Финансовая математика, вар 10 (контрольная)
Через 5 лет предприятию будет выплачена сумма 5 000 000 руб. Определить ее современную стоимость при условии, что применяется сложная процентная ставка 55% годовых. Через 90 дней после подписания договора должник уплатил 5 000 000 руб. Кредит выдан под 55% годовых (проценты обыкновенные). Какова первоначальная сумма и дисконт? Сумма размером 5 000 000 руб. представлена на 5 лет. Проценты сложные… Читать ещё >
Содержание
- ЗАДАНИЕ
- В таблице приведены поквартальные данные о кредитах от коммерческого банка на жилищное строительство за 4 года (16 кварталов)
- t 1 2 3 4 5 6 7 8 9 10 11 12 13 14
- Y (t) 43 54 64 41 45 58 71 43 49 62 74 45 54 66
- Требуется
- 1. Построить адаптивную мультипликативную модель Хольта-Уинтерса с учетом сезонного фактора, применив параметры сглаживания α1 = 0,3; α2 = 0,6; α3 = 0,
- 2. Оценить точность построенной модели с использованием средней ошибки аппроксимации
- 3. Оценить адекватность построенной модели на основе исследования: случайности остаточной компоненты по критерию пиков
независимости уровней ряда остатков по d-критерию (в качестве критических использовать уровни d1 = 1,10 и d2 = 1,37) и по первому коэффициенту автокорреляции при критическом уровне значения r1 = 0,32;
нормальности распределения остаточной компоненты по R/S-критерию с критическими значениями от 3 до 4,21.
4) Построить точечный прогноз на 4 шага вперед, т. е. на 1 год.
5) Отобразить на графиках фактические, расчетные и прогнозные данные.
ЗАДАНИЕ 2
Даны цены (открытия, максимальная, минимальная и закрытия) за 10 дней. Интервал сглаживания принять равным 5 дням.
Дни Цены макс. мин. закр.
1 858 785 804
2 849 781 849
3 870 801 806
4 805 755 760
5 785 742 763
6 795 755 795
7 812 781 800
8 854 791 853
9 875 819 820
10 820 745 756
Рассчитать: экспоненциальную скользящую среднюю; момент; скорость изменения цен; индекс относительной силы; % R, % К, % D;
Расчеты проводить для всех дней, для которых эти расчеты можно выполнить на основании имеющихся данных.
ЗАДАНИЕ 3
3.1. Банк выдал ссуду, размером 5 000 000 руб. Дата выдачи ссуды 08.01.02, возврата 22.03.02. День выдачи и день возврата считать за 1 день. Проценты рассчитываются по простой процентной ставке 55% годовых. Найти:
3.1.1) точные проценты с точным числом дней ссуды;
3.1.2) обыкновенные проценты с точным числом дней ссуды;
3.1.3) обыкновенные проценты с приближенным числом дней ссуды.
3.2. Через 90 дней после подписания договора должник уплатил 5 000 000 руб. Кредит выдан под 55% годовых (проценты обыкновенные). Какова первоначальная сумма и дисконт?
3.3. Через 90 предприятие должно получить по векселю 5 000 000 руб. Банк приобрел этот вексель с дисконтом. Банк учел вексель по учетной ставке 55% годовых (год равен 360 дням). Определить полученную предприятием сумму и дисконт.
3.4. В кредитном договоре на сумму 5 000 000 руб. и сроком на 5 лет, зафиксирована ставка сложных процентов, равная 55% годовых. Определить наращенную сумму.
3.5. Сумма размером 5 000 000 руб. представлена на 5 лет. Проценты сложные, ставка 55% годовых. Проценты начисляются 4 раза в году. Вычислить наращенную сумму.
3.6. Вычислить эффективную ставку процентов, если банк начисляет проценты 4 раза в год, исходя из номинальной ставки 55% годовых.
3.7. Определить, какой должна быть номинальная ставка при начислении процентов 4 раза в году, чтобы обеспечить эффективную ставку 55% годовых.
3.8. Через 5 лет предприятию будет выплачена сумма 5 000 000 руб. Определить ее современную стоимость при условии, что применяется сложная процентная ставка 55% годовых.
3.9. Через 5 лет по векселю должна быть выплачена сумма 5 000 000 руб. Банк учел вексель по учетной ставке 55% годовых. Определить дисконт.
3.10. В течение 5 лет на расчетный счет в конце каждого года поступает по 5 000 000 руб., на которые 4 раза в году начисляются проценты по сложной годовой ставке 55%. Определить сумму на расчетном счете к концу указанного срока.