Помощь в учёбе, очень быстро...
Работаем вместе до победы

Исследование ненативных форм глобулярных белков методом ЯМР

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В рамках метода ЯМР высокого разрешения предложен новый методический подход- «внерезонансное возбуждение спиновой диффузии», позволяющий исследовать молекулярную ассоциацию и дающий возможность получить информацию о как коллективных, так и индивидульных свойствах ассоциатов и входящих в их состав белковых молекул и растворителя. В рамках ЯМР высокого разрешения предложен новый методический… Читать ещё >

Содержание

  • ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Тепловое равновесие в системе спинов
    • 1. 2. Спиновая диффузия в диамагнитных ионных кристаллах. И
    • 1. 3. 'Н-ЯМР- спектры нативных белков
    • 1. 4. Условия возникновение и распространения спиновой диффузии в белках
    • 1. 5. Динамические характеристики нативных белков
    • 1. 6. Равновесные промежуточные состояния белков
    • 1. 7. Связь плотности упаковки белков с экспериментальными параметрами
    • 1. 8. Спиновая диффузия и интегральные структурно-динамические характеристики глобулярных белков. Спектр спиновой диффузии
    • 1. 9. Параметр жесткости и компактность глобулярных белков
    • 1. 10. Применение метода спиновой диффузии к исследованию ненативных состояний белков
  • ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ
    • 2. 1. Список используемых сокращений и обозначений
    • 2. 2. Объекты исследования и материалы
    • 2. 3. 'Н-ЯМР — спектроскопия
      • 2. 3. 1. Спектры спиновой диффузии
      • 2. 3. 2. Метод внерезонансного возбуждения спиновой диффузии
    • 2. 3. Малоугловое диффузное рассеяние рентгеновских лучей в растворе
    • 2. 4. Спектроскопия кругового дихроизма
  • ГЛАВА 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
    • 3. 1. Исследование а-лактальбумина человека методом спиновой диффузии
    • 3. 2. Разворачивание расплавленной глобулы карбоангидразы В гу анидингидрохлоридом
    • 3. 3. Параметры спиновой диффузии, определяющие индивидуальные и коллективные свойства молекул
    • 3. 4. Разворачивание нативной карбоангидразы В растворами мочевины. Самоассоциация компактного ненативного состояния
    • 3. 5. Исследование ассоциатов промежуточного состояния карбоангидразы В при концентрации мочевины 4.2М

Исследование ненативных форм глобулярных белков методом ЯМР (реферат, курсовая, диплом, контрольная)

Актуальность темы

Несмотря на 40-летнюю историю, проблема самоорганизации белков остается одной из «горячих точек» молекулярной биологии. Важным и актуальным этапом данного направления является исследование частично денатурированных (ненативных) промежуточных состояний глобулярных белков. Характерной чертой большинства белков, находящихся в промежуточных ненативных состояниях, является их склонность к ассоциации или агрегации [1−6]. Белки в ненативном состоянии часто формируют тела включения (специфические ш vivo агрегаты), существенно осложняющие выделение многих рекомбинантных белков [7, 8]. Также известно, что ренатурация белков часто сопровождается ассоциацией частично свернутых интермедиатов [1−4, 9]. При определённых условиях самоассоциация может рассматриваться как дополнительный структуро-формирующий фактор, ведущий к возникновению новых «структурных уровней» частично свернутого белка [6, 10, 11]. В течение длительного времени к агрегации белка не относились серьезно, рассматривая ее как экспериментальный артефакт. Однако, в последние годы существенно возрос интерес к исследованиям, посвященным самоассоциации и агрегации белка. Это связано с тем, что широкий диапазон заболеваний человека, известных как заболевания, связанные с нарушением конформации белка или его сворачивания, проистекают из-за неспособности специфических пептидов или белков принимать нативную конформацию, необходимую для нормального функционирования белка [12−16]. Накопленные к настоящему времени данные свидетельствуют в пользу модели, в которой формирование фибрилл белков протекает через образование относительно развернутой амилоидогенной конформации, включая многочисленные нейродегенеративные нарушения и амилоидозы. Переход белка в «прионное» состояние, как правило, сопровождается существенным 4 увеличением доли-структуры в его составе. Возникающая межмолекулярная p-структура стабилизирует ассоциат, приводя в конечном счете к образованию высокоупорядоченных фибрилл (амилоидов). В тоже время множество белков, не имеющих отношения к амилоидной дистрофии, также образуют фибриллы при определенных условиях [17−19]. Способность белков формировать амилоиды зависит от их заряда и гидрофобности [20] и, по-видимому, является общим свойством полипептидных цепей, поскольку in vitro в условиях частичной денатурации многие пептиды и белки образуют подобные структуры [21, 22]. Эти белки используют в качестве моделей для изучения процессов, приводящих к нарушению сворачивания белков, олигомеризации и образованию фибрилл. Важное место в них отводится изучению роли воды, или, в общем случае, растворителя [23, 24]. Молекулярный механизм взаимодействия белков с растворителем до сих пор не до конца понятен и является предметом многих исследований [25−28] с использованием различных физических методов [29−31]. Поэтому изучение молекулярных механизмов ассоциации белков и роли растворителя в таких процессах является актуальной задачей для понимания причин образования амилоидов и амилоидоподобных структур. Однако только ограниченное число экспериментальных методов способно фиксировать влияние растворителя (воду и компоненты, образующие растворитель) на процессы агрегации или самоассоциации белков. Среди них выделяется метод ЯМР высокого разрешения, способный отслеживать взаимодействие молекул растворителя с молекулами белка в режиме реального времени и даже установить некоторые количественные характеристики при таком взаимодействии [32, 33].

В качестве объектов исследования были выбраны глобулярные белки, способные легко переходить в состояние расплавленной глобулы: карбоангидраза В коровы (Мг=29 кДа) [34−36] и а-лактальбумин человека (Мг=14.2 кДа) [37, 38]. Недавно нами было показано, что при определенных условиях карбоангидраза В способна формировать амилоидоподобные структуры [39]. Также известны условия, при которых а-лактальбумин человека формирует амилоидные фибриллы [40]. Характерно, что в большинстве описанных случаев, образованию амилоидов in vitro предшествует ассоциация частично денатурированных форм белка.

Цель и задачи работы. Основной целью настоящей работы является исследование динамики межмолекулярных процессов, происходящих с частично денатурированными глобулярными белками при взаимодействии с молекулами денатурантов и воды методом ЯМР.

Соответственно цели были поставлены следующие научно-методические задачи:

— методом 'Н-ЯМР провести исследование взаимодействия денатурантов (гуанидинхлорида, мочевины) с ненативными формами а-лактальбумина человека и карбоангидразы В коровы.

— используя комплекс физических методов Сн-ямр, круговой дихроизм, синхротронное малоугловое рентгеновское рассеяние) провести изучение динамики формирования ассоциатов ненативных форм белков, условий, приводящих к самоассоциации, роли растворителя в этом процессе.

— в ходе выполнения работы разработать новые методические подходы для изучения процесса самоассоциации белков и получения информации о коллективных и индивидульных свойствах, входящих в состав ассоциатов, белковых молекул и растворителя.

Научная новизна и практическая значимость. В данной работе впервые [33, 41,44−46]:

— показано различие в молекулярных механизмах взаимодействия мочевины и гуанидингидрохлорида с белковой молекулой.

— исследована степень и характер вовлечения молекул растворителя в состав ассоциатов в процессе разворачивания белка.

— показан динамический характер взаимодействия молекул белка и растворителя в белковом ассоциате и сделано предположение о причинах, препятствующих образованию протяженных белковых ассоциатов (агрегатов), подобным амилоидным фибриллам.

— в рамках ЯМР высокого разрешения предложен новый методический подход- «внерезонансное возбуждение спиновой диффузии», позволяющий исследовать молекулярную ассоциацию и дающий возможность получить информацию, как о коллективных, так и индивидульных свойствах ассоциатов и входящих в их состав белковых молекул и растворителя.

Рассмотренная в работе система карбоангидраза В коровы-растворитель может быть использована в качестве удобной модели в дальнейших исследованиях по выяснению молекулярных механизмов образования амилоидов, приводящих к прионным заболеваниям человека и животных, а как следствие, устранению причин их вызывающих. Таким образом, в перспективе, результаты работы найдут свое применение в биомедицине. Реализованный в работе новый методический подход «внерезонансного возбуждения спиновой диффузии» будет полезен исследователям, занимающихся изучением межмолекулярных процессов в растворе с использованием ЯМР.

Работа выполнена в группе «ЯМР-исследований биосистем» Института теоретической и экспериментальной биофизики РАН.

ВЫВОДЫ.

1. На примере а-лактальбумина, показано что компактность ненативной формы, как правило, определяется остаточной вторичной структурой.

2. Показан динамический характер взаимодействия молекул белка и растворителя в белковом ассоциате. Установлено, что взаимодействие мочевины и гуанидингидрохлорида с белковой молекулой происходит по разным механизмам, как и процесс денатурации.

3. Обнаружено, что размеры ассоциатов карбоангидразы В не зависят от концентрации белка и они остаются стабильными в течении длительного времени. Показано, что (3-структур, а является основным элементом регулярной вторичной структуры ненативной формы белка в составе ассоциатов, а именно: межмолекулярная Р-структура определяет структуру ассоциатов. Образованию протяженных белковых агрегатов, подобных амилоидным фибриллам, препятствует замыкание одного из центров роста межмолекулярной (3-структуры.

4. В рамках метода ЯМР высокого разрешения предложен новый методический подход- «внерезонансное возбуждение спиновой диффузии», позволяющий исследовать молекулярную ассоциацию и дающий возможность получить информацию о как коллективных, так и индивидульных свойствах ассоциатов и входящих в их состав белковых молекул и растворителя.

Благодарности.

Автор выражает глубокую благодарность и признательность своему научному руководителю д. ф.-м. н. Виктору Павловичу Кутышенко, к.ф.-м.н. Христофорову Владимиру Сергеевичу за постоянное внимание и помощь в течение всей работы над диссертацией.

Приношу свою глубокую благодарность сотрудникам Институт белка РАН: Котовой Н. В. за предоставление белков для исследований, к.ф.-м.н. Мельнику Б. С. за помощь в интерпретации спектров кругового дихроизма, к.ф.-м.н. Тимченко A.A. за помощь в получении и интерпретации данных малоуглового рентгеновского рассеяния.

Искренняя благодарность всему коллективу нашей лаборатории за помощь в выполнении экспериментальной работы и плодотворное обсуждение результатов.

Автор благодарен Российскому Фонду Фундаментальных Исследований за поддержку настоящей работы.

Показать весь текст

Список литературы

  1. Tanford С. Protein denaturation //Adv. Protein Chem. 1968. Vol. 23. P.121−282.
  2. London, J., C. Skrzynia, and M. E. Goldberg. 1974. Renaturation of Escherichia coli tryptophanase after exposure to 8 M urea. Evidence for the existence of nucleation centers. Eur. J. Biochem. 47:409−415.
  3. , A. L. 1995a. Molten globules. Methods Mol. Biol. 40:343−360.
  4. , A. L. 1995b. Compact intermediate states in protein folding. Annu. Rev. Biophys. Biomol. Struct. 24:495−522.
  5. , О. B. 1995. Molten globule and protein folding. Adv. Protein Chem. 47:83−229.
  6. , V. N. 1998. Equilibrium unfolding of partially folded staphylococcal nuclease A2- and A3-forms is accompanied by the formation of anintermediate state. Biochemistry (Moscow). 63:470−475.
  7. , F. A. 1986. The purification of eucariotic polypeptides synthesized in Escherichia coli // Biochem. J. 240:1−12.
  8. , С. H. 1989. Solubility as a function of protein structure and solvent components // Biotechnology. 7:1141−1149.
  9. Uversky, V. N., and A. L. Fink. 1998a. Structural effect of association on protein molecule in partially folded intermediates. Biochemistry (Moscow). 63:456−462.
  10. Uversky, V. N., and A. L. Fink. 1998b. Structural properties of staphylococcal nuclease in oligomeric A-forms. Biochemistry (Moscow). 63:463469.
  11. Taylor, J.P., Hardy, J. & Fischbeck, K.H. Toxic proteins in neurodegenerative disease. Science 296, 1991−1995 (2002).
  12. , R.L. & Ellis, C.E. Alzheimer’s disease and Parkinson’s disease. N. Engl. J. Med. 348, 1356−1364 (2003).
  13. Ross, C.A. When more is less: pathogenesis of glutamine repeat neurodegenerative diseases. Neuron 15, 493−496 (1995).
  14. Protein Misfolding, Aggregation and Conformational Diseases: Part A: Protein Aggregation and Conformational Diseases. Edit Uversky, V. N., and A. L. Fink.// Springer, 2006
  15. Protein Misfolding, Aggregation, and Conformational Diseases Part B: Molecular Mechanisms of Conformational Diseases. Edit Uversky, V. N., and A. L. Fink.// Springer Science+Business Media, LLC, 2007
  16. Dobson, C. M., Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol., 2004, 15, 3−16.
  17. , D.J. 2003 Folding proteins in fatal ways. Nature, 426, 900−904.
  18. Michelitsch, M.D., and Weissman, J.S. (2000) A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. USA, 97, 11 910−11 915.
  19. Chiti, F., Stefani, M., Taddei, N., Ramponi, G., and Dobson, C.M. (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature, 424, 805−808.
  20. , C.M. (1999) Protein misfolding, evolution and disease. Trends Biochem. Sci., 24, 329−332.
  21. , C.M. 2001 The structural basis of protein folding and its links with human disease. Philos. Trans. R. Soc. Lond. B Biol. Sci., 356, 133−145.
  22. C.A., Dotsch V. 1996. The role of protein-solvent interactions in protein unfolding. Curr Opin Biotechnol. 7(4), 428−32.
  23. Costenaro L, Ebel C. 2002. Thermodynamic relationships between protein-solvent and protein-protein interactions. Acta Crystallogr D Biol Crystallogr. 58 (Pt 10 Pt 1), 1554−1559.
  24. Kita Y., Arakawa Т., Lin T.Y., Timasheff S.N. 1994. Contribution of the surface free energy perturbation to protein-solvent interactions. Biochemistry. 33(50), 1 517 815 189.
  25. R. 2003. Competitive model on denaturant- mediated protein unfolding. Biophys. J. 84, 770 774.
  26. Denisov V.P., Jonsson B.-H., Holle B. 1999. Hydration of denatured and molten globule proteins. Nat. Struct. Biol. V. 6. P.253 260.
  27. M., Tobias D.J. 2002. Single- particle collective dynamics of protein of protein hydration water: A molecular dynamics study. Phys. Rev. Letters. V.89. P. 275 501−1 -275 501−4.
  28. M., Nilsson H., Roos H., Halle B. 2003. Protein self-association in solution: the bovine (3-lactoglobulin dimer and octamer. Protein Sci. 12(11). 24 042 411.
  29. M., Jonsson B. 2003. A mesoscopic model for protein-protein interactions in solution. Biophys J. 85(5):2940−2947
  30. Brnjas-Kraljevic J., Pifat G., Maricic S. 1979. Quaternary structure, hydration, and self-association of hemoglobin. A proton magnetic relaxation study. Physiol Chem Phys. 11(4), 371−376.
  31. V.P., Cortijo M. 2000. Water-protein interaction in the molten-globule state of carbonic anhydrase b: an NMR spin-diffusion study. Prot. Science. 9, 15 401 547.
  32. В.П., Прохоров Д. А., Христофоров B.C. // 2005. Исследование взаимодействия карбоангидазы В с водой и мочевиной. 1. Параметры спиновой диффузии, определяющие индивидуальные и коллективные свойства молекул. Биофизика. Т. 50. № 4. С. 641−647
  33. Uversky, V. N., Semisotnov, G. V., Pain, R. H. and Ptitsyn, О. B. (1992) 'All-or-none' mechanism of the molten globule unfolding. FEBS Lett. 314, 89−92.
  34. Uversky, V. N. and Ptitsyn, О. B. (1996) Further evidence on the equilibrium «pre-molten globule state»: four-state guanidinium chloride-induced unfolding of carbonic anhydrase В at low temperature. J. Mol. Biol. 255, 215−228.
  35. Kuwajima К (1996) The molten globule state of alpha-lactalbumin. FASEB J 10, 102−109.
  36. Arai M & Kuwajima К (2000) Role of the molten globule state in protein folding. Adv Protein Chem 53, 209−282
  37. Rana A, Gupta TP, Bansal S, Kundu B. Formation of amyloid fibrils by bovine carbonic anhydrase. // Biochim Biophys Acta. 2008 Jun-1784(6):930−5. Epub 2008 Mar 18.
  38. Mark R.H. Krebs, Ludmilla A. Morozova-Roche, Katie Daniel, Carol V. Robinson and Christopher M. Dobson Observation of sequence specificity in the seeding of protein amyloid fibrils.// Protein Sci. 2004 13: 1933−1938
  39. Д.А., Кутышенко В. П., Христофоров B.C. // 2005. Исследование взаимодействия карбоангидазы В с водой и мочевиной. Спиновая диффузия при разворачивании нативного белка мочевиной. Молекуляр. биология. Т. 39. № 3. С. 497−503.
  40. В.П., Прохоров Д. А., Христофоров B.C. // 2006. Исследование взаимодействия карбоангидазы В с водой и мочевиной. 2. Спиновая диффузия ассоциатов промежуточного состояния белка при 4.2 М мочевины. Биофизика. Т. 51. № 1. С. 24−31.
  41. J.-Ch. Horng, S. J. Demarest, and D. P. Raleigh. pH-dependent stability of the human a-lactalbumin molten globule state: contrasting roles of the 6−120 disulfide and the P-subdomain at low and neutral pH// Protreins 2003. v. 52, p. 193−202.
  42. Prokhorov D, Timchenko A, Uversky V, Khristoforov V, Kihara H, Kimura K, Kutyshenko V. // 2008. Dynamics of oligomer formation by denatured carbonic anhydrase II. ВВА. V. 1784. P. 834−842.
  43. В. П. Прохоров Д.А. // 2003 Разворачивание расплавленной глобулы карбоангидразы гуанидингидрохлоридом. Молекуляр. биология. Т. 37. С. 1055−1060.
  44. В.П., Прохоров Д. А., Христофоров B.C. // 2004. Спиновая диффузия в глобулярных белках: а-лактальбумин. Биофизика. Т. 49. № 4. С.601−607.
  45. А. Абрагам. Ядерный магнетизм. ИЛ, М., 1963.
  46. N., Purcell Е.М., Pound R.V. (1948) Relaxation Effects in Nuclear Magnetic Resonance Absorption // Phys. Rev., V 73, № 7 p. 679−712.
  47. А. Керрингтон, Э. Мак-Лечлан. Магнитный резонанс и его применение в химии. М., Мир, 1970.
  48. Bloembergen N. On the interaction of nuclear spins in a crystalline lattice. Physica XV, no 3−4, Mei 1949.
  49. Wiithrich, K. and Wagner, G. (1978) Internal motion in globular proteins. Trends Biochem. Sci. 3, 227−230.
  50. Dwek R.A., Cambell I.D., Richards R.E., Williams R.J.P. Eds. NMR in biology. Acad, Press, London, 1977.
  51. McDonald C.C., Phillips W.D. Proton magnetic resonance spectra of proteins in random-coil configurations//J.Am.Chem.Soc.-1969-v.91 .-p. 1513−1521.
  52. Sternlicht, H., Wilson, D. (1967) Magnetic resonance studies of macromolecules. I. Aromatic-methyl interactions and helical structure effects in lysozyme // Biochemistry, v 6, p 2881−2892.
  53. Wishart, D.S., Sykes, B.D. & Richards, F.M. (1992) The Chemical Shift Index: A Fast and Simple Method for the Assignment of Protein Secondary Structure through NMR Spectroscopy // Biochemistry V. 31P. 1647−1651.
  54. D.S. Wishart and B.D. Sykes. (1999) Chemical Shifts as a Tool for Structure determination// Methods in enzymology V. 239. Acad. Press. N.Y. 1994. p 363−416.
  55. Gabriel Cornilescu, Frank Delaglio, and Ad Bax: Protein backbone angle restraints from searching a database for chemical shift and sequence homology // J. Biomol. NMR v. 13, p 289−302.
  56. Berjanskii, M.V., Neal, S. and Wishart, D.S. (2006) PREDITOR: a web server for predicting protein torsion angle restraints // Nucleic Acids Res., 34 2006, Vol. 34 Web Server issue W63-W69 (http://wishart.biology.ualberta.ca/preditor/).
  57. Berjanskii, M. and Wishart, D.S. (2006) NMR: prediction of protein flexibility // Nat. Protocols, 1, 683−688.
  58. Berjanskii, M. and Wishart, D.S. The RCI server: rapid and accurate calculationof protein flexibility using chemical shifts // Nucleic Acids Research, 2007, Vol. 35, Web Server issue W531-W537 (http://wishart.biology.ualberta.ca/rci/).
  59. Wuthrich K. NMR of Proteins and Nucleic Acids. N.Y.: J. Wiley & Sons, 1986.
  60. Kutyshenko V.P., Khechinashvili N.N. Proton NMR studies of the denatured globular proteins. The state of thermally denatured ribonuclease A and lysoslme.// Stud.biophys. 1989. v. 131. p. 145−154.
  61. Kutyshenko V.P., Khechiriashvili N.N. Proton NMR studies of the globular proteins. II. The state of the ribonuclease A and lisozime in 6M guanidlne hydrochloride solution//Stud.Biophys. 1989-v.l31.-p.l55−160.
  62. Breslow E., Beychok S., Hardman K.D." Gund F.R.N. Relative comformations of sperm whale metmyoglobin and apomyoglobln in solution // J.Blol.Chem. 1964. v.240. p. 304−309.
  63. Breslow E., Beychok S. Changes in side chain reactivity accompanying the binding of heme to sperm whole apomyoglobln.// J.Biol. Chem.-1964-v.239.-p.486−496.
  64. Wuthrich K. NMR in biological research: peptides and proteins.// American elsevier, New-York, 1976.
  65. Solomon J. Relaxation processes in a si stem of two spins//Phys. Rev.-1955-v. 99. -p. 559−565.
  66. Kalk A., Berendsen H.J.G. Proton magnetic relaxation and spin diffusion in proteins // J.Magn.Res.-1976-V.24.-p.343−366.
  67. В. П., Христофоров В. С, Завьялов В. П. 'Н-ЯМР-исследование пептида, соответствующего АКТГ-подобной последовательности вариабельной части тяжёлой цепи иммуноглобулина G1 Ей человека // Биофизика-1986-т.31 .-с.958−960.
  68. Kivaeva L.S., Kutyshenko V.P. Investigation of oligopeptide dlnamics by high resolution 1H NMR//Preprint-1991 -Pushchino.
  69. Nogle J.H., Schirmer R.E. The nuclear Overhauser effect // N.-Y.: Academic Press 1971-p.279.
  70. Wagner G., Wuthrich K. Truncated driven nuclear Overhauser effect (TOE). A new technique for studies of selective 'Н-'Н Overhauser effect in the presence of spin diffusion//J.Magn.Res.-1979-v. 33. -p. 675−680.
  71. А. В., Птицын О. Б.// Физика белка: Курс лекций. 3-е изд., М.: 2005.
  72. AKasaka К. Spin diffusion and the dinamic structure of protein. Streptomycea subtilisin inhibitor//J. Magn. Res.-1983-v.51.-p.l4−25.
  73. Akasaka K. Intermolecular spin diffusion as method for studies macromolecule-llgand interactions // J. Magn. Res. 1979. v.36. p.135−140.
  74. Akasaka K. Longitudinal relaxation of protons under cross saturation and spin diffusion // J. Magn. Res.-1981-v.45.-p.337−343.
  75. G. Lipari, A. Szabo. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity // J.Am.Chem.Soc. 1982. — Vol. 104. — P. 4546−4559.
  76. G. Lipari, A. Szabo. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results // J. Am. Chem.Soc. 1982. Vol. 104. P. 4559−4570.
  77. Д.М. Изучение внутримолекулярной динамики белков и пептидов методами гетероядерной 'H-15N релаксации // Канд. диссертация, 1999, Долгопрудный.
  78. Kuwajima К., Nitta К., Yoneyama М., Sugai S. Three-state denaturation of alpha-lactalbumin by guanidine hydrochloride // J. Mol. Biol. 1976. Vol. 106. P.359−373
  79. Nozaka M., Kuwajima K., Nitta K., Sugai S. Detection and characterization of the intermediate on the folding pathway of human alpha-lactalbumin // Biochemistry. 1978. Vol. 17. P.3753−3758.
  80. Wong K.-P., Tanford C.J. Denaturation of bovine carbonic anhydrase В by guanidine hydrochloride. A process involving separable sequential conformational transitions // J. Biol. Chem. 1973. Vol. 248. P.8518−8523.
  81. Wong K.-P., Hamlin L.M. Acid denaturation of bovine carbonic anhydrase В // Biochemistry. 1974. Vol.13. P.2678−2683.
  82. Holladay L.A., Hammonds R.G., Jr., Puett D. Growth hormone conformation and conformational equilibria//Biochemistry. 1974. Vol. 13. P. 1653−1661.
  83. Robson В., Pain R.H. The mechanism of folding of globular proteins. Suitability of a penicillinase from Staphylococcus Aureus as a model for refolding studies // Biochem. J. 1976a. Vol. 155. P.325−330.
  84. Bychkova V.E., Ptitsyn O.B. The molten globule in vitro and in vivo. // Chemtracts: Biochem. Mol. Biol. 1993. Vol. 4. P. 133−163.
  85. Bychkova V.E., Ptitsyn O.B. The state of unfolded globules of protein molecules is more quickly becoming a rule, rather than an exception. // Biofizika. 1993. Vol. 38. P.58−66.
  86. Damaschun G., Gernat C, Damaschun H., Bychkova V.E., Ptitsyn O.B. Comparison of intramolecular packing of a protein in native and «molten globule» states // Int. J. Biol. Macromol. 1986. Vol. 8. P.226−230.
  87. Dolgikh D.A., Gilmanshin R.I., Brazhnikov E.V., Bychkova V.E., Semisotnov G.V., Venyaminov S.Yu., Ptitsyn O.B. Alpha-Lactalbumin: compact state with fluctuating tertiary structure? // FEBS Lett. 1981. Vol. 136. P.311−315.
  88. Gast K., Zirwer D., Welfle H., Bychkova V.E., Ptitsyn O.B. Quasielastic light scattering from human a-lactalbumin: comparison of molecular dimensions in native and «molten globule» states //Int. J. Biol. Macromol. 1986. Vol. 8. P.231−236.
  89. Kataoka M., Hagihara Y., Mihara K., Goto Y. Molten globule of cytochrome c studied by small angle X-ray scattering // J. Mol. Biol. 1993. Vol. 229. P.591−596.
  90. Pfeil W., Bychkova V.E., Ptitsyn O.B. Physical nature of the phase transition in globular proteins. Calorimetric study of human alpha-lactalbumin // FEBS Lett. 1986. Vol. 198. P.287−291.
  91. Yutani K., Ogasahara K., Kuwajima K. Absence of the thermal transition in apo-alpha-lactalbumin in the molten globule state. A study by differential scanning microcalorimetry // J. Mol. Biol. 1992. Vol. 228. P.347−350.
  92. Acharya K.R., Ren J.S., Stuart D.I., Phillips D.C., Fenna R.E. Crystal structure of human alpha-lactalbumin at 1.7 A resolution // J. Mol. Biol. 1991. Vol. 221. P.571−581.
  93. Hua Q.-X., Kochoyan M., Weiss M.A. Structure and dynamics of des-pentapeptide-insulin in solution: the molten-globule hypothesis // Proc. Natl. Acad. Sci. U.S.A. 1992. Vol. 89. P.2379−2383.
  94. Hua Q.-X., Ladbury J.E., Weiss M.A. Dynamics of a monomeric insulin analogue: testing the molten-globule hypothesis // Biochemistry. 1993. Vol. 32. P. 1433−1442.
  95. Peng Z., Kim P. S. A protein dissection study of a molten globule // Biochemistry. 1994. Vol. 33.P.2136−2141.
  96. Baum J., Dobson CM., Evans P.A., Hanly C Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig alpha-lactalbumin//Biochemistry. 1989. Vol. 28. P.7−13.
  97. Chyan C.-L., Wormald C, Dobson C.M., Evans P.A., Baum J. Structure and stability of the molten globule state of guinea-pig alpha-lactalbumin: a hydrogen exchange study //Biochemistry. 1993. Vol. 32. P.5681−5691.
  98. Dobson C.M., Hanley C, Radford S.E., Baum J.A., Evans P.A. // Conformations and Forces in Protein Folding / Eds. B.T. Nail., K.A. Dill. Washington D.C.: Am. Assoc. Adv. Sci. 1991. P. 175−181.
  99. Hughson F.M., Wright P.E., Baldwin R.L. Structural characterization of a partly folded apomyoglobin intermediate // Science. 1990. Vol. 249. P. 1544−1548.
  100. Jeng M.F., Englander S.W., Elove G.A., Wand A.J., Roder H. Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR // Biochemistry. 1990. Vol. 29. P. 10 433−10 437.
  101. Ohgushi M, Wada A. «Molten-globule state»: a compact form of globular proteins with mobile side-chains // FEBS Lett. 1983. Vol. 164. P.21−24.
  102. Chaffotte A.F., Guijarro J.I., Guillou Y., Delepierre M., Goldberg M.E. The «pre-molten globule,» a new intermediate in protein folding. // Journal of Prot. Chem. 1997. Vol. 16. P.433−439.
  103. V.N., Ptitsyn O.B. «Partly folded» state, a new equilibrium state of protein molecules: four-state guanidinium chloride-induced unfolding of beta-lactamase at low temperature. //Biochemistry. 1994. Vol. 33. P.2782−2791.
  104. Potekhin S., Pfeil W. Microcalorimetric studies of conformational transitions of ferricytochrome с in acidic solution. // Biophys. Chem. 1989. Vol. 34. P. 55−62.
  105. Barrick D., Baldwin R.L. Three-state analysis of sperm whale apomyoglobin folding. //Biochemistry. 1993. Vol. 32. P.3790−3796.
  106. Jennings P.A., Wright P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. // Science. 1993. Vol. 262. P.892−896.
  107. H.B., Семисотнов Г. В. Сворачивание глобулярных белков in vitro. // Успехи биологической химии. 1998. Т. 38. С.199−223.
  108. Privalov P.L. Stability of proteins. Small globular proteins // Adv. Protein Chem. 1979. Vol. 33.P.167−241.
  109. Privalov P.L. Stability of proteins. Proteins which do not present a single cooperative system. // Adv. Protein Chem. 1982. Vol. 35. P. 1−104.
  110. Privalov P.L. Physical basis of the stability of the folded conformations of proteins // Protein Folding // Ed. Т.Е. Creighton. New York: Freeman. 1992. P.83−126.
  111. H.A., Семисотнов Г. В., Кутышенко В. П., Уверский В. Н., Болотина И. А., Бычкова В. Е., Птицын О. Б. Стадийность равновесного разворачивания карбоангидразы В сильными денатурантами // Молекулярная биология. 1989. Т. 23. С.683−692.
  112. Г. В., Кутышенко В. П., Птицын О. Б. Внутримолекулярная подвижность белка в состоянии «расплавленной глобулы». Исследование карбоангидразы В методом! Н-ЯМР // Молекулярная биология. 1989. Т. 23. С.808−815.
  113. О.В., Semisotnov G.V. // Conformations and Forces in Protein Folding / Eds. B.T. Nail, K.A. Dill. Washington D.C.: Am. Assoc. Adv. Sci. 1991. P. 155−168.
  114. Ptitsyn O.B. The molten globule state // Protein Folding / Ed. Т.Е. Creighton. New York: Freeman. 1992. P.243−300.
  115. Semisotnov G.V., Uversky V.N., Sokolovsky I.V., Gutin A.M., Razgulyaev O.I., Rodionova N.A. Two slow stages in refolding of bovine carbonic anhydrase В are due to proline isomerization// J. Mol. Biol. 1990. Vol. 213. P.561−568.
  116. Privalov P.L., Tiktopulo E.I., Venyaminov S.Yu., Griko Yu.V., Makhatadze G.I., Khechinashvili N.N. Heat capacity and conformation of proteins in the denatured state. // J. Mol. Biol. 1989. Vol. 205. P.737−750.
  117. Semisotnov G.V., Rodionova N.A., Razgulyaev O.I., Uversky V.N., Gripas A.F., Gilmanshin R.I. Study of the molten globule intermediate state in protein folding by a hydrophobic fluorescent probe. // Biopolymers. 1991. Vol. 31. P. 119−128.
  118. Richards F.M. The interpretation of protein structures: total volume, group volume distributions and packing density. // J. Mol. Biol. 1974. Vol. 82. P. 1−14.
  119. Finney J.L. Volume occupation, environment and accessibility in proteins. The problem ofthe protein surface // J. Mol. Biol. 1975. Vol. 96. P.721−732.
  120. Benz F.W., Roberts G.G.K. Nuclear magnetic resonance studies of the unfolding of pancreatic ribonuclease. I. Thermal and acid unfolding // J. Mol. Biol. 1975. V.91. p.345−365.
  121. В.П. Исследование апоцитохрома С из сердца лошади методом-ЯМР высокого разрешения // Биофизика. 1990. т.35.-с.407−409.
  122. В. П. Спиновая диффузия как метод исследования динамики глобулярных белков // Доктор, диссертация, 1993, Пущино.
  123. Kutyshenko V.P. Molecular interactions between protein and water by highresolution NMR spectroscopy // Molecular Biology (Moscow). 2001, v. 35. p. 90−99.
  124. Kutyshenko V.P. Study of sperm-whale apomyoglobln by high resolution 1H-NMR method // Stud.bioph.-1991-v.l40.-p.37−46.
  125. В.П., Потехин C.A. Смалла K.-X. Изучение денатурации N-концевого фрагмента а-трогомиозина методом ЯМР спектроскопии // Биофизика. 1991.Т.36.-С.762−768.
  126. Kutyshenko V.P. Spin diffusion as a method to study protein dinamics. Thermal denaturation of rlbonuclease A // Stud.biophys.-1990-v.l39.-p.37−42.
  127. Vincent C, Bouic P., Revilard J.P. Characterization of rat оц microglobulin // Bioch.Bloph.Res.Coram.-l 983-v. 116.-p. 180−188.
  128. В.П., Вучелич Д. Исследование ai -микроглобулина методом Н-ЯМР высокого разрешения // Тез.докл. симпозиума «Физико-химические свойства биополимеров в растворе и клетках.» Пущино-1985-с.70.
  129. М.В. Биофизика.- «Наука"-1981-е. 109.
  130. Adler A.J., Greenfield N.J., and Fasman G.D. Circular dichroism and optical rotatory dispersion of proteins and polypeptides // Methods Enzymol. 1973. 27D. P. 675−735.
  131. Griko Yu.V., Privalov P.L., Venyaminov S.Yu., Kutyshenko V.P. Thermodinamic study of the apomyoglobln structure // J.Mol.Biol. 1988. v.202. P.127−135.
  132. Ю.В., Привалов П. Л., Венъяминов С. Ю. Кутышенко В.П. Термодинамическое исследование структуры апомиоглобина // Биофизика. 1988-Т.ЗЗ.-С.18−26.
  133. Ю.В., Веньяминов С. Ю., Привалов П. Л. Сравнительное термодинамическое исследование тепловой и холодовой денатурации лактоглобулина//Мол. Биология. 1992. т.26.-выл.2.-с.285−292.
  134. S.H., Bryant R.G., Halenga K., Jacob G.S. 1978. Magnetic cross-relaxation among protons in protein solutions. Biochemistry. 17, 4348−4358.
  135. J., Bryant R.G. 1990. Nuclear magnetic cross-relaxation spectroscopy. J. Magn. Res. V. 90. P. 1−8.
  136. G.H., Schleich T., Rydzevski J.M. 1991. Incorporation of magnetization transfer into the formalism for rotating-frame spin-lattice proton NMR relaxation in the presence of an off-Resonance-Irradiation field. J. Magn. Res. V. 95. P. 538−566.
  137. G.H., Schleich T. 1991. Incorporation of saturation transfer into the formalism for rotating-frame spin-lattice proton NMR relaxation in the presence of an off-Resonance-Irradiation field. J. Magn. Res. P. 95. P. 457−476.
  138. K., Brooks D., Yang H., Schleich T. 1994. Relaxation- matrix formalism for rotating-frame spin-lattice proton relaxation and magnetization transfer in the presence of an off-resonance irradiation field. J. Magn.Res. B, V. 104. P. 11−25.
  139. Armstrong J.M., Hopper K.E., McKenzie H.A., Murphy W.H. On the column chromatography of bovine whey proteins // Biochim Biophys Acta. 1970. V.214. P. 419−426.
  140. Phillips N.I., Jenness R. Isolation and properties of human alpha-lactalbumin //Biochem. Biophys. Acta. l971.V.229. P.407 -410.
  141. Armstrong J.McD., Myers D.V., Verpoorte J.A., Edsall J.T. 1966. Purification and properties of human erythrocyte carbonic anhydrases // J. Biol. Chem. V. 241. P 5137−5149.
  142. John B. C. Findlay, Keith Brew 1972. The Complete Amino-Acid Sequence of Human a-Lactalbumin // Eur. J. Biochem. V. 27. P. 65−86 .
  143. Wong KP, Tanford C. 1973. Denaturation of bovine carbonic anhydrase B by guanidine hydrochloride // J. Biol. Chem. V. 248. P. 8518−8523.
  144. Pace C.N. Determination and analysis of urea and ganidine hydrochloride denaturation curves. Meth. Enzimol.1986. v. 131. pp 266−280.
  145. Kawahara K, Tanford C. 1966. Viscosity and Density of Aqueous Solutions of Urea and Guanidine Hydrochloride // J. Biol. Chem. v.241. pp 3228−3232.
  146. P. (1927) Uber die Zerstreuung von Rontgenstrahlen in amorphen Korpern. Physik. Z. 28, 135−141.
  147. , A. 1939. Diffraction of x-rays of very small, angles-application. To the study of ultramicroscopic phenomena. Ann. Phys. 12:161−237
  148. Guinier A. and G. Fournet, Small-Angle Scattering of X-rays, Wiley, New York, 1955, p. 68-.
  149. Feigin, L.A., Svergun, P.I. 1987. Structure Analysis by Small Angle X-ray and neutron scattering, (eds. Taylor JW.) pp. 94−99. Plenum Press, NY.
  150. Svergun D.I., Stuhrmann H.B. New developments in direct shape determination from small-angle scattering 1. Theory and model calculations. Acta Crystallogr. 1991, A47:736−744.
  151. D.I., 1991. Mathematical methods in small-angle scattering data analysis. J. Appl. Cryst. 24: 485−492.
  152. Svergun D.I., Volkov V.V., Kozin M.B., Stuhrmann H.B., Barberato C., Koch MHJ: Shape determination from solution scattering of biopolymers.
  153. J. Appl. Crystallogr. 1997, 30:798−802.
  154. Svergun, D. I., Petoukhov, M. V., Koch, M. H. J. (2001) Determination of Domain Structure of Proteins from X-Ray Solution Scattering. Biophys J., Vol. 80, p. 2946−2953
  155. Svergun D.I., Volkov V.V., Kozin M.B., Stuhrmanh H.B.: New developments in direct shape determination from small-angle scattering 2. Uniqueness. Acta Crystallogr. 1996, A52:419−426.
  156. Pavlov, M.Yu., Fedorov, B.A. 1983. Improved technique for calculating X-ray scattering intensity of biopolymers in solution: evaluation of the form, volume, and surface of a particle. Biopolymers. V. 22. P. 1507−1522.
  157. , S.J., Ashton A.W., Boehm M.K., Chamberlain D. 1998. Molecular structures from low angle X-ray and neutron scattering studies. Int. J. Biol. Macromol. V. 22. P. 1−16.
  158. Pavlov, M.Yu., Sinev, M.A., Timchenko, A.A., Ptitsyn, O.B. 1986. A study of apo- and holo-forms of horse liver alcohol dehydrogenase in solution by diffuse x-ray scattering. Biopolymers V. 8. P. 1385−97.
  159. A.A., Ptitsyn O.B., Dolgikh D.A., Fedorov B.A. 1978. The structure of ribonuclease in solution does not differ from its crystalline structure. FEBS Lett. V. 88. P. 105−108.
  160. Sinev, M.A., Razgulyaev, O.I., Vas, M., Timchenko, A.A., Ptitsyn, O.B. 1989. Correlation between enzyme activitv and hinge-bendincr domain displacement in 3-phosphoglycerate kinase. Eur. J. Biochem. V. 180. P. 61−66.
  161. Y. Amemiya, K. Wakabayashi, T. Hamanaka, T. Wakabayashi, T. Matsushima, H. Hashizume (1983) Design of a small-angle X-ray diffractometer using synchrotron radiation at the photon factory //Nucl. Instrum. Methods V. 208. P. 471−477.
  162. A.A. Timchenko, B.S. Melnik, H. Kihara, K. Kimura, G.V. Semisotnov (2000). GroES cochaperonin small-angle X-ray scattering study shows ring orifice increase in solution, FEBS Lett. V. 471. P. 211−214.
  163. Д. // Физическая биохимия. М.: Мир. 1980. с. 383−405.
  164. Provencher S.W., and Glockner J. Estimation of globular protein secondary structure from circular dichroism. // Biochemistry. 1981. Vol. 20. P.33−37.
  165. Yang J.T., Wu C.-S.C, and Martinez H.M. Calculation of protein conformation from circular dichroism. //Methods Enzymol. 1986. Vol. 130. P.208−269.
  166. Brahms S., and Brahms J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. // J. Mol. Biol. 1980. Vol. 138. P.149−178.
  167. И.А. 1987. Определение вторичной структуры белков из спектров кругового дихроизма. V. Вторичная структура белков в состоянии «расплавленной глобулы» //Молекулярная Биология. Т. 21. С. 1625−1635.
  168. Manning М.С., and Woody R.W. (1989) Theoretical study of the contribution of aromatic side chains to the circular dichroism of basic bovine pancreatic trypsin inhibitor// Biochemistry. Vol. 28. P.8609−8613.
  169. Jagannadham M.V., and Balasubramanian D. (1985) The molten globular intermediate form in the folding pathway of human carbonic anhydrase В // FEB S Lett. Vol. 188. P.326−330.
  170. B.H., Семисотнов Г. В., Птицын О. Б. (1993) Разворачивание расплавленной глобулы сильными денатурантами протекает по правилу «все-или-ничего // Биофизика. Т. 38. С.37−46.
  171. Bychkova V.E., Berni R., Rossi J.-L., Kutyshenko V.P., and Ptitsyn O.B. Retinol-binding protein is in the molten globule state at low pH // Biochemistry. 1992. Vol. 31.P.7566−7571.
  172. О .Б., Долгих Д. А., Гильманшин Р. И., Шахнович Е. И., Финкелыитейн А. В. Флуктуирующее состояние белковой глобулы // Молекулярная биология. 1983. Т. 17. С.569−575.
  173. N., Brew К., Acharya K.R. 1998 Structural evidence for the presence of a secondary calcium binding site in human lactalbumin. Biochemistry, V. 37 p. 4767.
  174. Saito R., Sato Т., Ikai A., Tanaka N. Structure of bovine carbonic anhydrase II at 1.95 A resolution. Acta Cryst. 2004. V. 60. P. 792−795.
  175. Сликтер 4. 1981. Основы теории магнитного резонанса. М.: Мир.
  176. Van-Quynh A., Willson S., Bryant R.G. 2003. Protein reorientation and bound molecules measured by magnetic spin-lattice relaxation. Biophys. J. 84, 558−563.
  177. Kjellsson A., Sethson I., Jonsson B.-H. 2003. Hydrogen exchange in a large 29kD characterization of molten globule aggregation by NMR. Biochemistry. V. 42. P. 363−374.
  178. Nelson R., Sawaya M.R., Balbirnie M., Madsen A.O., Riekel C., Grothe R., Eisenberg D. Structure of the cross-beta spine of amyloid-like fibrils. Nature, 2005, v.435, p. 747−749.
Заполнить форму текущей работой