Помощь в учёбе, очень быстро...
Работаем вместе до победы

Оценка гидрогеологических и инженерно-геологических условий Стойленского месторождения

КурсоваяПомощь в написанииУзнать стоимостьмоей работы

Климат территории умеренно-континентальный с продолжительным летом и холодной зимой. Среднесуточные температуры воздуха ниже 0оС устанавливаются в конце ноября — начале декабря; среднесуточная температура самого холодного месяца (января) -8,4оС; абсолютная минимальная температура -41оС, наибольшая глубина промерзания почвы 180 см; снеготаяние начинается в мае. Среднемесячная температура самого… Читать ещё >

Оценка гидрогеологических и инженерно-геологических условий Стойленского месторождения (реферат, курсовая, диплом, контрольная)

Федеральное агентство по образованию Московский государственный горный университет Кафедра геологии

Курсовая работа

по гидрогеологии и инженерной геологии по теме «Оценка гидрогеологических и инженерно-геологических условий Стойленского месторождения»

Выполнил: ст. гр. ТО-3−08

Романов В. В.

Проверил: д.т.н. проф. Гальперин А.М.

к.т.н. Щекина М. В.

Москва, 2009 г.

1. Введение

2. Характеристика Стойленского железорудного месторождения

3. Графическая часть:

План поверхности участка месторождения, гидроизогипс безнапорного водоносного горизонта и гипсометрии кровли водоупора.

План поверхности участка месторождения, гидроизопьез напорного водоносного горизонта и гипсометрии почвы верхнего водоупора. Гидрогеологический разрез по линии II-II

Сводная инженерно-геологическая и гидрогеологическая колонка

4. Расчетная часть

4.1 Определение гидрогеологических параметров

4.2 Определение скоростной высоты

4.3 Движение подземных вод

4.3.1 Движение подземных вод в напорном пласте. Определение расхода подземного потока в напорном пласте.

4.3.2 Движение подземных вод в безнапорном пласте. Определение расхода подземного потока в безнапорном пласте

4.4 Движение подземных вод к искусственным дренам

4.4.1 Движение напорных вод к совершенной вертикальной дрене. Определение величины притока воды к дрене

4.4.2 Движение безнапорных вод к совершенной вертикальной дрене. Определение величины притока воды к дрене

4.5 Определение инженерно-геологических условий месторождения

4.5.1 Определение показателей состояния горных пород

4.5.2 Гранулярный состав горных пород. Обработка результатов комбинирования гранулометрического анализа песчано-глинистых пород

5. Заключение

6. Список литературы

1. Введение

Теоретической основой при выполнении курсовой работы являются знания, при изучении цикла геологических дисциплин — «Основы геологии», «Месторождения полезных ископаемых», «Гидрогеология и инженерная геология».

Полученные в результате анализа имеющихся данных гидрогеологической разведки и расчетов показатели позволяют оценить характер и режимы водоносных горизонтов и принять действенные меры по дренированию горных выработок. Умение построить, читать и анализировать гидрогеологические планы, разрезы и другую документацию является неотъемлемой частью подготовки горных инженеров. Выполненное задание является исходным материалом для написания геологической части дипломных проектов и проектирования дренажных работ.

2. Характеристика Стойленского месторождения

Общие сведения о районе месторождения

Территория занимает часть Среднерусской возвышенности и в морфологическом отношении представляет невысокое плато, изрезанное оврагами и балками. Наиболее крупные реки — Сейм, Оскол, характеризующиеся равнинным режимом с высоким весенним половодьем и низкой летней меженью, средняя величина модуля стока составляет 4 л/с с 1 км2.

Климат территории умеренно-континентальный с продолжительным летом и холодной зимой. Среднесуточные температуры воздуха ниже 0оС устанавливаются в конце ноября — начале декабря; среднесуточная температура самого холодного месяца (января) -8,4оС; абсолютная минимальная температура -41оС, наибольшая глубина промерзания почвы 180 см; снеготаяние начинается в мае. Среднемесячная температура самого жаркого месяца (июня) +41оС. По количеству выпавших осадков территория относится к умеренно-влажной зоне. В году 130−170 дней с осадками. Средняя многолетняя сумма годовых остатков 400−600 мм; максимум осадков приходится на летние месяцы — в июле при ливнях выпадает 100 мм осадков и более. Однако вследствие ливневого характера и высокого испарения почвы (до 75% общей суммы осадков) дождевые воды почти не пополняют запасы подземных вод.

Значительная инфильтрация происходит осенью при длительных моросящих дождях и весной при снеготаянии. Зимой преобладают ветры юго-западного направления, весной — восточного и юго-восточного направлений, летом — западного и северо-западного.

Скорость ветра на территории изменяется от 2−2,8 м/с летом и до 4−6 м/с зимой.

Месторождение приурочено к исконам Воронежского докембрийского кристаллического массива асимметричного строения. Северный склон довольно пологий, южный — крутой. Рельеф докембрийского массива отличается большой сложностью. Сбросы, возникшие в процессе образования Днепровско-Донецкой впадины, обуславливают наличие в ней системы уступов, а денудация и выветривание привели к образованию обширной густой сети глубоких впадин (древняя эрозионная сеть). Кристаллический массив сложен сланцами, гнейсами, кварцитами, известняками протерозойского возраста, отличающимся высокой степенью метаморфизма. В результате тектонических движений породы протерозойского комплекса собраны в сложную систему складок. Верхняя зона этих пород под воздействием процессов сильно изменена, в результате окисления железистых кварцитов образовались мартитовые, мартитово-магнетитовые и мартито-железнослюдковые кварциты. К коре выветривания железистых кварцитов приурочены залежи богатых железных руд.

Кристаллические породы перекрыты комплексом палеозойских и кайнозойских осадочных пород, преимущественно морского происхождения. Наличие сравнительно мощных пластов выдержанных по площади водонепроницаемых пород предопределяет общие потоки подземных вод на территории КМА, которая является областью распространения Днепровско-Донецкого (северо-восточное крыло) и Московского (южное крыло) артезианских бассейнов.

Геологическое строение месторождения

Стойленское месторождение железных руд и железистых кварцитов расположено в центральной части северо-восточной полосы КМА. В геологическом строении месторождении участвуют сильно дислоцированные метаморфические породы докембрия, в которых выделяются железорудная свита Курской серии протерозоя. Их трансгрессивно перекрывают осадочные породы палеозойского, мезозойского и кайнозойского возрастов мощностью от 50 до 200 м. Осадочные породы сверху вниз представлены суглинками, песками, песчаниками, рудными и безрудными брекчиями.

Кора выветривания железистых кварцитов, имеющая мощность от 5 до 80 м, представлена богатыми рудами, переходящими с глубиной в окисленные и полуокисленные железистые кварциты.

Литолого-стратиграфическое подразделение и характерные особенности в геологическом разрезе месторождения отражены в стратиграфической колонке (табл. 1).

Месторождение приурочено к юго-восточной части Тим-Ястребовской синклинали. Породы смяты в сложные, глубокие и узкие синклинальные и антиклинальные складки, преимущественно северо-западного простирания с крутым (60о-90о), нередко опрокинутым падением крыльев. В северной части месторождения развиты интрузии диоритов и габбро-диоритов, в юго-восточной части — интрузии конгломератов.

Широкое развитие имеют межпластовые и секущие дайки, а также жилы ультраосновных пород — диорит-порфиритов и гранитов мощностью от 10 см до 20 см. Железорудная свита сложена железистыми кварцитами и сланцами. Мощность ее изменяется от 400 м на северо-востоке до 800 м на юго-западе. В составе ее выделяют две подсвиты кварцитов и две подсвиты сланцев. Интенсивная складчатость докембрийских образований обусловила крутое, нередко почти вертикальное залегание рудных пластов. Площадь залежи железистых кварцитов по кровле составляет 4,1 км2, детальная разведка выполнена до глубины 460 м (отметка — 250 м), отдельными скважинами до 700 м. Граница рудных тел с осадочной толщей резкая, неровная.

Характеристика полезного ископаемого

Граница между богатыми рудами и кварцитами чаще всего четкая. По степени окисления и технологическим свойствам железистые кварциты разделяют на неокисленные Feраст/Feмаг > 0,6, полуокисленные Feраст/Feмаг =0,6−0,3, окисленные Feраст/Feмаг < 0,3. Неокиленные кварциты слагают 93,7% запасов месторождения.

Залежь неокисленных кварцитов имеет сложное строение, характеризуется частым переслаиванием различных минералогических разновидностей железистых кварцитов и наличием прослоев сланцев, на ряде участков она пересекается большим количеством даек диорит-порфиритов. Мощность пластов и пачек отдельных типов кварцитов от 1−2 до 10−20 м, изредка достигает 50 м; мощность даек изменяется от 10 до 20 м. Полуокисленные кварциты (0,7% запасов) образуют подзону неполного окисления железистых кварцитов. На месторождении выделяют восемь разобщенных линзообразных залежей полуокисленных кварцитов площадью от 16 до 550 тыс. м2 и общей площадью 1,5 км2, мощность их достигает 27,2 м, в среднем составляет 4,5 м. Почва и кровля залежей неровные, с уступами и впадинами. Рудоносность полуокисленных кварцитов на всех участках почти одинакова.

Окисленные кварциты представляют собой подзону полного окисления железистых кварцитов, которая сплошной покровной залежью перекрывает окисленные и полуокисленные кварциты. Мощность их колеблется от 0,2 до 56 м. На долю окисленных кварцитов приходится 5,6% запасов. Основные породообразующие минералы железистых кварцитов — кварц, магнетит, рудная слюда; в разных залежах присутствуют магнезиально-железистые алюмосиликаты. В зависимости от минерального состава и количественного соотношения минералов, железистые кварциты подразделяются на 4 типа: магнетитовые (47,5% общих запасов), силикатно-магнетитовые (37,2%), железнослюдково-магнетитовые (14,6%), а также слаборудные кварциты (0,7%).

Кварциты месторождения тонкозернистые, размеры зерен в среднем равны 0,05−0,08 мм, размеры агрегатов магнетита 0,1−0,5 мм. В зависимости от минералогического состава материнских пород на месторождении выделяются следующие разновидности богатых руд: магнетито-мартитовые — 50%, лимонито-мартитовые и лимонитовые — 25% и железнослюдково-мартитовые — 10% общих запасов. Главные рудообразующие минералы — мартит, магнетит, лимонит, железная слюда и кварц; второстепенные — сидерит, кальцит, хлорит, пирит. Содержание железа в рудах колеблется от 25 до 68%. По морфологии и особенностям залежи железистых кварцитов в пределах месторождений выделяются западный, центральный, северо-восточный и юго-восточный участки.

Западная часть залежи характеризуется относительно простым строением и равномерной рудоносностью; содержание Feобщ колеблется в блоках от 32,25 до 36,92%; Fe связанного с магнетитом — от 28,54 до 29,77%.

Центральная часть залежи имеет сложное внутреннее строение по сравнению с другими частями и характеризуется наименьшей рудоносностью, что обусловлено большим количеством даек диорит-порфиритов, наличием зон дробления и повышенным количеством сланцев в рудной зоне. При среднем объемном количестве даек в контуре, равном 3,3%, в центральной части количество их составляет 6,3−12,7% общего объема. Содержание Feобщ в блоках колеблется от 32,7 до 34,06%, связанного с магнетитом от 26,36 до 28,3%. На участке замыкания центральной антиклинали, на границе со сланцами, наблюдается обеднение железистых кварцитов — содержание Feраст снижается до 22−25%, связанного с магнетитом до 16,2−18,2%.

Северо-восточная часть залежи характеризуется сложным строением и относительно высокой рудоносностью. Содержание Feобщ составляет 34,52−36,10%, связанного с магнетитом — 27,6−29,38%. Наиболее высокое содержание Feобщ (38,27−39,39%) и связанного с магнетитом (33,10−33,77%) наблюдается в северо-восточной части месторождения. Юго-восточная часть залежи характеризуется относительно простым строением. Но в пределах ее развито наибольшее количество даек диорит-порфиритов.

Общая рудоносность по строению структуры юго-восточной части выдержана. Содержание Feобщ в блоках составляет от 33,4 до 34,84%, а связанного с магнетитом от 27,3 до 28,55%. Здесь так же, как и в центрально части залежи, наблюдается обеднение железистых кварцитов.

Гидрогеологические условия месторождения

Гидрогеологические условия месторождения обусловлены геоморфологическими и структурными особенностями его расположения на водораздельном плато, расчлененным глубоко врезанной овражной сетью, и ограничением с севера, юга и востока долинами рек Осколька, Чуфички, Оскола, а также двухъярусным строением массива.

На месторождении имеет сплошное распространение сеноман-альбский каньон — туронский и рудно-кристаллический водоносные горизонты (табл.2). В целом для них характерна гидравлическая взаимность и связь с поверхностными водами, невыдержанность мощности и состава вмещающих пород, однородность состава и незначительная минерализация вод, общность источников питания и дренирования.

Приуроченные к сеноман-альбской толще, водоносный горизонт характеризуется безнапорным или слабо напорным режимом. Расходы горизонта компенсируются инфильтрующей частью дождевых и талых вод в местах выхода трещиноватых меловых пород на поверхность. Юрские и неокомские песчано-глинистые отложения вследствие их частичного размыва являются лишь относительным водоупором.

Рудно-кристаллический напорный горизонт приурочен к выветренной зоне докембрийского комплекса пород. Водообильность горизонта определяется характером трещиноватости пород. Питание осуществляется за счет вышележащего водоносного горизонта на участках выветривания или в местах малой мощности юрских и неокомских песчано-глинистых отложений. Среднее значение коэффициента фильтрации для выветривания кварцитов 2−2,5 м/сут, невыветрелых 0,02−0,07 м/сут. В связи со сложными гидрогеологическими условиями разработка месторождения производится при предварительном осушении, осуществляемом комбинированным способом — глубинным водоотливом.

Таблица 2

Водоносный горизонт

Режим

Преобладающая Мощность, м

Абсолютная отметка статического уровня, м

Качественная характеристика водоносного горизонта

Коэффициент фильтрации, м/сут

Водоотдача, %

питание

разгрузка

I

Мергельно;

меловой подгоризонт

;

15−20

;

;

;

2,5

1−5

II

Песчаный подгоризонт

;

28−35

137−142

;

;

12−25

25−40

III

Песчано-меловой горизонт

;

40−50

137−142

Инфильт-рационное

Долина р. Осколец

10−20

15−34

IV

Рудно-кристаллический горизонт

70−80

20−40

137−142

За счет перетекания из вышележащих водоносных горизонтов

Движение потока в сторону Днепровско-Донецкой впадины

0,1−0,5

0,5−2

Инженерно-геологические условия

Геологический разрез месторождения характеризуется многоярусным строением; инженерно-геологические ярусы составляют два структурных этажа — верхний и нижний.

Верхний этаж представлен породами осадочного комплекса. Лессовидные суглинки по физико-механическим свойствам близки к аналогичным породам Михайловского месторождения. Наиболее слабыми являются аллювиальные глины. Мергельно-меловые породы представлены трещиноватым мелом, переходящим на отдельных участках в трещиноватый мергель. Прочность этих пород определяется трещиноватостью массива. Высыхание мелов в приповерхностных зонах и процессы выветривания приводят к их осыпанию. Под воздействием динамических нагрузок происходят тектонические изменения. Сеноман-альбские пески представлены среднеи мелкозернистыми разностями, слабо сцементированными окислами железа. Пески обладают хорошей водоотдачей, коэффициент неоднородности Кн=3−5, на участке высачивания отмечается оплывание, в сцементированных разностях — фильтрационный вынос вдоль трещин.

Неокомские и юрские глинистые пески и песчаные гидрослюдистые глины достаточно однородны по механическим свойствам. Небольшим набуханием обладают юрские глины при нормальных нагрузках до 2 кг/см2 (0,2 МПа) (в песчаных глинах неокома около 0,5 кг/см2 (0,05 МПа)). Ощутимое разупрочнение пород (сцепление падает до 50% исходного) отмечается в местах удаленных от поверхности обнажения на 4−5 м; с увеличением глубины прочность пород не уменьшается. Девонские отложения имеют ограниченное распространение и состоят из нерудных брекчий, песчаников, пестро-цветных плотных глин, характеризуются относительно высоким показателем прочности. Нижний этаж представлен скальными и полускальными разностями, при этом наименее прочными являются межрудные сланцы, породы даек и рыхлых руд. На участках распространения рыхлых разновидностей руд в ходе разработки отмечаются осыпи; обводненность пород рудной толщи не влияет на их устойчивость.

4. Расчетная часть

4.1 Определение гидрогеологических параметров

I. Расчет для безнапорного водоносного горизонта

1. Гидравлический градиент — это потеря напора на единицу длины пути фильтрации:

H1-H2 177−176

i = = = 0.002

l 540

2. Приведенная скорость фильтрации — скорость, принимаемая из условий проницаемости минерального скелета породыопределяется по формуле Дарси:

v=i* kф=0,002*5=0,01 м/сут,

где kф =5 м/сут — коэффициент фильтрации (для БВГ).

3. Действительная (фактическая) скорость фильтрации воды в породах с учетом их физического состояния (трещина, поры и т. п.)

V 0.01

U= = =0.5м/сут,

µ 0.02

где µ - эффективная пористость породы, численно равная величине водоотдачи.

4. Глубина залегания зеркала воды определяется разностью абсолютных отметок поверхности земли и зеркала воды, взятых для одной и той же точки.

т.1 187−177=10м

т.2 188−176=12м

5. Мощность водоносного горизонта определяется разностью абсолютной отметки зеркала воды и кровли водоупора, на котором сформировался водоносный горизонт.

т.1 177−154=23м

т.2 176−153,5=22, 5м

II. Расчетная часть для напорного водоносного горизонта

1. Определяем гидравлический градиент

H1-H2 173−172

i = = = 0,003

l 350

2. Приведенная скорость фильтрации

v=i k =0,003*12=0,036 м/сут,

где k=12 м/сут — коэффициент фильтрации для НБГ

3. Действительная (фактическая) скорость фильтрации воды.

V 0.036

U= = =3,6 м/сут,

µ 0.01

где µ - эффективная пористость породы, численно равная величине водоотдачи.

4. Глубина залегания ПУНВГ (установившегося пьезометрического уровня) равна разности отметок поверхности земли и отметок ПУНВГ.

т.1 188−173=15м

т.2 187−172=15м

5. Мощность НВГ равна мощности вмещающих его трещиноватых известняков перхуровского возраста и составляет 15 м

6. Определяем напорность НВГ, которая равна разности отметок ПУНВГ и кровли водоносного пласта (почвы верхнего водоупора)

т.1 173−147,5=25,5м

т.2 172−151,5=20,5м.

4.2 Определение скоростной высоты

Вода в состоянии покоя при отсутствии внешних сил и на свободной поверхности обладает гидростатическим давлением.

P= *h*g=1*8*9,8=78, 4 т/м2=0,78кПа,

где — плотность воды,

h=8м — высота столба метра,

g=9,8м-с2— ускорение свободного падения.

На поверхности воды, связанной с атмосферой, атмосферное давление Р=100КПа=0,1МПа.

Энергетическим показателем воды, которая находится в порах горных пород, является гидростатический напор Нг, представляющий совокупность пьезометрической hp и геометрической z высот. Для безнапорного водоносного горизонта в центральной скважине применительно к выбранной т.А.

HГ=hp+ z=8+20=28м.

Вода при движении обладает и кинетической энергией, доля которой оценивается величиной скоростного напора (или скоростной высотой) hv.

u2 3,62 (3.6/86 400)2

hv= = = =8.85.10-6м,

2g 19,6 19,6

где u — действительная скорость движения воды, размерность которой при расчетах переводится в м/с.

Тогда HГ=hp+ z+ hv=28+8, 85.10-6 м,

где h - высота столба воды в выработке с проницаемыми стенками или дном, измеряемая от дна выработки, z- это геометрическая высота от дна выработки до горизонтальной плоскости сравнения напоров.

Т. к. скоростная высота слишком мала и стремиться к нулю, то ею можно пренебречь.

4.3 Движение подземных вод

4.3.1 Движение подземных вод в напорном пласте

Рассчитаем приток воды НВГ в подземную выработку шириной В=100м, находящуюся между скважинами и и вскрывающую водоносный пласт трещиноватых известняков на всю его мощность т.

Определяем расход потока с учетом действительной скорости движения вод

mBkф(H1-H2)

Q= =m.B.u=6*100*3,6=2160 м3/сут.

l .???

Расход потока на его ширине, равной единице, называется единичным расходом и обозначается q. Для нашей выработки определяем q на 1 погонный метр:

mkф(H1-H2) B

q= = m u=6*3,6=21,6 м3/сут.

l .???100

Единичный расход позволяет оперативно определить приток воды в выработку при проходке и вовремя вводить в действие откачивающее оборудование. Например. Если за смену пройдено 6 м штрека, то дополнительный расход составит

Q=q6=21,6 . 6=129,6 м3/сут.

Уравнение депрессионной кривой

x 175

Н=Н1- (H1-H2)=172- (172−171)=171, 5 м;

l 350

x 180

Н=Н1- (H1-H2)=173- (173−172)=172,5 м;

l 360

x 260

Н=Н1- (H1-H2)=174- (174−173)=173,5 м.

l 520

Таким образом, депрессионная кривая подземных вод для данного примера является прямой линией, что свидетельствует об установившемся режиме движения подземных вод.

4.3.2 Движение подземных вод в безнапорном пласте

Определяем приток воды в траншею длиной 100 м, пройденную перпендикулярно направлению фильтрации между скважинами и до плотных глин московского возраста.

Расход потока при его ширине В равен с учетом фактической (действительной) скорости движения воды в БВГ

Bkф(H12-H22) 100 . 5(1762-1752)

Q=qB= = =8775 м3/сут.

2l . ??? 2 . 350 . 0.02

Уравнение для единичного расхода потока через известный напор H1 и неизвестный напор Н в сечении на расстоянии х от начала координат:

kф(H12-H22) 5(1762-1752)

q= = =87,75 м3/сут.

2l . ? 2 . 350 . 0.02

Уравнение депрессионной кривой

x 175

Н= H12 — (H12-H22) = 1762— (1762-1752) =175, 5 м;

l 350

x 270

Н= H12 — (H12-H22) = 1772— (1772-1762) =176,5 м;

l 540

x 160

Н= H12 — (H12-H22) = 1792 — (1792-1782) =178,5 м.

l 320

Задаваясь любыми значениями х в пределах х<l и получая соответствующие им значения Н, можно по точкам построить депрессионную кривую между скважинами. Эта кривая является параболой.

4.4 Движение подземных вод к искусственным дренам

Горные выработки, из которых производится откачка воды, являются искусственными дренами водоносного пласта. Они подразделяются на горизонтальные (канавы, траншеи, галереи, штреки и т. п.) и вертикальные (скважины, стволы, колодцы, шурфы и т. п.). как вертикальные, так и горизонтальные горные выработки по степени вскрытия водоносного пласта делятся на совершенные (вскрывающие пласт на всю мощность и по всей его мощности имеющие водопроницаемые стенки) и несовершенные (вскрывают только часть пласта или имеют водопроницаемые стенки не по всей мощности).

Линия пересечения депрессионной воронки, образующейся вокруг выработки, из которой производится откачка воды, с вертикальной плоскостью, проходящей через ось выработки, называется депрессионной кривой, которая имеет максимальный наклон у стены выработки, а по мере удаления от нее постепенно выполаживается и практически сопрягается с линией первоначального напора Н. Расстояние от оси колодца до точки сопряжения депрессионной кривой с линией первоначального напора называется радиусом влияния выработки R.

Сниженный в результате продолжительной откачки уровень воды в вертикальной выработке (например, скважине), соответствующий напору ho в ней, называется динамическим уровнем, в отличие от статического уровня, который соответствует первоначальному напору Н в пласте. Величина S, на которую понижается уровень воды в скважине, называется понижением. Следовательно, понижение S=H - h. Уровень воды в дренажной скважине ниже уровня воды h за стенкой ее на величину h=h - ho, называемой гидравлическим скачком или высотой высачивания.

4.4.1 Движение напорных вод к совершенной вертикальной дрене

Данные для выполнения расчетов:

kф=12 м/сут — коэффициент фильтрации;

m=6 м — мощность водоносного пласта;

S - понижение

r=1 м — радиус выработки;

R=1,73 at - радиус влияния дрены, м,

kф H

a= - коэффициент уровнепроводности, м2/сут;

?

t=1год=365суток, время для которого определяется радиус влияния.

Предположим, что мы 365 суток производим откачку воды из т.1. принимаем водопонижение до середины пласта трещиноватых известняков московского горизонта — отметка 150 м. Следовательно, водопонижение составит S=H -150=173,5−150=23,5 м.

Радиус выработки r=1 м;

Коэффициент уровнепроводности с учетом фактической скорости

kф . i . H 12 . 0,003 . 173,5

движения воды, a= = =624, 6 м2/сут;

? 0,01

Время, для которого определяется радиус влияния t=365 суток.

Определяем радиус влияния дрены:

R=1,73 at =1,73 624, 6 . 365=826 м.

Расход Q потока подземных вод к выработке через это сечение

2,73 kф m S 2,73 . 12 . 6 . 23,5 4619,16

Q = = = = 1593 м3/сут.

lgR — lgr lg826 — lg 1 2,9

Уравнение депрессионной кривой имеет вид:

Q

y = H — 0,366 (lgR — lgx).

kф m

Для построения кривой принять:

х1=0,1R=0,1 . 826=82,6 м;

x2=0,15R=0,15 . 826=123,9 м;

х3=0,2R=0,2 . 826=165,2 м;

x4=0,3R=0,3 . 826=247,8 м;

x5=0,5R=0,5 . 826=413м;

x6=0,8R=0,8 . 826=660,8 м.

Тогда:

y1=173,5 — 0,366 (lg826 — lg82,6)=165,4;

6 . 12

y2=173,5 — 0,366 (lg826 - lg123,9)=166,9;

6 . 12

у3=173,5 — 0,366 (lg826 — lg165,2)=167,9м;

6 . 12

y4=173,5 — 0,366 (lg826 — lg247,8)=169,3м;

6 . 12

y5=173,5 — 0,366 (lg826 — lg413)=171,1м;

6 . 12

y6=173,5 — 0,366 (lg826 — lg660,8)=172,9м.

6 . 12

4.4.2 Движение безнапорных вод к совершенной вертикальной дрене

Данные для выполнения расчетов:

kф=5 м/сут — коэффициент фильтрации;

m=6 м — мощность водоносного пласта;

S - понижение

r=1 м — радиус выработки;

R=1,5 at - радиус влияния дрены, м,

kф H

a= - коэффициент уровнепроводности, м2/сут;

?

t=1год=365суток,время для которого определяется радиус влияния.

Предположим, что мы 365 суток производим откачку воды из т.1. принимаем водопонижение до середины пласта трещиноватых известняков московского горизонта — отметка 170 м. Следовательно, водопонижение составит S=H1-166=176, 5-166=10, 5 м.

Радиус выработки r=1 м;

Коэффициент уровнепроводности с учетом фактической скорости

kф . i . H 5 . 0,002 . 176, 5

движения воды, a= = =88,25 м2/сут;

? 0,02

Время, для которого определяется радиус влияния t=365 суток.

Определяем радиус влияния дрены:

R=1,5 at =1,5 88,25 . 365=269,2 м.

Расход Q потока подземных вод к выработке через это сечение

1,37 kф (2H-S)S 1, 37 . 5(2 . 176, 5 -10, 5)10, 5

Q = = = 10 264.3 м2/сут.

lgR - lgr lg269.2 - lg 1

Уравнение депрессионной кривой имеет вид:

(lgx — lgr)

y = h2 +S (2H-S)

(lgR - lgr)

Для построения кривой принять:

х1=0,1R=0,1 . 269,2 =26,92 м;

x2=0,15R=0,15 . 269,2 =40,38 м;

х3=0,2R=0,2 . 269,2=53,84 м;

x4=0,3R=0,3 . 269,2=80,76 м;

x5=0,5R=0,5 . 269,2=134,6 м;

x6=0,8R=0,8 . 269,2=215,36 м.

Тогда:

lgx — lgr lg26,92 — lg1

y1= h2 + S (2H — S) = 1662+10, 5(2 .176,5 -10, 5)

lgR — lgr lg269,2 - lg 1

1,43

= 27 556+3596,25 = 172,3

2,41

lgx — lgr lg40,38 — lg1

y2= h2 + S (2H — S) = 1662+10, 5(2 .176,5 - 10, 5) = lgR — lgr lg269,2 - lg 1

1,6

= 27556+3596,25 = 173,04

2,41

lgx — lgr lg53,84 — lg1

y3= h2 + S (2H — S) = 1662+10, 5(2 .176,5 -10,5)

lgR — lgr lg269,2 - lg 1

1,73

= 27556+3596,25 = 173,5

2,41

lgx — lgr lg80,76 — lg1

y4= h2 + S (2H — S) = 1662+10, 5(2 . 17 6,5-10,5)

lgR — lgr lg269,2 - lg 1

1,9

= 27556+3596,25 = 174,3

2,41

lgx — lgr lg134,6 — lg1

y5= h2 + S (2H — S) = 1662+10, 5(2 . 176,5-10,5)

lgR — lgr lg269,2 - lg 1

2,12

= 27556 +3596,25 = 175,2

2,41

lgx — lgr lg215,36 — lg1

y6= h2 + S (2H — S) = 1662+10,5(2 . 17 6,5−10, 5)

lgR - lgr lg269,2 - lg 1

2,23

= 27 556+ 3596,25 = 176, 1.

2,42

4.5 Определение инженерно-геологических условий месторождения

4.5.1 Определение показателей состояния горной породы

Образец породы V0=64 см3 и массой q0=127,5 г после высушивания при температуре 105оС занимает объем Vс=47 см3 и весит qс=113,2 г.

1. Плотность — масса единицы объема горной породы естественного сложения и влажности, численно равная отношения массы породы к ее объему:

??? q0 127,5

? = = = 1, 9 г/ см3.

V0 64

2. Плотность сухой породы — масса единицы объема твердой части породы естественного сложения, численно равная отношению массы минерального скелета к ее объему:

??? qс 113,2

?с = = = 1,8 г/ см3.

V0 64

3. Плотность минеральных частиц — масса минерального скелета породы в единице его объема, численно равная отношению массы минеральных частиц к их объему:

??? qс 113,2

= = = 2,4 г/ см3.

Vc 47

4. Пористость — это отношение объема пор ко всему объему горной породы.

V0 - Vc 64— 47 - gс 2,4 - 1,8

n= = = 0,26 или n= = = 0,26 (26%)

V0 64 2,4

5. Коэффициент пористости — это отношение объема пор в горной породе к объему ее твердой части.

???

————

V0 - Vc 64 — 47 n 0,26

e—=———————————————————=——————————————————=—0,36 или e = = = 0,36

Vc 47 1 — n 1 — 0,26

6. Весовая влажность W — это отношение массы воды qв, заполняющей поры породы, к массе сухой породы qс :

qв q0 - qc 127,5 - 113,2

W = = = = 0,12 доли единиц или 12%

qc qc 113,2

7. Объемная влажность Wо — отношение объема воды Vв этой породы:

qв qo - qc 127,5 — 113,2

Wо= :Vo = = = 0,216 доли единиц или 21,6%

в в Vo 1 . 64

W . gс 0,12 . 1,8

Wо= = = 0,216 доли единиц или 21,6%.

в 1

8. Коэффициент водонасыщения — отношение объема воды Vв в горной породе к объему пор Vn:

q0 - qc q0 - qc 127,5 — 113,2

G= :( V0 - Vc)= = =0,84

в в ( V0 - Vc) 1(64 -47)

W 0,12. 2,4

G= = =0,84

в e 1 . 0,36

Вывод: по величине G=0: 10 выделяют породы: маловлажные (0: 0,5); влажные (0,5: 0,8); водонасыщенные (>0,8), следовательно рассматриваемая порода является водонасыщенная.

Показать весь текст
Заполнить форму текущей работой