Помощь в учёбе, очень быстро...
Работаем вместе до победы

Комплементарно-адресованная окислительная модификация ДНК конъюгатами олигонуклеотидов с фталоцианинами Co (II) и Fe (II)

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Существование высокоселективных взаимодействий между комплементарными цепями нуклеиновых кислот позволяет конструировать реагенты для воздействия на любые участки РНК или ДНК с целью направленного подавления их функций. Для этого к олигонуклеотидам заданной длины и последовательности, комплементарным к выбранным участкам ДНК или РНК, присоединяют реакционноспособные группы, которые проводят… Читать ещё >

Содержание

  • Список сокращений
  • 1. Окисление ДНК активными формами кислорода {Обзор литературы)
    • 1. 1. Активные формы кислорода
    • 1. 2. Окисление ДНК активными формами кислорода
      • 1. 2. 1. Окисление ДНК синглетным кислородом
      • 1. 2. 2. Окисление ДНК супероксидным радикалом
      • 1. 2. 3. Окисление ДНК гидроксильными радикалами
        • 1. 2. 3. 1. Окисление гетероциклов в составе нуклеиновых кислот
        • 1. 2. 3. 1. 1. Окисление остатка тимина
        • 1. 2. 3. 1. 2. Окисление остатка цитозина
        • 1. 2. 3. 1. 3. Окисление остатка гуанина
        • 1. 2. 3. 1. 4. Окисление остатка аденина
        • 1. 2. 3. 2. Окисление углеводных фрагментов в составе нуклеиновых кислот
      • 1. 2. 4. Окисление ДНК высоковалентными оксокомплексами металлов
        • 1. 2. 4. 1. Окисление ДНК мезо-тетра-(4-Ы-метилпиридинил)-порфирином марганца (Ш)
        • 1. 2. 4. 2. Окисление ДНК комплексом бис-(1,10-фенантролин) меди (1)
        • 1. 2. 4. 3. Окисление ДНК комплексом блеомицина с железом (П)
    • 1. 3. Каталитические свойства металлокомплексов фталоцианинов и их димерных комплексов
      • 1. 3. 1. Каталитические свойства тетрасульфофталоциана железа и его димерных р-оксо-комплексов
      • 1. 3. 2. Каталитические свойства димерных р-нитридо-комплексов фталоцианина железа
      • 1. 3. 3. Каталитические свойства гетерогенных димерных комплексов, образованных меэ/сду фталоциашшами кобальта и железа, несущих положительные или отрицательно заряженные заместители
  • 1.
  • Заключение
  • 2. Материалы и методы
  • 3. Исследование механизмов окисления ДНК молекулярным кислородом и пероксидом водорода в присутствии конъюгатов олигонуклеотидов с 75 фталоциашшами Со (Н) и Ее (П) (Результаты и обсуждение)
    • 3. 1. Окисленне одноцепочечной ДНК молекулярным кислородом и пероксидом водорода в присутствии конъюгатов олигонуклеотидов 75 с тетракарбоксифталоцианинами Со (Н) и Ге (П)
      • 3. 1. 1. Влияние остатка фталоцианина на кинетику образования и стабильность комплекса МеРс-ООМ^ИМА
        • 3. 1. 1. 1. Исследование кинетики образования комплексов СоРс
  • ОИN1 ssDNA 1 и ОЭЫ1 ssDNA 1 методом остановленной струи
    • 3. 1. 1. 2. Исследование стабильности комплексов СоРс
  • ООN1 КеРс-ООЮ'зхОМА2 и ООИ1 ssDNA методом термической денатурации
    • 3. 1. 2. Кинетика протекания побочных реакций
      • 3. 1. 2. 1. Деградация СоРс и 17еРс под действием Н2О
      • 3. 1. 2. 2. Каталитическое разлоэюение НоО

      3.1.3. Кинетические закономерности протекания процесса модификации одноцепочечной ДНК молекулярным кислородом и пероксидом водорода в присутствии 89 конъюгатов олигонуклеотидов с фтало цианинами Со (Н) и

      Ре (П)

      3.1.4. Механизм модификации одноцепочечной ДНК пероксидом водорода в присутствии конъюгатов олигонуклеотидов с 95 фтало цианинами Со (Н) и Ке (П)

      3.2. Окисленне одноцепочечной ДНК молекулярным кислородом и пероксидом водорода в присутствии гетерогенных димерных комплексов (МеРср05*МеРс), сформированных между МеРс в составе олнгонуклеотндных конъюгатов и МеРсрох в растворе

      3.2.1. Взаимодействие МеРсрох с одноцепочечной и двуцепочечной ДНК

      3.2.2. Взаимодействие МеРср0Х с МеРс

      3.2.3. Окисление одноцепочечной ДНК молекулярным кислородом и пероксидом водорода в присутствии (МеРсро5"МеРс)-СШ/У

      3.3. Определение продуктов окисления 5'-монофосфат-2'дезоксигуанозина молекулярным кислородом в присутствии фталоцианинов МеРс и их гетерогенных димерных комплексов с МеРср

      3.3.1. Окисление (ЮМР молекулярным кислородом в присутствии МеРс и (МеРср0^МеРс) и сопряженного восстановителя

      3.3.2. Эпоксидирование карбамазепина оксокомплексами МеРс 119

      Заключение 122

      Выводы 127

      Список литературы

      Список сокращений

      В настоящей работе использованы символы и сокращения структурных компонентов нуклеиновых кислот и их производных в соответствии с рекомендациями Комиссии по номенклатуре Международного Союза чистой и прикладной химии (ШРАС) и Международного Союза биохимиков (ШВ), а также следующие обозначения:

      2аРи — 2-аминопурин,

      BlmFe — комплекс железа (П) с блеомицином,

      BPh — 2,2', 3,3', 5,5,-гексаметил-4,4,-дигидрокси-бифенил,

      Bu'-ООН — гидроперекись трет-6утила,

      Си (ОР)г — 1,10-фенантролиновый комплекс меди (1) или (II),

      CBZ — 5//-дибензо[/?,/]-азепип-5-карбоксамид (карбамазепин)

      CBZE — 10,11-эпоксид карбамазепина dGMP — 5'-монофосфат-2'-зезоксигуанозин,

      ESI-MS — времяпролетная масс-спектрометрия с ионизацией при электрораспылении,

      FePc’Bu^N — (i-нитридо-мостиковый комплекс тетра-трет-бутинфталоцианина железа,

      FePc)2N — (i-нитридо-мостиковый димер фталоцианина железа,

      FePcS — тетрасульфофталоциан железа,

      GC-MS — газовая хроматография с последующим с массспектрометрическим анализом,

      MALDITOF — времяпролетная масс-спектрометрия с матричноактивированной лазерной десорбцией/ионизацией,

      МСМ-41 — мезопористое стекло,

      МЕ — 2-меркаптоэтанол,

      МеРс — комплекс тетракарбоксифталоцианипа кобальта (П) или железа (П),

      MePCpos — комплекс окта-4,5-(Н-Р-аминоэтил-Р'-К, 1Ч-диэтиламмониоэтоксикарбонил)фталоцианина кобальта (П) или железа (П) (фталоцианин с положительно заряженными заместителями),

      MePcp0S*MePc) — гетерогенный димерный комплекс между фталоцианинами

      МеРс и MePcpos

      6-MeQ — 6-метилнафтахинон,

      2MN — 2-метилнафталин,

      МРРН — гидроперекись 1-фенилизопропила,

      NIH-сдвиг — 1,2-сдвиг заместителя в соседнее положение ароматического кольца,

      Ох — окислитель,

      Рс — фталоцианин,

      Рог — порфирин,

      Рут — N-метилпиридин,

      Red — восстановитель,

      Rf — рибофлавин,

      SSO — тиоантрен-5-оксид,

      TMP — 2,3,6-триметилфенол,

      TMQ — 2,3,6-триметилбензохинон,

      АФК — активные формы кислорода,

      НК — нуклеиновая кислота,

      ОФ ВЭЖХ — обращено фазовая высокоэффективная жидкостная хроматография,

      ФДТ — фото динамическая терапия.

Комплементарно-адресованная окислительная модификация ДНК конъюгатами олигонуклеотидов с фталоцианинами Co (II) и Fe (II) (реферат, курсовая, диплом, контрольная)

Существование высокоселективных взаимодействий между комплементарными цепями нуклеиновых кислот позволяет конструировать реагенты для воздействия на любые участки РНК или ДНК с целью направленного подавления их функций. Для этого к олигонуклеотидам заданной длины и последовательности, комплементарным к выбранным участкам ДНК или РНК, присоединяют реакционноспособные группы, которые проводят направленную модификацию участков мишени, располагающихся вблизи области образования комплементарного комплекса. Такой подход был впервые предложен Гриневой Н. И. с соавторами и получил название «комплементарно-адресованной модификации» нуклеиновых кислот [1]. Позже было показано, что подобным образом можно осуществлять селективную модификацию не только одпоцепочечных НК, но и двуцепочечных олигопурин/олигопиримидиновых участков [2−4]. Комплементарно-адресованная модификация является наиболее универсальным методом высокоизбирательного воздействия на нуклеиновые кислоты.

Каталитически активные металлокомплексы фталоцианинов являются перспективными реагентами для окислительного расщепления НК. Комплексы фталоцианинов с ионами парамагнитных металлов способны окислять различные органические соединения [5], при этом молекула фталоцианипа стабильна в условиях окисления [6]. К началу настоящего исследования в Лаборатории исследования модификации биополимеров ИХБФМ СО РАН под руководством Федоровой О. С. были разработаны методы синтеза конъюгатов фталоцианинов А1(Ш), Zn (II) и Со (Н) с олигодезоксирибонуклеотидами и исследованы физико-химические свойства полученных конъюгатов. Целью настоящей работы явилось продолжение начатой ранее работы и выяснение механизмов сайт-направленного окисления ДНК-мишени молекулярным кислородом и пероксидом водорода в присутствии конъюгатов олигонуклеотидов с фталоцианинами Со (П) и Ре (П). Особое внимание уделялось кинетическим характеристикам процесса модификации ДНК-мишени, поскольку оценка селективности и эффективности адресованной модификации чрезвычайно важны для практического использования реакционноспособных производных олигонуклеотидов. В задачи настоящего исследования входило:

• исследование окисления одпоцепочечной ДНК-мишени молекулярным кислородом и пероксидом водорода в присутствии конъюгатов олигонуклеотидов с тетракарбоксифталоцианинами кобальта (Н) и железа (Н) (МеРс);

• исследование окисления одноцепочечной ДНК-мишени молекулярным кислородом в присутствии гетерогенных димеров фталоцианинов (МеРсМеРсрод), образованных между фталоцианином МеРс в составе конъюгата, несущим отрицательно заряженные заместители, и фталоцианином МеРсроз в растворе, несущим положительно заряженные заместители;

• определение продуктов окисления ДНК молекулярным кислородом на примере окисления 5'-монофосфат-2'-дезоксигуанозина в присутствии фталоцианинов МеРс и их гетерогенных димерных комплексов с МеРср05.

Кинетические аспекты окислительной модификации были исследованы на модельных ДНК-мишенях. Из литературных данных известно, что при использовании химически активных производных олигонуклеотидов наряду с процессом модификации мишени протекают побочные реакции, приводящие к параллельному расходованию реагента. В результате возможно образование продуктов деградации реагента, сохраняющих сродство к мишени, но не способных ее модифицировать и, таким образом, выступающих в роли конкурентного ингибитора [7−9]. В связи с этим была изучена кинетика побочных реакций разрушения МеРс под действием окислителя и каталитического разложения пероксида водорода.

В результате проведенного исследования получены данные, свидетельствующие о способности конъюгатов олигонуклеотидов с фталоцианинами кобальта (П) и железа (И) вызывать эффективную и селективную модификацию ДНК в темновых условиях.

Выводы.

1. Синтезированы новые конъюгаты дезокеирибоолигонуклеотидов, несущие в качестве химически активной группы комплекс тетра-4-карбоксифталоцианина железа (Н). Проведено детальное сравнение каталитических свойств данных конъюгатов с конъюгатами дезокеирибоолигонуклеотидов с тетра-4-карбоксифталоцианином кобальта (П), синтезированными ранее. Показано, что конъюгаты фталоцианинов железа (П) обладают более высокой каталитической активностью при окислении ДНК пероксидом водорода и молекулярным кислородом по сравнению с конъюгатами фталоцианинов кобальта (Н).

2. Исследованы количественные закономерности модификации одноцепочечной ДНК пероксидом водорода в составе дуплексов с конъюгатами олигонуклеотидов с тегра-4-карбоксифталоцианинами кобальта (П) и железа (П) и предложены кинетические схемы процессов.

3. Впервые показано, что гетерогенные димеры фталоцианинов Ре (П) и Со (П), образуемые между фталоцианинами в составе конъюгатов, несущими отрицательно заряженные заместители, и свободными фталоцианинами с положительно заряженными заместителями, обладают более высокой каталитической активностью при окислении одноцепочечной ДНК молекулярным кислородом, чем мономерные фталоцианины в составе конъюгатов олигонуклеотидов, и приводят к образованию прямых разрывов цепи ДНК.

4. Определены продукты окисления 5'-монофосфат-2'-дезоксигуапозина молекулярным кислородом в присутствии фталоцианинов Ре (Н) и Со (П) и их гетерогенных димерных комплексов. Природа образующихся продуктов окисления зависит от природы сопряженного восстановителя: в присутствии аскорбиновой кислоты главным продуктом окисления является 5'-монофосфат-2'-дезокси-8-оксо-7,8-дигидрогуанин, тогда как в присутствии 2-меркаптоэтанола — ¡-, N2-глиоксалевый аддукт 5'-монофосфат-2'-дезоксигуанозина.

Заключение

.

В представленной работе выполнено комплексное исследование процесса модификации ДНК молекулярным кислородом и пероксидом водорода в присутствии конъюгатов олигонуклеотидов с фталоцианинами кобальта (Н) и железа (Н). Данные комплексы катализируют образование активных форм кислорода при последовательном одноэлектронном восстановлении 02 или Н202 до Н20. В качестве окисляющих частиц при этом могут выступать как гидроксильпые радикалы, так и оксокомплексы металлов, находящиеся в высоковалентных состояниях окисления.

Каталитическую активность конъюгатов MePc-ODN в окислении ДНК пероксидом водорода можно рассматривать как пероксидазную активность [227, 228]. Из литературных данных известно, что в клетках Е. coli пероксид водорода образуется с постоянной скоростью (10 мкМ/с), однако вследствие активности пероксидаз внуктриклеточный уровень Н202 остается на уровне 0.1 мкМ [229,230]. В прокариотических клетках пероксид водорода также образуется с постоянной скоростью и внутриклеточная концентрация пероксида водорода может варьироваться от 0.001 мкМ до 0.5−0.7 мкМ [231]. При развитии различных онкологических заболеваний уровень Н202 может значительно повышаться [232, 233]. Таким образом, исследование каталитической окислительной модификации ДНК пероксидом водорода представляет интерес не только в качестве модельного исследования, но и в плане оценки возможности использования исследуемых реагентов in vivo.

Эксперименты по модификации ДНК молекулярным кислородом в составе дуплексов MePc-ODN*ssDNA показали, что прямых разрывов мишени не образуется. Модификацию выявляли после обработки реакционной пиперидином. Было показано, что реагенты MePc-ODN приводили к направленной модификации ssDNA молекулярным кислородом. Однако степень модификации ДНК-мишени была достаточно низкой: ~ 15% для FePc-ODN2 и ~ 8% для CoPc-ODNl за 6 часов реакции. В присутствии FePc-ODN2 реакция окисления ДНК-мишени молекулярным кислородом протекала значительно быстрее, чем в присутствии CoPc-ODNl. Замена пары «молекулярный кислород + восстановитель» на пероксид водорода приводила к более интенсивному специфическому расщеплению ДНК-мишени. В этом случае также не наблюдали образования прямых разрывов цепи ДНК-мишени. При этом степень модификации, выявляемая обработкой реакционной смеси пиперидином составляла ~ 80% для CoPc-ODNl и 40−50% для FePc-ODN2. При обработке 8-оксогуанин-ДНКгликозилазой из Е. coli выявляемая степень модификации была ниже: ~ 40% для СоРс-ODN1 и не более 10% для FePc-ODN2.

Были исследованы количественные закономерности модификации одноцепочечной ДНК пероксидом водорода в составе дуплексов с копъюгатами олигонуклеотидов с тетра-4-карбоксифталоцианинами кобальта (И) и железа (Н). Для выяснения механизма модификации ДНК-мишени пероксидом водорода были изучены отдельные стадии процесса: образование комплекса между конъюгатом и мишеныо, побочные реакции деградации СоРс и FcPc под действием пероксида водорода и каталитическое разложение пероксида водорода и каталитическая окислительная модификация ДНК пероксидом водорода.

Методом остановленной струи с регистрацией оптического поглощения и методом термической денатурации показано, что остаток фталоцианипа не оказывает существенного влияния на стабильность комплекса, по влияет на кинетику его образования. Процесс образования комплекса ДНК-мишени с конъюгатом CoPc-ODNl описывается двухстадийной, а процесс образования комплекса ДНК-мишени с немодифицированпым олигонуклеотидом — одностадийной кинетической схемой. Были определены кинетические и термодинамические параметры процесса комплексообразования.

При исследовании кинетики побочных реакций было показано, что реакция деструкции остатка фталоцианипа имеет первый порядок, а реакция каталитического разложения пероксида водорода под действием фталоцианина — второй порядок по концентрации пероксида водорода. При исследовании деструкции остатка фталоцианина было показано, что группа СоРс более стабильна в условиях окисления, чем группа FePc. Следует отметить, что при взаимодействии СоРс с II2O2 порядок реакции каталитического разложения пероксида водорода был определен при анализе спектров оптического поглощения, полученных в ходе деградации остатка СоРс. Для определения порядка реакции каталитического разложения пероксида водорода под действием FePe был использован хемилюминесцентный метод, основанный на окислении люминола пероксидом водорода. Наличие XJI свидетельствовало о радикальном механизме разложения Н202 [208]. Окисление люминола в присутствии пероксида водорода и СоРс не приводило к генерации хемилюминесценции, что, вероятно, свидетельствовало о нерадикальном механизме разложения Н202.

Таким образом, в настоящей работе показано, что исследуемые реагенты приводили к эффективной и селективной модификации ДНК пероксидом водорода. Было показано, что при окислении ДНК-мишени пероксидом водорода в присутствии.

CoPc-ODNl степень модификации возрастала с ростом начальной концентрации конъюгата и представляла собой гиперболическую зависимость. В тоже время при окислении ДНК-мишени пероксидом водорода в присутствии FePc-ODN2 максимальная степень модификации ДНК-мишени достигалась при эквимолярном соотношении реагентов. Зависимость предельного выхода модифицированного продукта от начальной концентрации пероксида водорода также представляла собой кривую с максимумом, но при этом диапазон оптимальных концентраций пероксида водорода был различным. При окислении ДНК-мишени в присутствии CoPc-ODNl требовалась достаточно большая концентрация пероксида водорода (~ 1−10 мМ) тогда как при окислении ДНК-мишени в присутствии FePc-ODN2 диапазон оптимальных концентраций пероксида водорода был на три порядка ниже 1−10 мкМ).

Колоколообразная зависимость степени модификации ДНК-мишени от концентрации пероксида водорода или конъюгата подтверждает конкуренцию процессов окисления ДНК-мишени, деградации каталитической группы и разложения пероксида водорода. На основании совокупности полученных данных была предложена кинетическая схема процесса модификации ДНК-мишени пероксидом водорода в присутствии исследуемых конъюгатов и определены константы скоростей элементарных стадий, входящих в кинетическую схему.

Следует отметить, что конъюгат олигонуклеогида с FcPc обладает более высокой каталитической активностью при окислении ДНК как пероксидом водорода, гак и молекулярным кислородом. Высокая активность этого конъюгата при низких концентрациях пероксида водорода свидетельствует о его преимуществе для использования гп vivo.

Впервые исследована модификация одноцепочечной ДНК молекулярным кислородом и пероксидом водорода в присутствии конъюгатов CoPc-ODNl и РеРс-ODN2, отрицательно заряженные остатки фталоцианинов которых способны формировать в растворе гетерогенные димеры с положительно заряженными фталоцианинами Fe (II) и Co (II).

Показано, что MePcpos, присутствующий в растворе, взаимодействовал с двуцепочным и одноцепочным фрагментами дуплекса, формируемого олигонуклеотидом-мишеныо и конъюгатом, и с отрицательно заряженным фталоцианином в составе конъюгата.

При окислении ДНК пероксидом водорода было показано, что образование гетерогенных комплексов сопровождалось повышением стабильности каталитической группы в условиях окисления.

При окислении одноцепочечной ДНК молекулярным кислородом образующиеся гетерогенные димеры фталоцианинов обладали высокой каталитической активностью. Расщепление ДНК этими комплексами происходило с большей эффективностью, чем конъюгатами олигонуклеотидов с тетракарбоксифталоцианинами кобальта (П) и железа (П). После обработки реакционных смесей пиперидином степень модификации составляла ~ 45−50% в присутсвии (СоРсро5*СоРс) и — 40% в присутсвии (РеРср05'РеРс). При этом модификации подвергались не только остатки гуанинов, но также остатки цитозина и тимина. Следует отметить, что окисление ДНК-мишени молекулярным кислородом в присутствии гетерогенных фталоцианиновых комплексов приводило к появлению прямых разрывов цепи ДНК: —10% в присутсвии (СоРсРо5*СоРс) и ~ 3% в присутсвии (РеРсРо5*РеРс). Повторное добавление сопряженного восстановителя к реакционной смеси приводило к дальнейшему накоплению щелочелабильных продуктов модификации и прямых разрывов цепи ДНК.

Гетерогенные димеры фталоцианинов железа катализировали окисление ДНК молекулярным кислородом с более высокой скоростью, чем гетерогенные димеры фталоцианинов кобальта. Было показано, что эффективная константа скорости окисления ДНК-мишени молекулярным кислородом в присутствии (РеРср05*РеРс) примерно в 40 раз больше, чем в присутсвии (СоРср05*СоРс).

Впервые определены продукты окисления 5'-монофосфат-2'-дезоксигуанозина молекулярным кислородом в присутствии фталоцианинов МеРс и их гетерогенных димерных комплексов с МеРср05. Было показано, что МеРс и (МеРсро5*МеРс) приводили к накоплению одних и тех же продуктов окисления, главное отличие заключалось в выходе модифицированных продуктов. В целом, (МеРсрод'МеРс) приводил к более высокому выходу образования модифицированных продуктов.

Природа сопряженного восстановителя также влияла на распределение продуктов окисления 5'-монофосфат-2'-дезоксигуанозина. Так, в присутствии аскорбиновой кислоты главным продуктом окисления являлся 8-оксо-7,8-дигидрогуанин, тогда как в присутствии 2-меркаптоэтанола — глиоксалевое производное гуанина.

Образование 8-оксо-7,8-дигидрогуанина, а также продуктов окисления остатка сахара в нуклеотиде (свободных азотистых оснований и глиоксалевого производного гуанина) может свидетельствовать об образовании гидроксильных радикалов. Наличие оксокомплексов в реакционной смеси было подтверждено при окислении модельного субстрата — карбамазепина. Таким образом, в качестве окисляющих частиц при окислении различных субстратов молекулярным кислородом и пероксидом водорода в присутствии РеРс и СоРс выступают, вероятно, как гидроксильные радикалы, так и оксокомплексы различной природы.

Таким образом, в настоящей работе показано, фталоцианины кобальта (Н) и железа (Н), а также их димерные комплексы в составе олигонуклеотидных конъюгатов являются перспективными группами для каталитической окислительной модификации ДНК как молекулярным кислородом, так и пероксидом водорода. Результаты, полученные в данной работе, имеют большое значение для дальнейшей разработки ген-направленных реагентов.

Показать весь текст

Список литературы

  1. Belikova A.M., Zarytova V.F., Grineva N.I. Synthesis of ribonucleosides and diribonucleoside phosphates containing 2-chloroethylamine and nitrogen mustard residues I I Tetrahedron Lett. -1967. -V. 37. -P. 3557−3562.
  2. Moser H.E., Dei~van P.B. Sequence-specific cleavage of double helical DNA by triple helix formation // Science. -1987. -V. 238. -P. 645−650.
  3. Fedorova O.S., Knorre D.G., Podust L.M., Zarytovaa V.F. Complementary addressed modification of double-stranded DNA within a ternary complex I I FEBS Lett. -1988. -V. 228. -P. 273−276.
  4. Vol’pin M.E., Novodarova G.N., Krainova N.Yu., Lapikova V.P., Aver’yanov A.A. Redox and fungicidal properties of phthalocyanine metal complexes as related to active oxygen // J. Inorg. Biochem. -2000. -V. 81. -P. 285−292.
  5. С.В., Любимова О. И., Котов А. Г., Калия О. Л., Лебедев О. Л., Лукъянец Е. А. Окислительно-восстановительные реакции фталоцианинов и родственных соединений // Ж. Общ. Химии. -1975. -Т. 45. -С. 1841−1846.
  6. Н.И., Ломакина Т. С., Тигеева Н. Г., Чимитова Т. А. Кинетика ионизации С-С1 связи в 4-(Н-2-хлорэтил-М-метиламино)бензил-5'-фосфамидах нуклеозидов и олигонуклеотидов // Биоорган, химия. -1977. -Т. 3. -С. 210−214.
  7. Valko М., Izakovic М., Mazur М., Rhodes C.J., Telser J. Role of oxygen radicals in DNA damage and cancer incidence // Mol. Cell. Biochem. -2004. -V. 266. -P. 37−56.
  8. Evans M.D., Dizdaroglu M., Cooke M.S. Oxidative DNA damage and disease: introduction, repair and significance // Mutat. Res. -2004. -V. 567. -P. 1−61.
  9. Valko M, Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease // Int. J. Biochem. Cell. Biol. -2007. -V. 39. -P. 44−84.
  10. Valko M, Rhodes C.J., Moncol ./., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer // Chern. Biol. Interact. —2006. -V. 160. -P. 1−40.
  11. Tullius T.D., Dombroski B.A. Hydroxyl radical «footprinting»: High-resolution information about DNA-protein contacts and application to X repressor and Cro protein // Proc. Natl. Acad. Sci. U.S.A. -1986. -V. 83. -P. 5469−5473.
  12. Bonnett R. Photodynamic therapy in historical perspective // Rev. Contemp. Pharmacother. -1999.-V. 10.-P. 1−17.
  13. MacDonald I.J., Dougherty T.J. Basic principles of photodynamic therapy // J. Porphyrins Phthalocyanines. -2001. -V. 5.-P. 105−129.
  14. Kimoto E., Tanaka H., Gyotoku J., Morishige F., Pauling L. Enhancement of antitumor activity of ascorbate against Ehrlich ascites tumor cells by the copperrglycylglycylhistidine complex // Cancer Res. -1983. -V. 43. -P. 824−828.
  15. Feofanov A.V., Grichine A.I., Shitova L.A., Karmakova T.A., Yakubovskaya R.I., Egret-Charlier M., Vigny P. Confocal Raman microspectroscopy and imaging study of theraphthal in living cancer cells // Biophys. J. -2000. -V. 78. -P. 499−512.
  16. Е.Г., Борисенкова С. А., Калия О. Л. Окисление аскорбиновой кислоты в присутствии фталоцианиновых комплексов металлов. Химические аспекты каталитической терапии рака // Изв. Ак. Наук. Серия Хим. -2002. -Т. 7. -С. 11 371 142.
  17. Chen С.В., Gorin М.В., Sigman D.S. Sequence-specific scission of DNA by the chemical nuclease activity of l, 10-phenanthroline-copper (I) targeted by RNA // Proc. Natl. Acad. Sci. U.S.A. -1993. -V. 90. -P. 4206−4210.
  18. Chen C.B., Sigman D.S. Nuclease activity of 1,10-phenanthroline-copper: Sequencc-specific targeting// Proc. Natl. Acad. Sci. U.S.A. -1986. -V. 83. -P. 7147−7151.
  19. О.А., Черноловская Е. Л., Литвак В. В., Власов В. В. Сайт-направленное расщепление ДНК конъюгатом олигонуклеотида с о-бромбензойной кислотой в присутствии ионов меди // Изв. АН, Сер. хим. -2003. —Т. 11. -Р. 2380−2385.
  20. Boutorin A.S., Vlassov V.V., Kazakov S.A., Kutiavin I.V., Podyminogin M.A. Complementary addressed reagents carrying EDTA-Fe (II) groups for directed cleavage of single-stranded nucleic acids // FEBS Lett. -1984. -V. 172. -P. 43−46.
  21. Dreyer G.B., Dervan P.B. Sequence-specific cleavage of single-stranded DNA: oligodeoxynucleotide-EDTA'Fe (II) // Proc. Natl. Acad. Sci. U.S.A. -1985. -V. 82. -P. 968 972.
  22. Chu B.C., Orgel L.E. Nonenzymatic sequcnce-specific cleavage of single-stranded DNA // Proc. Natl. Acad. Sci. U.S.A. -1985. -V. 82. -P. 963−967.
  23. Vorobjev P.E., Smith V.F., Pyshnaya I.A., Levina A.S., Zarytova V.F. Site-specific cleavage of RNA and DNA by complementary DNA-bleomycin A5 conjugates // Bioconjugate Chem. -2003. -V. 14.-P. 1307−1313.
  24. Le Doan Т., Perrouault L., Helens C. Chassignol M, Thuong N.T. Targeted cleavage of polynucleotides by complementary oligonucleotide covalently linked to iron-porphyrins // Biochemistry. -1986. -V. 25. -P.6736−6739.
  25. E.M., Мамаев С. В., Федорова О. С., Фролова Е. И. Комплементарно-адресованная модификация одноцепочечного фрагмента ДНК железопорфириновым производным олигонуклеотида // Биоорган, химия. -1988. —V. 14. -Р. 551−554.
  26. Mestre В., Jakobs A., Pratviel G., Meunier В. Structure/nuclease activity relationships of DNA cleavers based on cationic metalloporphyrin-oligonucleotide conjugates // Biochemistry. -1996. -V. 35. -P. 9140−9149.
  27. Fedorova O.S., Savitskii A.P., Shoikhet K.G., Ponomarev G.V. Palladium (II)-coproporphyrin I as a photoactivable group in sequence-specific modification of nucleic acids by oligonucleotide derivatives 11 FEBS Lett. -1990. -V. 259. -P. 335−337.
  28. Magda D., Miller R.A., Sessler J.L., Iverson B.L. Site-specific hydrolysis of RNA by europium (III) texaphyrin conjugated to a synthetic oligodeoxyribonucleotide // J. Am. Chem. Soc.-1994.-V. 116.-P. 7439−7440.
  29. Magda D., Wright M., Miller R.A., Sessler J.L., Sansom P.I. Sequence-specific photocleavage of DNA by an expanded porphyrin with irradiation above 700 nm// J. Am. Chem. Soc. -1995. -V. 117. -P. 3629−3630.36
Заполнить форму текущей работой