Помощь в учёбе, очень быстро...
Работаем вместе до победы

Спонтанная и промотированная ассоциация олигоглициновых пептидов и гликопептидов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В зависимости от величины рН, свободная терминальная группа олигоглициновой цепи может быть сильно заряженной, слабо заряженной или нейтральной. В кислых растворах из-за полноценного положительного заряда антенны отталкиваются, что мешает сборке тектомеров или отменяет ее вовсе. Величина рН влияет не только на способность к сборке, но и на морфологию супрамеров. Так, в нейтральных растворах… Читать ещё >

Содержание

  • СПИСОК ИСПОЛЬЗУМЫХ СОКРАЩЕНИЙ
  • СПИСОК ИСПОЛЬЗУЕМЫХ ТЕРМИНОВ ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Самоассоциация: понятие и силы, ее вызывающие
    • 1. 2. Самоассоциация пептидов
      • 1. 2. 1. Ассоциация самокомплементарных пептидов
      • 1. 2. 2. Ассоциация амфифильных пептидов
      • 1. 2. 3. Ассоциация, приводящая к Р-амилоидным наноструктурам
      • 1. 2. 4. Ассоциация пептидов на поверхности
    • 1. 3. Полиглицин и полиглициновые структуры
      • 1. 3. 1. Полиглицин-1 и полиглицин-П
      • 1. 3. 2. Самоассоциация олигоглициновых производных
      • 1. 3. 3. Тектомеры
    • 1. 4. Природные глицин-насыщенные белки
    • 1. 5. Методы исследования супрамолекулярных структур
      • 1. 5. 1. Атомно-силовая микроскопия
      • 1. 5. 2. Основные режимы АСМ
      • 1. 5. 3. Поверхности
        • 1. 5. 3. 1. Физическая сорбция
        • 1. 5. 3. 2. Ковалентная привязка молекул к поверхности 42 ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
  • 1. Синтез двухантенных олигоглицинов и их гликопроизводных
  • 2. Изучение ассоциации двухантенных олигоглицинов в растворе методом динамического светорассеяния
    • 2. 1. Двухантенные ол иго глицины с декаметиленовым кором
    • 2. 2. Двухантенные олигоглицины с этиленовым кором
    • 2. 3. Двухантенные олигоглицины с олигоэтиленгликолевым кором
  • 3. Изучение ассоциации антенных олигоглицинов методом атомно-силовой микроскопии
    • 3. 1. Четырехантенный пептид [Н-01у7ТЧНСН2]4С
    • 3. 2. Трехантенный пептид [Н-01у7-МНСН2]зССН
    • 3. 3. Двухантенные олигоглицины
  • 4. Противовирусная активность
  • ЗАКЛЮЧЕНИЕ
  • ВЫВОДЫ
  • 5. Экспериментальная часть
    • 5. 1. Синтез активированных эфиров
    • 5. 2. Синтез двухантенных олигоглицинов
      • 5. 2. 1. Синтез олигоглициновых производных с ОЭГ кором
      • 5. 2. 2. Синтез олиго глициновых производных с С2-кором
      • 5. 2. 3. Синтез олигоглициновых производных с С10-кором
    • 5. 3. Синтез двухантенных гликопептидов
    • 5. 4. Изучение ассоциации в растовре и на поверхности
      • 5. 4. 1. Динамическое светорассеяние
      • 5. 4. 2. Атомно-силовая микроскопия
    • 5. 5. Изучение противовирусной активности гликопептидов 99 БЛАГОДАРНОСТИ
  • СПИСОК ЛИТЕРАТУРЫ
  • СПИСОК ИСПОЛЬЗУЕМЫХ СОКРАЩЕНИЙ АР Р-амилоидный пептид
  • Ас ацетил
  • А1а аланин
  • APTES аминопропилтриэтоксисилан
  • Аг арил
  • Arg аргинин
  • Asp аспарагиновая кислота
  • Bn бензил
  • Boc трет-бутилоксикарбонил br. s уширенный синглет
  • BSA бычий сывороточный альбумин d (d) дублет (дублетов)
  • Et этил
  • Et3N триэтиламин
  • Gly глицин
  • Glu глутаминовая кислота
  • HOPG высокоориентированный пирографит
  • Н-связь водородная связь
  • I. le изолейцин
  • Leu лейцин
  • Lys лизин m мультиплет
  • Me метил
  • NSu М-оксисукцинимид
  • ОЭГ олигоэтиленгликоль
  • PEG полиэтиленгликоль
  • Phe фенилаланин
  • 6. 'SLN Иеи5 Ас<�х2−60а1р 1−401сЫАсР
  • 3. 'SL Иеи5 Аса2−30а1р 1−401сР spl ОСН2(р-С6Н4)ЫНСОСН2КНСО (СН2)4СО sp2 0(СН2)3ННС0(СН2)4С sp3 ШСОСН2ШСО (СН2)4СО t триплет
  • Tos тозил
  • Туг тирозин
  • ACM атомно-силовая микроскопия
  • ДС динамическое светорассеяние
  • ДМСО диметилсульф оксид
  • ДМФА диметилформамид
  • ИК инфракрасная (спектроскопия)
  • КР комбинационное рассеяние
  • ПГ 1(11) полиглицин 1(11)
  • РНК (ДНК) (дезокси) рибонуклеиновая кислота
  • САМ самоассоциирующие монослои
  • СЗМ (СЭМ) сканирующая зондовая (электронная) микроскопия
  • ТЕМ туннельная электронная микроскопия
  • ТСХ тонкослойная хроматография
  • ЯМР ядерный магнитный резонанс

Спонтанная и промотированная ассоциация олигоглициновых пептидов и гликопептидов (реферат, курсовая, диплом, контрольная)

Конструирование супрамолекулярных наноматериалов, нанолекарств и наноустройств путем самосборки небольших органических молекул привлекает, в первую очередь, своей «технологичностью». В качестве исходных органических молекул наиболее удобны пептиды и небольшие белки, поскольку они хорошо изучены, структурно разнообразны и способны к межмолекулярному узнаванию, а синтезировать их можно биотехнологическим путем. Однако пептидные молекулы пока не нашли широкого применения в нанотехнологии из-за низкой термической, химической и биологической стабильности. Материалы, построенные из несклонных к рацемизации аминокислот, в частности, из глицина, не имеют этих недостатков. Олигомеры глицина в виде неканонической спиральной структуры полиглицин-П (ПГ-П) образуют сеть водородных связей с шестью соседними цепями. Организация линейного олигоглицина в разветвленные, так называемые трехи четырехантенные пептиды, позволила получить новый класс простых молекул, обладающих способностью формировать в водной среде уникальные супрамеры в виде плоских листов мономолекулярной толщины. Для нанотехнологии такие двумерные кристаллы привлекательны благодаря атомной степени гладкости формируемых ими поверхностей, а для медициныспособностью их гликозилированных производных эффективно и специфично блокировать вирусы. Понимание закономерностей, связывающих структуру олигоглицинов со способностью образовывать супрамеры, открывает возможность получения материалов с новыми, необычными свойствами и заданными характеристиками.

Таким образом, целями данной работы являются:

— синтез молекул общей формулы 11−01уп-Х-01уп-К. с разным числом глициновых звеньев п, и отличающихся структурой соединяющего пептидные цепи фрагмента X (кора);

— изучение ассоциации этих двухантенных олигоглицинов в водной среде, а также сравнение способности к ассоциации двух-, трехи четырехантенных олигоглицинов;

— поиск воспроизводимых условий получения протяженных атомно-гладких слоев на поверхности слюды, а также условий формирования нанопаттернов;

— оценка противовирусных свойств сиалопроизводных двухантенных олигоглицинов.

Список используемых терминов.

Прежде всего, необходимо определить несколько основных понятий, так как терминология супрамолекулярной химии сравнительно нова и еще не устоялась.

Антенность — разветвленность молекул. Повторяющиеся пептидные цепи (антенны) соединены в одном центре (коре). Терминами двух-, трехи четырехантенный в данной диссертационной работе называются симметричные (star-like) конструкции пептидной, а также гликопептидной природы.

Ассоциат и супрамер — надмолекулярные структуры (нековалентные полимеры), возникающие в результате спонтанной ассоциации неопределенно большого числа компонентов в специфическую фазу, характеризуемую более или менее определенной организацией на микроскопическом уровне, а также макроскопическими свойствами, зависящими от природы фазы (пленка, слой, мембрана, кристалл, мицелла и т. д.).

Тектомер — супрамер, в котором олигоглициновые цепи обладают структурой полиглицина-П.

Тектон — «мономер», участвующий в самоассоциации.

ОБЗОР ЛИТЕРАТУРЫ.

Заключение

.

Обобщая ассоциирующие свойства двуханетнных олигоглицинов, можно выделить несколько параметров, влияющих на процесс ассоциации, как в растворе, так и на поверхности.

Минимальный размер фрагмента в1уп, при котором происходит ассоциация. В случае двухантенных молекул формально ассоциация начинается с величины п = 4, однако, на самом деле эта величина, по-видимому, равна 8, так как двухантенные пептиды формируют полиглициновую структуру в вытянутой конформации «1 + 1». На один виток олигоглициновой спирали в ПГ-Н приходится примерно три глициновых остатка, из чего мы делаем заключение о необходимости как минимум двух витков для образования стабильной структуры ПГ-П. Как известно из свойств нейлонов [104, 105], метиленовые группы, «перебивающие» сплошную олигоглициновую цепь, заметно не влияют на ее способность формировать ПГ-П и их в данном контексте можно не принимать во внимание. Ассоциация четырехи трехантенных пептидов приводит к структурам с конформацией мономера «2+2» и «3+0», соответственно. Ассоциация начинается с величины п = 7- по-видимому, первый, самый близкий к разветвлению остаток 01у, принимает искаженную конформацию и поэтому не участвует в образовании водородных связей с соседями. У четырехантенных олигоглицинов плоскость одной пары антенн повернута на 90° относительно другой и глицины антенн не могут образовывать сплошную цепь, в то время как в двухантенном варианте, с точки зрения способности формировать структуру ПГ-П, цепь 01у4-Х-С1у4 является сплошной, несмотря на коровый фрагмент -(СН2)П—Антенность.

Приведенные выше соображения о минимально необходимом количестве остатков глицина в антенне говорят о том, что мы имеем право адекватно сравнивать между собой следующие молекулы по параметру антенности: [Н-ау7-№ 1СН2]4С [Н-01у7-МНСН2]3ССН3 Н-01у4-МН (СН2)1<�№-01у4-Н.

В водном растворе духантенные олигоглицины образуют супрамеры на порядок величины быстрее, чем трехи четырехантенные. На поверхности слюды ряд активности оказывается иным: скорость ассоциации трехантенных молекул выше, чем двухи четырехантенных. Этот факт является предсказуемым, поскольку в трехантенных молекулах из-за энтропийной составляющей (предсуществующая связанность трех цепей) скорость ассоциации должна быть максимальной, однако «срабатывает» только при содействии дополнительного фактора — кулоновского взаимодействия с отрицательно заряженной поверхностью слюдыименно поэтому трехантенные молекулы имеют преимущество перед слабее заряженными двухантенными. Более высокая скорость ассоциации двухантенных олигоглицинов по сравнению с четырехантенными на поверхности слюды говорит о возможности ассоциации и «одноантенных» олигоглицинов в тех же условиях, что предстоит проверить в будущем.

Природа корового фрагмента X в составе Н-01уп-Х-01уп-Н.

Двухантенные молекулы с кором СЮ более охотно образуют тектомеры на поверхности слюды, чем молекулы с кором С2 и тем же количесвтом глицинов. Из энтропийных соображений, более гибкий кор СЮ должен давать дестабилизирующий эффект, поэтому наблюдаемый в реальности противоположный эффект скорее всего связан с ван-дер-ваальсовым взаимодействием расположенных рядом в структуре ПГ-П гидрофобных фрагментов СЮ. Олигоэтиленгликольный кор отменяет образование структуры ПГ-П, по-видимому, за счет образования конкурентных водородных связей с пространственно сближенными ол иго глициновыми фрагментами.

Самопроизвольная и поверхность-промотированная ассоциация.

Образование тектомеров из двух-, трехи четырехантенных олигоглицинов на слюде происходит значительно быстрее, чем ассоциация в растворе (за то время, когда сборка на поверхности уже завершена, формирование ассоциатов в растворе только начинается), то есть поверхность слюды безусловно играет активную роль. Рост тектомеров начинается с образования островковых структур, увеличивающихся латерально, и покрывающих всю поверхность ровным слоем, и ограничен лишь размерами самой подложки. Следует отметить, что графит не участвует в процессе ассоциации.

Влияние рН раствора.

В зависимости от величины рН, свободная терминальная группа олигоглициновой цепи может быть сильно заряженной, слабо заряженной или нейтральной. В кислых растворах из-за полноценного положительного заряда антенны отталкиваются, что мешает сборке тектомеров или отменяет ее вовсе. Величина рН влияет не только на способность к сборке, но и на морфологию супрамеров. Так, в нейтральных растворах двухантенные и четырехантенные олигоглицины формируют многослойные тектомеры, процесс практически невозможно остановить на стадии образования монослоя. В то же время, в щелочных растворах образуются исключительно однослойные тектомеры (строго бислойный — в случае трехантенного ол иго глицина).

Концентрация.

Большая часть экспериментов проводилась в интервале 0.1−1.0 мг/млболее детальное изучение концентрационных зависимостей предстоит изучить в будущем. Для адекватного сравнения ассоциации всех изученных в данной работе пептидов использовалась концентрация 0.1 мг/мл. При низких концентрациях ассоциация в жидкой фазе происходит медленнее, а размер супрамеров возрастает.

Возможности конструирования плоских атомно-гладких поверхностей с заданными свойствами.

Одним из наиболее принципиальных факторов при разработке истинных нано-размерных сложных устройств является наличие адекватной «площадки» для конструирования. Если ее гладкость низка, то шансы точного конструирования резко падают. В распоряжении современных нанотехнологов имеется очень ограниченный набор атомно-гладких материалов, а именно, пирографит, графен, слюда и некоторые супер-отполированные материалы. Полученные в нашем исследовании данные по формированию атомно-гладких тектомеров, в том числе в растворе, открывают новые возможности для наноконструирования — более технологичного — так как сборка олигоглицинов является воспроизводимым и масштабируемым процессом.

Олигоглицины в конструировании новых супрамлекулярных блокаторов вируса гриппа.

При планировании данной работы ожидалось, что двухантенные сиалопептиды покажут низкую противовирусную активность, так как объемистый сиалогликан препятствует эффективному формированию структуры полиглицин-П, а без мультивалентности взаимодействия нельзя ожидать и мощного противовирусного эффекта. После того как эти соединения были синтезированы и протестированы, стало понятно, что антенные сиалогликопептиды могут взаимодействовать с вирусом гриппа как мульти-, так и олиго-валентно, что может позволить более целенаправленно конструировать максимально активные сиалопептиды-ингибиторы. Кроме того, двухантенные несиалилированные пептиды могут стать идеальными «со-мономерами» при формировании тектомеров из двух разных типов олигоглицинов — сиалилированного и незамещенного пептидов, расширяя, таким образом, возможности дизайна нового поколения супрамолеулярных блокаторов вируса гриппа.

Показать весь текст

Список литературы

  1. Ж.-М. Лен, Супрамолекулярная химия: концепции и перспективы. Новосибирск: Наука СО РАН, 1998.
  2. J.M. Zayed, N. Nouvel, U. Rauwald, O.A. Scherman. Chemical complexity supramolecular self-assembly of synthetic and biological building blocks in water // Chemical Society Reviews, 2010, Vol. 39, 2806−2816.
  3. L.J. Prins, D.N. Reinhoudt, P. Timmerman. Noncovalent synthesis using hydrogen bonding // Angew. Chem int. Ed., 2001, Vol. 40, 2382−2426.
  4. H.JI. Глинка. Общая химия, 30-е изд., испр., Москва: 2003, 728 с.
  5. И.Н. Евдокимов, А. П. Лосев. Различные виды нанотехнологий принудительная сборка атомных и молекулярных структур и самосборка нанообъектов, Москва, 2008.
  6. Н.В. Степанов. Водородная связь: как ее понимать // Соросовский образовательный журнал, 2001, № 2, 28−34.
  7. J. Pranata, S.G. Wierschke, W.L. Jorgenson. OPLS Potential functions for nucleotide bases. Relative sssociation constants of hydrogen-bonded base pairs in chloroform // J. Am. Chem. Soc., 1991, Vol. 113, 2810.
  8. W.L. Jorgenson, J. Pranata. Importance of secondary interactions in triply hydrogen bonded complexes: guanine-cytosine vs uracil-2,6-diaminopyridine // J. Am. Chem. Soc., 1990, Vol. 112, 2008.
  9. A.P. Bisson, C.A. Hunter. Cooperativity in the assembly of zipper complexes // Chem. Commun., 1996, 1723−1724.
  10. T. Shimizu. Molecular self-assembly into one-dimensional nanotube architectures and exploitation of their functions // Bull. Chem. Soc. Jpn., 2008, Vol. 81, 15 541 566.
  11. E. Gazit. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization // Chem. Soc. Rev., 2007, Vol. 36, 1263— 1269.
  12. S. Zhang, T. Holmes, C. Lockshin, A. Rich. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane // Proc. Natl. Acad. Sci. USA, 1993, Vol. 90, 3334−3338.
  13. C.A.E. Hauser, S. Zhang. Designer self-assembling peptide nanofiber biological materials // Chem. Soc. Rev., 2010, 39, 2780−2790.
  14. S. Zhang. Fabrication of novel biomaterials through molecular self-assembly // Nature Biotechnology, 2003, Vol. 21, 1171−1178.
  15. M. Altman, P. Lee, A. Rich, S. Zhang. Conformational behavior of ionic self-complementary peptides // Protein science, 2000, Vol. 9, 1095−1105.
  16. J.D. Hartgerink, E. Beniash, S.I. Stup. Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials // Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 5133−5138.
  17. M. Zhou, A.M. Smith, A.K. Das, N.W. Hodson, R.F. Collins, R.V. Ulijn, J.E. Gough. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells // Biomaterials, 2009, Vol. 30, 2523−2530.
  18. J.D. Hartgerink, E. Beniash, S.I. Stupp. Self-Assembly and mineralization of peptide-amphiphile nanofibers II Science, 2001, Vol. 294, 1684−1687.
  19. S. Zhang, D.M. Marini, W. Hwung, S. Santoso. Design of nanostructured biological materials through self-assemblyof peptides and proteins // Current Opinion in Chemical Biology, 2002, Vol. 6, 865−871.
  20. S. Zhang, A. Rich. Direct conversion of an oligopeptide from a p-sheet to an a-helix: A model for amyloid formation // Proc. Natl. Acad. Sci. USA, 1997, Vol. 94, 23−28.
  21. Q. Wang, N. Shah, J. Zhao, C. Wang, C. Zhao, L. Liu, L. Li, F. Zhou, J. Zheng Structural, morphological, and kinetic studies of P-amyloid peptideaggregation on self-assembled monolayers // Phys chem. Chem. Phys., 2011, Vol. 13, 15 200−15 210.
  22. T. Kowalewski, D.M. Holtzman. In situ atomic force microscopy study of Alzheimer’s P-amyloid peptide on different substrates: New insights into mechanism of p-sheet formation // Proc. Natl. Acad. Sci. USA, 1999, Vol. 96, 3688−3693.
  23. M. Reches, E. Gazit. Casting metal nanowires within discrete self-assembled peptide nanotubes // Science, 2003, Vol. 300, 625−627.
  24. N. Kol, L. Adler-Abramovich, D. Barlam, R. Z. Shneck, E. Gazit, I. Rousso. Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures IINano Lett., 2005, Vol. 5, 1343−1346.
  25. Y. Song, S.R. Challa, C.J. Medforth, Y. Qiu, R.K. Watt, D. Pena, J.E. Miller, F. Swol, J.A. Shelnutt. Synthesis of peptide-nanotube platinum-nanopartiele composites HChem. Comm., 2004, 1044−1045.
  26. M. Reches and E. Gazit. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides // Nano Lett., 2004, Vol. 4, 581−585.
  27. T. Shimizu. Bottom-up synthesis and structural properties of self-assembled high-axial-ratio nanostructures. // Macromolecular Rapid Communications, 2002, Vol. 23, 311−331.
  28. R. S. Clegg, S. M. Reed, J. E. Hutchinson. Self-assembled monolayers stabilized by three-dimensional networks of hydrogen bonds // J. Am. Chem. Soc., 1998, Vol. 120, 2486−2487.
  29. C.H. Bamford, L. Brown, E.M.Cant, A. Elliott, W.E. Hanby, B. Malcolm. Structure of Polyglycine // Nature, 1955, Vol. 176, 396−397.
  30. F.H.C. Crick, A. Rich. Structure of Polyglycine II // Nature, 1955, Vol. 176, 780−781.
  31. S. Kuroki, I. Ando, A. Shoji, T. Ozaki. A structural study of polyglycine II in the solid state by 170 CP MAS NMR spectroscopy // J. Chem. Soc. Chem. Commun., 1992, 433.
  32. Y. Abe, S. Krimm. Normal Vibrations of Polyglycine II // BIOPOLYMERS, 1972, Vol. 11, 1841−1853.
  33. T. Miyazawa. Internal rotation and low frequency spectra of esters, monosubstituted amides and polyglycine // Bull. Chem. Soc Jpn, 1961, Vol. 34, 691.
  34. S. Krimm, K.Kuroiwa. Low temperature infrared spectra of poly glycines and C—H. 0=C hydrogen bonding in polyglycine II // BIOPOLYMERS, 1968, Vol. 6, 401−407.
  35. S. Krimm. Antiparallelism of Chains in Polyglycine II // Nature, 1966, Vol. 212, 1482−1483.
  36. S. Bykov, S. Asher. Raman studies of solution polyglycine conformations // J. Phys. Chem. B, 2010, Vol. 114, 6636−6641.
  37. S. Bykov, N. Myshakina, S. Asher. Analysis and optimization of saturation transfer difference NMR experiments designed to map early self-association events in amyloidogenic peptides II J. Phys. Chem. B, 2008, Vol. 112, 5803−5812.
  38. H. Okabayashi, K. Ohshima, H. Etori, R. Debnath, K. Taga, T. Yoshida, E. Nishio. Vibrational spectra of N-acylglycine oligomers and the long N-acyl chain effect // J. Chem. Soc., Faraday Trans., 1990, Vol. 86, 1561−1567.
  39. K. Ohshima, H. Okabayashi, T. Yoshida. Vibrational spectra of iV-acylglycine oligomers and the long vV-acyl chain effect // J. Chem. Soc., Faraday Trans., 1994, Vol. 90, 3483−3490.
  40. R. R. Hudgins, Y. Mao, M.A. Ratner, M.F. Jarrold. Conformations of GlynH+ and Ala"H+ peptides in the gas phase // Biophysical Journal, 1999, Vol. 76, 1591−1597.
  41. M. Kogiso, S. Ohnishi, K. Yase, M. Masuda, T. Shimizu. Dicarboxylic oligopeptide bolaamphiphiles: proton-triggered self-assembly of microtubes with loose solid surfaces // Langmuir, 1998, Vol. 14, 4978−4986.
  42. T. Shimizu, M. Kogiso M. Masuda. Vesicle assembly in microtubes // Nature, 1996, Vol. 383, 487−488.
  43. M. Masuda and T. Shimizu. Formation of complementary and cooperative hydrogen-bonding networks of sugar-based bolaamphiphiles in water // Chem. Commun., 1996, 1057−1058.
  44. T. Shimizu, M. Masuda. Stereochemical effect of even-odd connecting links on supramolecular assemblies made of 1-glucosamide bolaamphiphiles // J. Am. Chem.Soc., 1997, Vol. 119, 2812−2818.
  45. M. Kogiso, M. Masuda. Noncovalent formation of poly glycine II-type structure by hexagonal self-assembly of linear polymolecular chains // J. Am. Chem. Soc., 1997, Vol. 119, 6209−6210.
  46. T. Shimizu, M. Masuda, M. Shibakami. Hydrogen-bond-assisted layered assembly and hydrocarbon-chain kink defect of a synthetic 1-galactosamide bolaamphiphile // Chemistry Letters, 1997, 267−268.
  47. J.-H. Fuhrhop, T.Wang. Bolaamphiphiles // Chem. Rev., 2004, Vol. 104, 2901−2937.
  48. J. Bella, J. Puiggali, J. Subirana. Glycine residues induce a helical structure in polyamides II Polymer, 1994, Vol. 35, 1291−1297.105
  49. S. Santoso, W. Hwang, H. Hartman, S. Zhang. Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles // NANO LETTERS, 2002, Vol. 2, 687−691.
  50. L. Gurevich, T.W. Poulsen, O.Z. Andersen, N.K. Lillelund, P. Fojan. pH-dependent self-assembly of the short surfactant-like peptide KA6 // Journal of Nanoscience and Nanotechnology, 2010, Vol. 10, 7946−7950.
  51. A. Lakshmanan, S. Zhang, C.A.E. Hauser. Short self-assembling peptides as building blocks for modern nanodevices // Trends in biotechnology, 2012, Vol. 30, 155−165.
  52. M. Kogiso, M. Aoyagi, M. Asakawa, T. Shimizu. Highly efficient production of various organic nanotubes with different surfaces and their application to an adsorbent // Soft Matter, 2010, Vol. 6, 4528−4535.
  53. Y. Lin, Y. Qiao, P. Tang, Z. Li, J. Huang. Controllable self-assembled laminated nanoribbons from dipeptide-amphiphile bearing azobenzene moiety // Soft Matter, 2011, Vol. 7, 2762−2769.
  54. H.B. Бовин, А. Б. Тузиков, A.A. Чинарев. Олигоглицины: материал с неограниченными возможностями для нанотехнологий // Российские нанотехнолонии, Т. 3, 2008, 48−61.
  55. В. Keller, M.D. Templeton, C.J. Lamb. Specific localization of a plant cell wall glycine-rich protein in protoxylem cells of the vascular system // Proc. Natl. Acad. Sci. USA, 1986, Vol. 89, 1529−1533.
  56. V. Redeker, N. Levilliers, J.-M. Schmitter, J.-P. Le Caer, J. Rossier, A. Adoutte, M.-H. Bre. Polyglycylation of tubulin: a posttranslational modification in axonemal microtubules II Science, 1994, Vol. 266, 1688−1690.
  57. C. Wiese, Y. Zheng. Microtuble nucleation: y-tubulin and beyond // Journal of Cell science, 2006, Vol. 119, 4143−4153.
  58. R. Berisio, L. Vitagliano, L. Mazzarella, A. Zagari. Recent progress on collagen triplex, helix structure, stability and assembly // Protein and Peptide Letters, 2002, Vol. 9, 107−116.
  59. G.K. Binnig, C.F. Quate, Ch. Gerber. Atomic Force Microscope // Phys. Rev. Lett., 1986, Vol. 56, 930−933.
  60. G. Binnig, H. Rohrer. Scanning tunneling microscopy from birth to adolescence // Rev. Mod. Phys., 1987, Vol. 59, 615−625.
  61. Y.G. Kuznetsov, A.J. Malkin, R.W.Lucas, M. Plomp, A. McPherson. Imaging of viruses by atomic force microscopy // Journal of general Virology, 2001, Vol. 82, 2025−2034.
  62. N. Severin, J.P. Rabe, D.G. Kurth. Fully extended polyelectrolyte—amphiphile complexes adsorbed on graphite II J. Am. Chem. Soc., 2004, Vol. 126, 3696−3697.
  63. R. Huang, R. Su, W. Qi, J. Zhao, Z. He. Hierarchical, interface-induced self-assembly of diphenylalanine: formation of peptide nanofibers and micro vesicles // Nanotechnology, 2011, Vol. 22, 245 609.
  64. H.G. Hansma, I. Revenko, K. Kim, D.E. Laney. Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids // Nucleic Acids Research, 1996, Vol. 24, № 4, 713−720.
  65. H.G. Hansma, M. Bezanilla, F. Zenhausern, M. Adrian, R.L. Sinheimer. Atomic force microscopy of DNA in aqueous solutions // Nucleic Acids Research, 1993, Vol. 21, № 3, 505−512.
  66. M.N. Murray, H.G. Hansma, M. Bezanilla, T. Sano, D.F. Ogletree, W. Kolbe, C.L. Smith, C. R. Cantor, S. Speninger, P.L. Hansma, M. Salmeron. Atomic force microscopy of biochemically tagged DNA // Proc. Natl. Acad. Sci. USA, 1993, Vol. 90, 3811−3814.
  67. X.Z. Feng, R. Bash, P. Balagurumoorthy, D. Lohr, R. E. Harrington, S.M. Lindsay. Conformational transition in DNA on a cold surface // Nucleic Acids Research, 2000, Vol. 28, № 2, 593−596.
  68. S. Nishimura, P.J. Scales, H. Tateyama, K. Tsunematsu, T.W. Healy. Cationic modification of muscovite mica // Langmuir, 1995, Vol. 11, 291−295.
  69. H.G. Hansma, D.E. Laney. DNA binding to mica correlates with cationic radius: assay by atomic force microscopy // Biophysical Journal, 1996, Vol. 70, 1933−1939.
  70. D. Bosbach, W. Rammensee. Surface manipulation on layered organic crystals by scanning force microscopy // Ultramicroscopy, 1992, Vol. 42−44, 973−976.
  71. M. Bezanilla, B. Drake, E. Nudler, M. Kashlev, P. K. Hansma, H. G. Hansma. Motion and enzymatic degradation of DNA in the atomic force microscope // Biophysical Journal, 1994, Vol. 67, 2454−2459.
  72. B. Liberelle, X. Banquy, S. Giasson. Stability of silanols and grafted alkylsilane monolayers on plasma-activated mica surfaces // Langmuir, 2008, Vol. 24, 3280−3288.
  73. N.M.D. Brown, Z. Liu. An investigation using atomic force microscopy and X-ray photoelectron spectroscopy of the modification of the surface of mica with an argon RF-plasma discharge H Applied Surface Science, 1995, Vol. 90, 155−164.
  74. M. Trau, B.S. Murray, K. Grant, F. Grieser. An ellipsometric study of thin films on silica plates formed by alkylchlorosilylation reagents // Journal of Colloid and Interface Science, 1992, Vol. 148, 182−189.
  75. Y. Fang, J. H. Hoh. Surface-directed DNA condensation in the absence of soluble multivalent cations // Nucleic Acids Research, 1998, Vol. 26, № 26, 588−593.
  76. M. Tanigawa, T. Okado. Atomic force microscopy of supercoiled DNA structure on mica II Analytica Chimica Acta, 1998, Vol. 365, 19−25.
  77. Y.L. Lyubchenko, L.S. Shlyakhtenko. Visualization of supercoiled DNA with atomic force microscopy in situf/Proc. Natl. Acad. Sci. USA, 1997, Vol. 94, № 2, 496−501.
  78. Y.L. Lyubchenko, B.L. Jacobs, S.M. Lindsay. Atomic force microscopy of reovirus dsRNA: a routine technique for length measurements // Nucleic Acids Research, 1992, Vol. 20, № 15, 3983−3986.
  79. K. Umemura, M. Ishikawa, R. Kuroda. Controlled immobilization of DNA molecules using chemical modification of mica surfaces for atomic force microscopy: characterization in air // Analitical Biochemistry, 2001, Vol. 290, 232−237.
  80. J. Hu, M. Wang, H.-U. G. Weier, P. Frantz, W. Kolbe, D. F. Ogletree, M. Salmeron. Imaging of single extended DNA molecules on flat (aminopropyl)-triethoxysilane—mica by atomic force microscopy // Langmuir, 1996, Vol. 12 1697— 1700.
  81. F. Zhang, M.P. Srinivasan. Self-assembled molecular films of aminosilanes and their immobilization capacities // Langmuir, 2004, Vol. 20, 2309−2314.
  82. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides. Self-assembled monolayers of thiolates on metals as a form of nanotechnology // Chemical Reviews, 2005, Vol. 105, 1103−1169.
  83. T.P. Sullivan, W.T.S. Huck. Reactions on monolayers: organic synthesis in two dimensions // European Journal of Organic Chemistry, 2003, 17−29.
  84. A.R. Katritzky, S.K. Singh, N.K. Meher, J. Doskocz, K. Suzuki, R. Jiang, G.L. Sommen, D.A. Ciaramitaro, P.J. Steel. Triazole-oligomers by 1,3-dipolar cycloaddition // Arkivoc, 2006, 43−62.
  85. A.A. Гершкович, В. Ч. Кибирев. Химический синтез пептидов. Киев: Наукова Думка, 1992.
  86. P.A. Chugunov, A.A. Chinarev, A.B. Tuzikov, A.A. Formanovsky, V.V. Prokhorov, A.S. Gambaryan, N.V. Bovin. Monosialoside with multimer-like anti-influenza potency //Mendeleev Commun., 2009, Vol. 19, 62−63.
  87. K.L. Westra, A.W. Mitchell, D.J. Thomson. Tip artifact in atomic force microscopy imaging of thin film surface IIJ.Appl. Phys., 1993, Vol. 74, 3608−3610.
  88. M.O. Галлямов. Сканирующая зондовая микроскопия нуклеиновых кислот и тонких органичских пленок// кандидатская диссертация, Москва, 1999.
  89. К. Masuda, Y. Ito, М. Horiguchi, Н. Fujita. Studies on the solvent dependence of the carbamic acid formation from co-(l-naphthyl)alkylamines and carbon dioxide // Tetrahedron, 2005, Vol. 61, 213−229.
  90. E.M. Hampe, D.M. Rudkevich. Exploring reversible reactions between C02 and amines // Tetrahedron, 2003, Vol. 59, 9619−9625.
  91. S. Krimm, J. Bandekar. Vibrational spectroscopy and conformation of peptides, polypeptides and proteins // In: C.B.Anfinsen, J.T.Edsall and F.M.Richards (Eds) Adv. Protein Chem. Academic Press, 1986, Vol. 38, 181−364.
  92. O.A. Гуськова, Э. Шиллингер, П. Г. Халатур, П. Бёйерле, А. Р. Хохлов. Биоинспирированные гибридные системы на основе олиготиофена и пептидов (Ala-Gly)n: компьютерное моделирование адсорбционных слоев // Высокомол. соед. Сер. А, 2009, Т. 51, С. 636−652.
  93. M. Mammen, S-K Choi, G.M. Whitesides. Polyvalent interactionsin biological systems: Implications for design and use of multivalent ligands and inhibitors // Angew Chem Int Ed Engl, 1998, Vol. 37, 2754−94.
  94. M.N. Matrosovich. Towards the development of antimicrobial drugs acting by inhibition of pathogen attachment to host cells: A need for polyvalency // FEBS Lett., 1989, Vol. 252, 1−4.
  95. N.V. Bovin, A.B. Tuzikov, A.A. Chinarev, A.S. Gambaryan. Multimeric glycotherapeutics: new paradigm // Glycoconjugate J., 2004, Vol. 21. 471−478.
  96. A.S. Gambaryan, M.N. Matrosovich. A solid-phase enzyme-linked assay for influenza virus receptor-binding activity // J Virol Methods, 1992, Vol. 39, 111−23.
  97. J. Bella, J. Puiggali, J.A. Subirana. Glycine residues induce a helical structure in polyamides II Polymer, 1994, Vol. 35. 1291−1297.
  98. S. Dasgupta, W.B. Hammond, W.A. Goddard III. Crystal structures and properties of nylon polymers from theory /I J. Am. Chem. Soc., 1996, Vol. 118, 12 291−12 301.
Заполнить форму текущей работой