles // J. Cer. Soc. of Japan. -2003.-V. 111,№. 1,-P. 67 72. '
  84. Eu- W., Quilitz M., Schmidt II. Nanoscaled BaTi03 powders with a large surface: area: synthesized by precipitation- from aqueous solutions: Preparation- characterization and sintering:// J: Eur. Cer. Soc. -. 2007. V. 27.-P. 3149−3159.
  85. Ma H. R., Wen W. J., Tarn W.Y., Sheng P. Dielectric electrorheological fluids: theory and experiment// J. Adv. Phys. 2003. — V. 52.-P. 343 -383.
  86. Ling R., Keqin Z. Electrorheological. effects at high shear rate // J. Tsinghua Scie. and Tech. 2006. — V. 11.- P. 88 — 95.'
  87. Hao T. Electrorheological suspensions// J. Advances in Colloid and Interface Sci. 2002. — V. 97. — P. 1 — 35.
  88. Zhao X. P., Zhao Q., Gao X. M- Optical activity of electrorheological fluids under external- electric field // J. Appl. Phys. 2004. — V. 93. — P. 4309 -4314.
  89. Halsey T. C., Martin T E. Electrorheological fluids // J. Science. -1992.-V. 258.-P. 761 -765:
  90. Yang W.-D., Hailc S: Mi Highly preferred oriented lead barium titanate thin 11 lms using acetyl acetone as chelating agent in a sol gel process // Ji.Rev. Adv.Mater.Sci: — 2005. — V. 10: — P. 143 — 148.
  91. Winslow W. M. U.S. Patent 2 417 850. 1947.
  92. I-Iao T. Electrorheological fluids // J. Advanced-Materials. 2001. — V. '. 13 — P. 1847 — 1857.
  93. Sakurai R-, See- I I., Saito T., The effect of blending particles with different conductivity on electrorheological properties // J. Rheology. 1996. -V, 40.-P. 395 -403.
  94. Otsubo Y. Electrorheology of whisker suspensions // J. Colloids and Surfaces A. -1999. V. 53: — P. 537 — 549.
  95. Kanu R-, Shaw M., Enhanced electrorheological fluids using. anisotropic particles // Ji Rheology. 1998. — V. 42. — P. 657 — 671-.
  96. Wang B.-X., Zhao Y., Zhao X.-P. The wettability, size effect and electrorheological activity of modified titanium oxide nanoparticles // J. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007. — V. 295. — P. 27−33.
  97. Tanaka K., Wakayasu T., Kubono A., Akiyama Ri. Electro-rheological behavior of suspension composed of titanium dioxide nano-particles // Ji Sensors and Actuators A: Physical. 2004. — V. 112. — P. 376 — 380.
  98. Ma S. Z., Liao F. H., Li S. X., at all. Effect of microstructure, grain size, and rare doping on the elecrorheological performance of nanosized particle materials // J. Mater. Chem. 2003. — V. 13. — P. 3096 — 3102.
  99. Yin J. B., Zhao X. P. Temperature effect of rare earth-doped Ti02 electrorheological fluids // J. Phys. D: Appl. Phys. 2001. — V. 34. — P. 2063 — 2067.
  100. Zhao X. P., Yin J. B. Preparation and electrorheological characteristics of rare-earthdoped Ti02 suspensions // J. Chem. of Mater. -2002. V. 14. P. 2258 — 2263.
  101. Tang K., Shang Y.-L., Li J.-R., Wang J., Zhang S.-H. Synthesis and electrorheological performance of particle materials of doped Ti02 with Er203 // J. Alloys and Compounds. 2006. — V. 418. — P. 111 — 115.
  102. Liu Y., Liao F.-H., Li J.-R. The electrorheological properties of nano -sized Si02 particle materials doped with rare earths // J. Scripta Materialia. -2006.-V. 54.-P. 125 130.
  103. Mitsumata T., Sugitani K., Koyama K. Electrorheological response of swollen silicone gels containing barium titanate // J. Polymer. 2004. — V. 45. -P. 3811 -3817.
  104. Misono Y., Shigematsu N., Yamaguchi T., Negita K. Relationship between the electrorheological effects and electrical properties in barium titanate suspension // J. Studies in Surface Science and Catalysis. 2001. -V. 132.-P. 391 -394.
  105. Zhang X.-P., Xu L.-L., Wang Q.-L. Electro rheological effect of barium titanate particles coated with urea and suspended in methyl silicone oil // J. China University of Mining and Technology. — 2007. — V. 17. — P. 578 — 581.
  106. Zhang Y., Ma Y., Lan Y., Lu K., Liu W. The electrorheological behavior of complex strontium titanate suspensions // J. Appl. Phys. Lett. -1998. V. 73, №. 10. — P. 1326 — 1328.
  107. Wu Q., Zhao B. Y., Chen L. S. at all. Preparation and electrorheological property of rare earth modified amorphous BaxSrixTi03 gel electrorheological fluid // J. Colloid and Interface Science. -2005. V. 282. — P. 493 — 498.
  108. Choi H.J., Lee I.S., Sung J.H., Park B.J., Jhon M.S. Comment on preparation and electrorheological property of rare earth modified amorphous BaxSr (xTi03 gel' electrorheological fluid // J. Colloid and Interface Science. 2006. — V. 295. — P. 291 — 293.
  109. Choi H.J., Cho M.S., Kang K.K., Ahn W.S. Electrorheological properties of a suspension of a mesoporous molecular sieve (MCM-41) // J. Microporous and mesoporous materials. 2000. — V. 39. — P. 19−24.
  110. Bose H. Investigations on zeolite-based ER fluids supported by experimental design // Int. J. Mod. Phys. B. 1999. — V. 13, №. 14 — 16. — P. 1878 — 1885.
  111. Park B.J., Choi H.J. Comment on universal yield stress equation for transient response of zeolite based electrorheological fluid // J. Colloid and Interface Science. 2010. — V. 345. — P. 554 — 555.
  112. Sung J. H., Cho M. S., Choi H. J., John M. S. Electrorheology of semiconducting polymers // J. Industry Engineering Chemistry. 2004. — V. 10-P. 1217.
  113. Choi H. J., Kim T. W., Suh M. S., at all. Synthesis and viscoelastic behaviors of poly (aniline-co-ethoxyaniline) particles suspended electrorheological fluid // Int. J. Mod. Phys. B. 2001. — V. 15. — P. 649 -656.
  114. Choi H. J., Jhon M. S. Electrorheology of polymers and nanocomposites // J. Soft Matter. 2009. — V. 5. — P. 1562 — 1567.
  115. Lee Y. H., Kim C. A., Jang W. H., at all. Synthesis and electrorheological characteristics of microencapsulated polyaniline particles with melamine formaldehyde resins // J. Polymer. — 2001. — V. 42., — P. 8277 — 8283.
  116. Cho M. S., Choi H. J., To K. Effect of ionic pendent groups on a polyaniline-based electrorheological fluid // J. Macromol. Rapid Commun. -1998.-V. 19.-P. 271 273.
  117. Yin J., Zhao X., Xia X., Xiang L., Qiao Y. Electrorheological fluids based on nano-flbrous polyaniline // J. Polymer. 2008. — V. 49. — P. 4413 -4419.
  118. J.H. Sung, W.H. Jang, H.J. Choi, M.S. Jhon Universal yield stress function for biocompatible chitosan based-electrorheological fluid: effect of particle concentration // J. Polymer. 2005. — V. 46. — P. 12 359 — 12 365.
  119. Sung J.H., Choi H.J., Jhon M.S. Electrorheological response of biocompatible chitosan particles in corn oil // J. Mater. Chem. Phys. 2003. -V. 77. — P. 778 — 783.
  120. Ko Y.G., Choi U.S. Electrorheological properties of chemically modified chitosan suspension with various functional pendants // J. Appl. Polym. Sci. 2006. — V. 102. — P. 4937 — 4942.
  121. Huo L., Liao F.-H., Li J.-R. Electrorheological properties of chitosan nitrate suspension // J. Colloids and Surfaces A: Physicochem. Eng. Aspects. -2008.-V. 316.-P. 125 130.
  122. Wen W., Huang X., Yang S. The giant electrorheological effect in suspensions of nanoparticles // J. Nature Mater. 2003. -.V. 2. — P. 727 -730.
  123. Xiang L., Zhao X. Preparation of montmorillonite/titania nanocomposite and enhanced electrorheological activity // J. Colloid and Interface Science. 2006. — V. 296. — P. 131 — 140.
  124. Baoxiang W., Xiaopeng Z., Yuan Y. Electrorheological fluid of kaolinite-based ternary nanocomposite and its properties // J. Science in China Ser. E Engineering and Materials Science. 2005. — V. 48, №. 5. — P. 496 — 509.
  125. Yin J. B., Zhao X. P. Electrorheological fluids based on glycerol-activated titania gel particles and silicone oil with high yield strength // J. Colloid and Interface Science. 2003. — V. 257. — P. 228 — 236.
  126. Weiss, K. D., Carlson, J. D., Nixon, D. A. Viscoelastic properties of magneto and electro — rheological fluids // J. Intelligent material Systemsand Structures. — 1994. — V. 5. — P. 772 — 775.
  127. Shih, Y.-H., Conrad, H. Influence of particle size on the dynamic strength of electrorheological fluids // J. Modern Physics B. 1994. — V. 8. -P. 2835 -2853.
  128. Kim Y. D., Lee M. S. A frequency dependent surfactant bridge model for the electrorheological behaviors of surfactant — activated suspensions // J. Korean J. Chem. Eng.- 2004. — V. 21. — P. 567 — 574.
  129. Yin J. B., Zhao X. P. Giant electrorheological activity of high surface area mesoporous cerium doped Ti02 templated by block copolymer // J. Chem. Phys. Lett. — 2004. — V. 398. — P. 393 — 399.
  130. Yin J. B., Zhao X. P. Preparation and electrorheological activity of mesoporous rareearth doped Ti02 // J. Chem. Mater. — 2002. — V.14. — P. 4633 — 4640.
  131. Di K., Zhu Y., Yang X., Li C. Electrorheological behavior of copper phthalocyanine-doped mesoporous Ti02 suspensions // J. Colloid and Interface Science. 2006. — V. 294. — P. 499 — 503.
  132. Winslow W. M. Induced fibration of suspensions // J. Appl. Phys. -1949. -V. 20. P. 1137- 1140.
  133. Parthasarathy M. Klingenberg D. J. Electroreology: mechamisms and models // J. Sci. and Eng. 1996. — V. 17. — P. 57 — 103.
  134. Coulson C.A. Electricity // New York: Interscience 1961, P.42−43.
  135. Chen T., Zitter R. N. Tao R. Laser diffraction of the crystalline structure of an ERF // J. Phys. Rev. Lett. 1992. — V. 68. — P. 2555 — 2558.
  136. Khusid B., Acrivos A. Effects of conductivity in electric field -induced aggregation in electrorheoligical fluids // Phys. Rev. E. — 1995. — V. 52. — P. 1669 — 1693.
  137. Kim Y. D., Klingenberg D. J. An interfacial polarization model for activated electrorheological suspensions // J. Korean J. of Chem. Eng. -1997.-V. 14.-P. 30 36.
  138. Davis L. C. Polarization forces and conductivity effects in ER fluids // J. Appl. Phys. 1992. — V. 72. — P. 1334 — 1339.
  139. See H., Tamura H., Doi M. The role of water capillary forces in electrorheological fluids // J. Phys. D: Appl. Phys. 1993. — V. 26. — P. 746 -752.
  140. S., Winter W. Т., Stipanovic A. J. Water-activated cellulose-based electrorheological fluids // J. Cellulose. 2005. — V. 12. P. 135 — 144.
  141. Atten P., Boissy C., Foulc J. N. The role of conduction in electrorheological fluids: from interactions between particles to structuration of suspensions // J. Electrost. 1997. — V. 40 — 41. — P. 3 — 12.
  142. Tadros F. Fundamental principles of emulsion rheology and their applications // J. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1994. -V. 91, №. 3. — P. 39 — 55.
  143. Renzetti S., Bello F. D., Arendt E. K. Microstructure, fundamental rheology and baking characteristics of batters and breads from different gluten-free flours treated with a microbial transglutaminase // J. Cereal Science. 2008. — V. 48. — P. 33 — 45.
  144. Tabilo-Munizaga G., Barbosa-Canovas G. V. Rheology for the food industry // J. Food Engineering. 2005. — V. 67. — P. 147 — 156.
  145. Richardson E. G. Uber die Viskositat von emulsionen // J. Colloid and Polymer Science.-1933. .V. 65, — №. 1. — P. 32 — 37.
  146. Klass D. L., Martinek T. W. Electroviscous fluids I: Rheological properties// J. Appl. Phys. 1967. — V. 38, №. 1. — P. 67 — 74.
  147. Owayed J. F., Tiab D. Transient pressure behavior of Bingham non-Newtonian fluids for horizontal wells // J. Petroleum Science and Engineering. 2008. — V. 61. — P. 21 — 32.
  148. Tang G.H., Wang S.B., Ye P.X., Tao W.Q. Bingham fluid simulation with the incompressible lattice boltzmann model // J. Non-Newtonian Fluid Mechanics.-2011.-V. 166.-P. 145- 151.
  149. Viana M., Jouannin P., Pontier C., Chulia D. About pycnometric density measurements // J. Talanta. 2002. — V. 57. — P. 583 — 593.
  150. Khalil K.M.S. Low temperature evolution of crystalline ВаТЮз from alkali-metal free precursor using sol-gel process // J. Mat. Res. Innovat. -1999.-V. 2.-P. 256−262.
  151. Tao W., Feil F., Yue-Chuanl W. Structure and thermal properties of titanium dioxidepolyacrylate nanocomposites // J. Polymer Bulletin. 2006. -V. 56,-P. 413 -426.
  152. А. В., Гриненко E. В., Щукин А. О., и др. Инфракрасная спектроскопия органических и природных соединений / Учебное пособие. СПб.: СПбГЛТА, 2007. 54 с.
  153. Hasenkox U., Hoffmann S., Waser R. Influence of precursor chemistry on the formation of МТЮ3 (M = Ba, Sr) ceramic thin films // J. Sol-Gel Sci. and Technol. 1998. — V. 12. — P. 67 — 79.
  154. Li, X. Spectroscopic studies of sol-gel-derived organically modified silicates/ X. Li, T. A. King // J. of Non-Cryst. Solids. 1996. — Vol. 204. — P. 235 — 242.
  155. Jin X., Sun D., Zhang M. Investigation on FTIR spectra of barium calcium titanate ceramics // J. Electroceram. 2009. — V. 22. — P. 285 — 290.
Заполнить форму текущей работой