Помощь в учёбе, очень быстро...
Работаем вместе до победы

Взаимное влияние лигандов в полусэндвичевых комплексах переходных металлов с пятичленным циклическим ?-лигандом по данным рентгенодифракционных исследований и квантово-химических расчётов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Химия л-комплексов переходных металлов является одним из основных направлений в элементоорганической химии. Развитие данной области наблюдается с конца 50-х годов по настоящее время. Повышенное внимание к л-комплексам обусловлено прежде всего прикладным значением результатов изучения реакций ненасыщенных органических молекул с соединениями переходных металлов. Так установлено, что многие… Читать ещё >

Содержание

  • ГЛАВА 1. ПОЛУСЭНДВИЧЕВЫЕ КОМПЛЕКСЫ ПЕРЕХОДНЫХ МЕТАЛЛОВ С ШЕСТИЧЛЕННЫМИ И ПЯТИЧЛЕННЫМИ ЦИКЛИЧЕСКИМИ я-ЛИГАНДАМИ. ЛИТЕРАТУРНЫЙ ОБЗОР
    • 1. ПОЛУСЭНДВИЧЕВЫЕ КОМПЛЕКСЫ ПЕРЕХОДНЫХ МЕТАЛЛОВ С
  • ШЕСТИЧЛЕННЫМИ ЦИКЛИЧЕСКИМИ л-ЛИГ АНДАМИ
    • 1. 1. 1. ТРИКАРБОНИЛ-(л6-БЕНЗО Л) ХРОМ ((г|6-С6Н6)Сг (СО)з)
      • 1. 1. 2. Арен замещённые (г|6-СбН5К)Сг (СО)з производные комплекса
      • 1. 1. 3. Полусэндвичевые комплексы ЬМ (СО)3, где Ь-шестичленный гетероциклический я-лиганд
    • 2. ПОЛУСЭНДВИЧЕВЫЕ КОМПЛЕКСЫ ПЕРЕХОДНЫХ МЕТАЛЛОВ С ПЯТИЧЛЕННЫМИ ЦИКЛИЧЕСКИМИ я-ЛИГАНДАМИ. 39 1.2.1 Цимантрен
      • 1. 2. 2. Мэно-замещённые производные цимантрена
      • 1. 2. 3. Полусэндвичевые комплексы с пятичленным гетероциклическим я-лигандом
    • 3. ПРИМЕНЕНИЕ ТЕОРИИ АМ ДЛЯ ОПИСАНИЯ М-я
  • ВЗАИМОДЕЙСТВИЯ В я-КОМПЛЕКСАХ ПЕРЕХОДНЫХ МЕТАЛЛОВ
    • 1. 3. 1. Основные положения теории АМ
      • 1. 3. 2. Особенности топологии М-я взаимодействия в комплексах, содержащих нециклические я-лиганды
      • 1. 3. 3. Особенности топологии М-я взаимодействия в комплексах, содержащих циклические я-лиганды
      • 1. 3. 4. Квантово-топологические дескрипторы связи
  • ГЛАВА 2. Обсуждение результатов
    • 1. СТРУКТУРНОЕ ИССЛЕДОВАНИЕ ПРОИЗВОДНЫХ 2,5-ДИФЕНИЛФОСФАЦИМАНТРЕНА
      • 2. 1. 1. Строение 2,5-дифенилфосфацимантрена (СО)3Мп (т|5-Р112Н2С4Р) (I)
      • 2. 1. 2. Строение комплексов [(СО)3Мп (т15-РЬ2Н2С4Р (ОК))РаС1]2, где Я = Ме (2), ЕХ (3), ОСН2СН (Ег)(Ме)
      • 2. 1. 3. Строение анионных комплексов
  • С0)зМп (т14-РЬ2Н2С4Р (0)К)]" в солях У11-Х
    • 2. ПРОЯВЛЕНИЕ ВЗАИМНОГО ВЛИЯНИЯ ЛИГАНДОВ В
  • ПОЛУСЭНДВИЧЕВЫХ КОМПЛЕКСАХ ПО ДАННЫМ ОРТ-РАСЧЁТОВ
    • 2. 2. 1. Влияние ориентации Мп (СО)3 фрагмента на геометрические и топологические характеристики 2,5-дифенилфосфацимантрена
      • 2. 2. 2. Проявление взаимного влияния лигандов в 2,5-замещённых производных фосфацимантрена
      • 2. 2. 3. Проявление взаимного влияния лигандов в 2,5-замещённых производных азацимантрена, трикарбонил-(г|5-тиофен)хрома
      • 2. 2. 4. Проявление взаимного влияния лигандов в комплексах феррольного типа
    • ГЛАВА 3. Экспериментальная часть
  • Взаимное влияние лигандов в полусэндвичевых комплексах переходных металлов с пятичленным циклическим ?-лигандом по данным рентгенодифракционных исследований и квантово-химических расчётов (реферат, курсовая, диплом, контрольная)

    Химия л-комплексов переходных металлов является одним из основных направлений в элементоорганической химии. Развитие данной области наблюдается с конца 50-х годов по настоящее время [1−13]. Повышенное внимание к л-комплексам обусловлено прежде всего прикладным значением результатов изучения реакций ненасыщенных органических молекул с соединениями переходных металлов. Так установлено, что многие л-комплексы являются катализаторами основных промышленных процессов [8, 9, 11, 13]. Второй важной особенностью, привлекающей повышенный интерес к л-комплексам, является понимание природы электронного взаимодействия между атомом металла и ненасыщенной органической молекулой, т. е. М-л взаимодействие. Электронное строение л-комплексов переходных металлов не поддаётся описанию в рамках классической Льюисовской концепции двухцентровой двухэлектронной связи. Поэтому данный тип взаимодействия является объектом пристального внимания уже на протяжении многих десятилетий [14−24] с момента установления пространственного строения соли Цейзе. Координационные соединения, в которых атом переходного металла связан с ненасыщенным органическим лигандом, можно разделить на два типа. К первому типу относятся комплексы, содержащие ароматические циклы, среди которых важным представителем можно считать ферроцен (Ре (г|5-С5Н5)2) [1−4, 10−13]. Ко второму типу относятся олефиновые комплексы переходных металлов, исторически первым представителем, среди которых является соль Цейзе (этилентрихлоро платинит калия) [8].

    Впервые описание М-л взаимодействия на орбитальном уровне было дано в так называемой модели Дьюра-Чатга-Дункансона (Схема 1а) [25, 26]. Согласно модели связывающая л-орбиталь олефина подаёт пару электронов л-связи на вакантную <5 орбиталь металла (прямое донирование), приводя к образованию связи о-типа. В свою очередь упрочнение связи в олефиновых комплексах достигается за счет эффекта обратного дотирования (дативная связь), а именно частичный перенос электронов с заполненной (1-орбитали металла на разрыхляющую л* МО орбиталь олефина. Модель Дьюра-Чатга-Дункансона (Схема 1а) позволяет объяснить устойчивость комплексов олефинов, однако является слишком упрощённой, и в последние годы возникла широкая дискуссия [8] об относительном вкладе, а и я связывания в образование связи металлолефин.

    Соединения (например, молекула ферроцена), в которых атом металла координирован с циклическим я-лигандом, также не поддаются описанию в рамках представлений о двухцентровых связях. Поэтому я-комплексы данного типа разделяют на фрагменты так, что атом переходного металла взаимодействует не с отдельными атомами циклического я-лиганда, а со всей я-электронной системой лиганда в целом [14, 15]. Таким образом, обобщённая многоцентровая химическая связь формируется из граничной орбитали металла и подходящей по симметрии я-орбитали лиганда, который играет роль второго партнёра связи. В ранних работах для описания взаимодействия атома металла с я-лигандами в сэндвичевых соединенях была предложена модель фарообразных химических связей (Схема 16).

    27].

    Схема 1 связь а-типа б).

    ГО металла мо кольца +.

    Обобщенная химическая сдязь + 5 е.

    -+.

    Последующие исследования распределения электронной плотности (ЭП), восстановленной из рентгенодифракционных данных, в сэндвичевых соединениях экспериментально подтвердили наличие между атомом металла и циклическим п-лигандом области равномерно делокализованной ЭП [19, 28−32].

    Из всего многообразия я-комплексов переходных металлов, в которых атом металла координирован с циклическим я-лигандом, можно выделить два основных типа соединений. К первому типу относятся сэндвичевые соединения с двумя.

    1 I циклическими я-лигандами в координационной сфере металла. Второй тип представляют так называемые полусэндвичевые соединения, для которых характерно понижение симметрии лигандного окружения атома металла по сравнению с сэндвичевыми комплексами, т. е. замена одного из ароматических я-лигандов на «нециклические» лиганды. Одной из наиболее изученных молекул I среди полусэндвичевых соединений является (трикарбонил-(г|6-бензол)хром, (г|б-С6Н6)Сг (СО)з) (1). Интересной особенностью строения данного комплекса является альтернирование длин С-С связей в ароматическом лиганде [29, 32, 33−38], тогда как в сэндвичевых соединениях длины С-С связей выровнены. Причины, вызывающие альтернирование длин С-С связей, подробно рассматривались в ряде экспериментальных и теоретических работ (описание проблемы дано в п. 1.1.1 Литературного обзора). В результате было показано, что в зависимости от ориентации Сг (СО)3 фрагмента относительно я-лиганда наблюдается различное распределение длин С-С связей [39−42]. Стоит отметить, что в координационной химии начиная с 30-х годов по настоящее время активно изучается взаимное влияние лигандов, в частности транс-влияние и транс-эффект [43−45], на электронное строение и химические свойства комплексов. Однако, в качестве объектов, на которых изучалось взаимное влияние лигандов, выступали комплексы, имеющие плоско-квадратное или октаэдрическое строение [44, 45]. В гораздо меньшей степени взаимное влияние лигандов изучено в я-комплексах, в которых сложно выделить направленные взаимодействия. Тем не менее, приведённый выше пример перераспределения длин С-С связей в 1, свидетельствует о влиянии карбонильных групп Сг (СО)3 фрагмента на геометрическое и электронное строение ароматического я-лиганда. С другой стороны в работах [46−49] было показано, что в монозамещённых производных 1 существует зависимость ориентации Сг (СО)з фрагмента от донорно-акцепторных свойств заместителя (п. 1.1.2). Таким образом, полученные результаты свидетельствуют о проявлении взаимного влияния лигандов в производных комплекса 1.

    Это единственный пример имеющихся в литературе данных о взаимном влиянии лигандов в к-комплексах переходных металлов. Так, даже для такого не менее распространённого в металлорганической химии соединения, как цимантрен (циклопентадиенил марганец трикарбонил, (г|5-С5Н5)Мп (СО)з) о взаимном влиянии лигандов почти ничего не известно.

    Для описания электронного строения химических соединений, помимо орбитальных методов, используется альтернативный подход, основанный на изучении функции распределения электронной плотности (р (г)). В последнее время наиболее широкое распространение для интерпретации функции р (г) получила теория Бейдера «Атомы в молекулах» (АМ) [50, 51]. Теория АМ основана на топологическом анализе функции р{г). При этом функция р{г) может быть получена как с помощью квантовохимических расчетов, так и из данных прецизионных рентгенодифракционных исследований. Теория АМ с успехом применяется для описания электронного строения соединений с разнообразными типами химических взаимодействий (ковалентная или ионная связь, водородная связь, невалентные взаимодействия, например, галоген. галоген, и многие другие) [52−54]. Однако, применение теории АМ для анализа электронного строения к-комплексов описано в литературе в значительно меньшей степени (п. 1.3.2 и 1.3.3). Топологический анализ функции р{г) для тиояо-замещённых комплексов 1 ((г|6-С6Н511)Сг (СО)з,) показал [55], что в зависимости от донорно-акцепторных свойств заместителя наблюдается принципиально различная топология связности между атомом хрома и я-лигандом. С другой стороны, в случае цимантрена топологический анализ р{г) выявил неоднозначность [32, 56] в описании М-к взаимодействия, объяснение которой предположительно обусловлено влиянием карбонильных групп.

    Отметим, что анализ изменений в характеристиках М-л взаимодействия, конформационной предпочтительности, электронного и геометрического строения в зависимости от взаимной ориентации лигандов в цимантрене затруднен. Это обусловлено несоответствием симметрии Ср кольца (С5у) и Мп (СО)3 фрагмента (С3у), что создает трудности в описании их взаимной ориентации. Решение этой проблемы может быть осуществлено двумя способами за счет понижения симметрии циклического тг-лиганда: введением заместителя или заменой одной из С-Н групп на гетероатом, природа которого может варьироваться (Р, 14, Б, и даже металлсодержащий фрагмент, например Ре (СО)3 в комплексах ферольного типа). Это позволяет выделить два конформера, отличающихся синили антиположением одной из трех СО групп относительно шсо-атома углерода или гетероатома (соответственно цисили транс-конформер, см. Схему 2), а также провести детальное исследование влияния различной ориентации М (СО)3 фрагмента на связывание атома металла с циклическим я-лигандом.

    Схема 2. цис-конформер транс-конформер

    Учитывая вышесказанное основная цель диссертационной работы заключается в изучении взаимного влияния лигандов в полусэндвичевых комплексах, в которых М (СО)з фрагмент координирован с пятичленным циклическим я-лигандом. Выявить общие закономерности влияния ориентации М (СО)3 фрагмента на строение гетероциклического я-лиганда, а также оценить влияние электронного и геометрического строения цикла на конформационную предпочтительность в ориентации М (СО)3 фрагмента и на топологические характеристики М-я взаимодействия.

    В ходе диссертационного исследования решались следующие задачи: — Из анализа литературных данных выявить закономерности строения полусэндвичевых комплексов, в которых М (СО)3 фрагмент я-координирован с шестичленным или пятичленным циклическим лигандом.

    — Изучить структуру и электронное строение производных фосфацимантрена с различным типом координации фосфолового лиганда, как наименее изученных представителей полусэндвичевых соединений.

    — Изучить влияние донорно-акцепторных свойств заместителей на строение и конформационную предпочтительность 2,5-замещённых производных фосфацимантрена, азацимантрена, трикарбонил-(т|5-тиофен)хрома и комплексах феррольного типа.

    — Провести сравнительный анализ топологических особенностей функции р{г) в полусэндвичевых комплексах, различающихся строением и взаимным расположением лигандов.

    Для решения поставленных задач в работе использованы следующие методы и подходы: Рентгеноструктурныеисследования, Прецизионные экспериментальные данные совместно с ОБТ-расчетами для анализа (с применением топологии АМ) функции р (г), структурный анализ данных имеющихся в КБСД, а также собственных полученных как экспериментально так и теоретически.

    Основные результаты и выводы.

    Установлено наличие взаимного влияния лигандов в полусэндвичевых комплексах, которое проявляется, с одной стороны, во влиянии ориентации М (СО)3 фрагмента на строение к-лиганда, а с другой — во влиянии природы п-лиганда на конформационную предпочтительность комплексов.

    1. Из анализа литературных данных показано, что в полусэндвичевых комплексах с шестичленным циклическим л-лигандом конформационная предпочтительность определяется распределением зарядов в ареновом лиганде.

    2. На основании структурных исследований (определено строение 9 новых производных фосфацимантрена) и квантово-химических расчетов (40 конформеров соединений I, Х1-ХХХ) установлено, что в полусэндвичевых комплексах с пятичленным циклическим л-лигандом конформационная предпочтительность определяется распределением электронной плотности на связях С-С и Х-С в л-лиганде, которое можно варьировать типом гетероатома (Р, >1, 8) и донорно-акцепторными свойствами заместителей.

    3. Изменение топологии М-л взаимодействия в зависимости от ориентации М (СО)3 фрагмента носит систематический характер и воспроизводится как экспериментально, так и теоретически, а также согласуется с изменением геометрических и энергетических характеристик М-л взаимодействия.

    4. Строение фосфацимантренильного фрагмента, участвующего в дополнительной координации с металлсодержащей группой, определяется электронными свойствами хелатированного атома металла. На основании экспериментальных и теоретических данных впервые показано, что в 2,5-дифенилфосфацимантренильном фрагменте, координированном с электрононенасыщенной РёС12 группой (комплексы II-V), взаимодействие между атомами марганца и фосфора отсутствует.

    5. Показано, что для комплексов феррольного типа (ХХУП-ХХХ) выполняются общие закономерности взаимного влияния лигандов, характерные для полусэндвичевых комплексов с пятичленным гетероциклическим л-лигандом. Установлено влияние лигандного окружения на топологические характеристики МI.

    М взаимодействия. 1.

    Показать весь текст

    Список литературы

    1. T.J. Kealy, P.L. Pauson. A New Type of Organo-Iron Compound. И Nature. -1951. -V.168. -P. 1039.
    2. S.A. Miller, J.A. Tebboth, J.F. Tremaine. Dicyclopentadienyliron. II J. Chem. Soc. -1952.-V.114. -P. 632−635.
    3. G. Wilkinson, F.A. Cotton. Cyclopentadienyl and Arene Metal Compounds. II Prog. Inorg. Chem. -1959. -V.l. -P. 1−124.
    4. G. Wilkinson, M. Rosenblum, M.C. Whiting, R.B. Woodward. The structure of iron bis-cycloprentadienyl. 111. Chem. Soc. -1952. -V.74. -P. 2125−2126.
    5. F. A. Cotton, G. Wilkinson. Advanced Inorganic Chemistry. II Wiley: New York.-1988.-V.5.
    6. M.D. Rausch. Recent studies in metal-cyclopentadienyl and metal-arene chemistry. II Revs Pure and Appl. Chem. -1972. -V.30.
    7. A.N. Nesmeyanov. My Way in Organometallic Chemistry. // Adv. Organometal. I
    8. Chem. -1972. -V.10. -P. 1−78.
    9. C. Elschenbroich. Organometallics. II Wiley-VCH: Weinheim. Germany. -2006.
    10. R.H. Crabtree. The Organometallic Chemistry of the Transition Metals. II Wiley-Blackwell: Oxford U.K. -2005.
    11. A. Togni, T. Hayashi. Ferrocenes. II Wiley-VCH: Weinheim. Germany. -1995.i
    12. A. Togni, R. L. Halterman. Metallocenes: Synthesis, Reactivity, Applications II Wiley: Weinheim, Germany. -1998. -V.l.
    13. N.J. Long. Metallocenes: An Introduction to Sandwich Complexes. II Oxford U.K.-Blackwell Science Ltd. -1998.
    14. T. Takahashi, A.E. Hargreaves. Metallocenes in Regio- and Stereoselective Synthesis. II Springer-Verlag: Berlin. -2003.
    15. W. Moffitt. The Electronic Structure of Bis-cyclopentadienyl Compounds. II J. Am. Chem. Soc. -1954. -V.76. -P. 3386−3392.
    16. E.M. Шусторович, M.E. Дяткина. Ещё раз об электронном строении ферроцена. II Ж. структурн. химии. -1966. -№ 7. -С. 140.
    17. D.W. Clack, K.D. Warren. Metal-ligand bonding in 3d sandwich complexes. II Struct. Bonding (Berlin) -1980. -V.39. -P. 1−41.
    18. Т.A. Albright, J.K. Burdett, M.H. Whangbo. Orbital Interactions in Chemistry. II John Wiley & Sons, New York -1985.
    19. Y. Jean. Molecular Orbitals of Transition Metal Complexes. II Oxford: University Press -2004.
    20. J.D. Dunitz, L.E. Orgel. Electronic Structure of Metal bis-cyclopentadienyls. II J. Chem. Phys. -1955. -V.23. -P. 954−959.
    21. M. Elian, M.L. Maynard, D. Chen, P. Michael, R. Hoffmann. Comparative bonding study of conical fragments. И Inorg. Chem. -1976. -V.15. -P. 1148−1155.
    22. Y. Yamaguchi, W. Ding, C.T. Sanderson, M.L. Borden, M.J. Morgan, C. Kutal. Electronic structure, spectroscopy, and photochemistry of group 8 metallocenes. II Coord. Chem. Rev. -2007. -V.251. -P. 515−524.
    23. J.S. Dewar. Bull. Soc. Chim. Fr. -1951. -V.18. -P. 71.
    24. J. Chatt, L.A. Duncanson. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes. II J. Chem. Soc. -1953 -P. 2939−2947.
    25. Н.П. Гамбарян, И. В. Станкевич. Развитие понятия химической связи отiводорода до кластеров. И Успехи химии. -1988. -№ 12 -С. 1945−1970.
    26. M.Yu. Antipin, К.А. Lyssenko, R. Boese. Electron density distribution in the vanadocene crystal on the basis of X-ray diffraction data at 108 К. II J. Organomet. Chem. -1996 -V.508. -P. 259−262.i i
    27. B. Rees, P. Coppens. Electronic structure of benzene chromium tricarbonyl by X-ray and neutron diffraction at 78 K. II Acta Crystallogr. Sect. B. -1973. -V.29. -P. 2515−2528.
    28. Y. Wang, P. Coppens. Electron distribution in mu.-acetylene-bis (cyclopentadienylnickel) by low-temperature X-ray diffraction. II Inorg. Chem. -1976 -V.15-P. 1122−1127.
    29. A. Mitschier, B. Rees, M.S. Lehmann. Electron density in bis (dicarbonyl-.pi.-cyclopentadienyliron) at liquid nitrogen temperature by x-ray and neutron diffraction. II J. Am. Chem. Soc. -1978 -V.100 -P. 3390−3397.
    30. G. Allegra, G. Natta. AttiA! ccad. Naz. Lincei. -1961. -V.31. -P. 241.
    31. M.F. Bailey, L.F. Dahl. Three-Dimensional Crystal Structure of Benzenechromium Tricarbonyl with Further Comments on the Dibenzenechromium Structure. II Inorg. Chem. -1965. -V.4. -P. 1314−1319.
    32. Y. Wang, K. Angermund, R. Goddard, C. Kruger. Redetermination of theIexperimental electron deformation density of (benzene)tricarbonylchromium. II J. Am. Chem. Soc. -1987. -V.109-P. 587−589.
    33. J. Brunvoll, S.J. Cyvin, L. Schafer. Benzenechromium tricarbonyl III. Mean amplitudes of vibration and related quantities for C^i6Cr (CO)i. II J. Organomet. Chem. -1972.-V.36-P. 143−152.
    34. L. Schafer, G.M. Began, S. Cyvin. The Raman spectrum of benzene-chromium-tricarbonyl. II J. Spectrochimica Acta Part A. -1972. -V.28A -P. 803−806.
    35. R. Catlaiotti, A. Poletti, A. Santucci. Low-frequency infrared spectra of n-arenechromiumtricarbonyl complexes and normal coordinates of C6H6Cr (CO)3. II J. Mol. Struct. -1970. -V.5. -P. 215−226.
    36. T.A. Albright, P.~ Hofmann, R. Hoffmann. Conformational preferences and rotational barriers in polyene-MLS transition metal complexes. II J. Am. Chem. Soc. -1977. -V.99. -P. 7546−7557.
    37. E.L. Muetterties, J.R. Bleeke, E.J. Wucherer, T.A. Albright. Structural, stereochemical, and electronic features of arene-metal complex. II Chem. Rev. -1982. -V.82. -P. 499−525.
    38. J.W. Chinn, M.B. Hall. Interruption of conjugation in polyenes bound to transition-metal fragments. И J. Am. Chem., Soc. -1983. -V. -105. -P. 4930−4941.
    39. A.A. Low, M.B. Hall. Benzene chromium tricarbonyl revisited: Theoretical study of the structure and dynamics of (rj6-C?H$)Cr (CO)3. II Int. J. Quantum Chem. -2000. -V.77. -P. 152−160. ^
    40. И.И. Черняев. Изв. Ин-та по изучению платины. -1926. -№.4. -С. 243.
    41. Ю. Н. Кукушкин. Взаимное влияние лигандов в комплексных соединениях. II Успехи химии. -1974. -№ ю. -С. 1689−1715.
    42. B.J. Сое, S.J. Glenwright. Trans-effects in octahedral transition metal complexes. II Coord. Chem. Rev. -гООО^-У^ОЗ -P. 5−80.
    43. S.M. Sickafoose, S.M. Breckenridge, S.G. Kukolich. Microwave Spectra fori i
    44. C6H5D) Cr (CO) 3, (C6D6) Cr (CO)3, and (C6H5F)Cr (CO)3 and the Structure of (Benzene)chromium Tricarbonyl. //Inorg. Chem. -1994. -V.33. -P. 5176−5179.
    45. R.F.W. Bader. Atoms in Molecules: A Quantum Theory. Oxford University Press. -1990.
    46. P. Popelier, Atoms in Molecules: an Introduction. Prentice Hall, Harlow. -2000.
    47. T.S. Koritsanzky, P. Coppens. Chemical Applications of X-ray Charge-Density Analysis. II Chem. Rev. -2001. -V.101. -P. 1583−1628.
    48. Ю.В. Нелюбина, М. Ю. Антипин, K.A. Лысенко. Анион-анионные взаимодействия: природа, энергия, роль в формировании кристаллов. II Успехи химии. -2010. -№ 79. -С. 195−217.
    49. К.А. Лысенко, М. Ю. Антипин. Природа и энергетика внутримолекулярных водородных связей в кристалле. // Изв. АН. Сер. хим. -2006. -№ 1 -С.1.
    50. С.Н. Suresh, N. Koga, S.R. Gadre. Molecular Electrostatic Potential and Electron Density Topography: Structure and Reactivity of (substituted агепе) Сг (СО)з Complexes. II Organometallics. -2000. -V.19. -P. 3008−3015.
    51. A.O. Borissova, M.Yu. Antipin, K.A. Lyssenko. Mutual Influence of Cyclopentadienyl and Carbonyl Ligands in Cymantrene: QTAIM Study. II J. Phys. Chem. A. -2009, -V. 113. -P. «l0845−10 851.
    52. N.S. Chui, L. Schafer, R. Seip. On internal rotation in gaseous benzenechromium tricarbonyl. //J. Organomet. Chem. -1975. -V.101. -P. 331−346.
    53. S.G. Kukolich. Alternating C-C Bond Lengths in Gas-Phase (Benzene)chromium Tricarbonyl. II J. Am. Chem. Soc. -1995. -V.117. -P. 5512−5514.
    54. T.A. Albright. Rotational barriers and conformations in transition metal complexes. IIAcc. Chem. Res. -1982. -V.15. -P. 149−155.
    55. T.A. Albright, B.K. Carpenter. Conformational effects of nucleophilic and electrophilic attack on (arene)chromium tricarbonyl complexes. II Inorg. Chem. -1980. -V.19.-P. 3092−3097.
    56. W. Tam, D.F. Eaton, J.C. Calabrese, I.D. Williams, Y. Wang, A.G. Anderson. Channel inclusion complexation of organometallics: dipolar alignment for second harmonic generation. II Chem.Mater. -1989. -V.l. -P. 128−140.
    57. З.А. Старикова, И. В. Федянин, М. Ю. Антипин. Конформационная жесткость и лабильность парациклофанового остова в замещенных 2.2]парациклофанах. ИI
    58. Изв. АН. Сер. хим. -2004. -№ Ю.-С. 1−26.
    59. R.E. Schmidt, W.Z. Massa. Crystal-structure of tricarbonyl (2,6-di-tret-butyl-pyridine)chromium (O) at 200-K. //Naturforsch., B: Chem.Sci. -1984. -V.39. -P. 213−216.
    60. S.M. Draper, J.J. Byrne!, C.J. Breheny, C. Long, J.N. Low. Tricarbonyl (rf-pyridine)chromium (O). II Acta Crystallogr. Sect. C: Cryst.Struct.Commun. -1994. -V.50. -P. 1669−1671.
    61. K.H. Dotz, A. Tiriliomis, K. Harms, M. Regitz, U. Annen. Annelation of Carbene Ligands by X3-Phosphaalkynes, an Entry to Functionalized Phosphaarenes. II Angew.
    62. Chem. Int. Ed. -1988. V.27. -P. 713-, i
    63. H. Vahrenkamp, H. Noth. Heteroaromatische Komplexliganden Die Kristallstruktur von 2.4.6-Triphenyl-phosphorin-chrom (0)-tricarbonyl. II Chem. Ber. -1972. -V.105. -P. 1148−1157.
    64. K.H. Dotz, A. Tiriliomis, K. Harms. Phosphahydroquinones and oxaphospholes via carbene annulation and cycloaddition reactions of chromium carbonyl carbene complexes andphosphaalkynes.,// Tetrahedron. -1993. -V.49. -P. 5577−5597.
    65. AJ. Ashe III, F. Xiangdong, J.W. Kampf. 1-Arsanaphthalene. The Structure of Tricarbonyl (2-trimethylsilyl-l-arsanaphthalene)molybdenum. II Organometallics. -2001 -V.20. -P. -2109−2113.
    66. R. Boese, N. Finke, T. Keil, P. Paetzold, G. Schmid. Pyridine-borabenzene and pyridine-2-boranaphthaline as ligands of group 6A metals. II Z. Naturforsch. Sec. B-A. J. of Chem. Sei. -1985. V.40. -P. 1327−1332.
    67. J. Tweddell, D.A. Hoic, G.C. Fu. First Synthesis and Structural Characterization of an Enantiomerically Pure Planar-Chiral Lewis Acid Complex. II J. Org. Chem. -1997. -V.62. -P. 8286−8287.
    68. A.J. Ashe III, J.W. Kampf, C. Muller, M. Schneider. Aminoboratabenzenes. An Evaluation of the Exocyclic B~N Interaction. II Organometallics -1996. -V.15. P. 387 393. i i
    69. L. Weber, R. Boese. Ubergangsmetall-Schwefelylid-Komplexe, XIII. n-Komplexe von l-Alkyl-3,5-diphenyl-X4-thiabenzol mit Tricarbonylchrom, -molybdan und -wolfram. II Chem.Ber. -1982. V. l 15.-P. 1775−1786.
    70. T. Debaerdemaeker. Tricarbonyl (l, l-dimethoxy-2,4,6-triphenyl-X5-phosphorin)chrom und (4-tert-Butyl-l, l-difluor-2,6-diphenyl-X5 -phosphorin)tricarbonylchrom. //Acta Crystallogr. Sect. B Struct. -1979. -V.35. -P. 16 861 689.
    71. L. Weber, С. Kruger, Y.H. Tsay. к-Komplexe von l-Methyl-3,5-diphenylthiabenzol-1-oxid mit Tricarbonylchrom, -molybdan und -wolfram. И Chem. Ber. -1978. -V.l 11. -P. 1709−1720.
    72. T. Asamizu, J.L. Nielsen, B.K. Nicholson. Cyclorhenated compounds derived from 1,4-diaryl-l-azabutadienes: preparation, structures and reactions. II J. Organomet. Chem. -2010. -V.695. -P. 96−102.
    73. L. Nyulaszi, G. Keglevich. Study on the aromaticity and reactivity of chlorophosphinines. II Heteroatom Chem. -1994 V.5. -P. 131−137.
    74. T.S. Piper, F.A. Cotton, G. Wilkinson. Cyclopentadienyl-carbon monoxide and related compounds of some transitional metals. II J. Nucl. Chem. -1955 -V.l. -P. 165 174.
    75. A.H. Несмеянов, T.B. Никитина, O.B. Ногина и др. II Методы элементоорганической химии. Подгруппы меди, скандия, титана, ванадия, хрома, марганца. Лантаноиды и актиноиды. -М. Наука. -1974. -С. 781−850.
    76. А.Г. Гинзбург Химия цимантрена. II Успехи химии -2009. -Т.78. -№ 3 -С. 211 226.
    77. А.Г. Гинзбург Металлоорганическая химия Т. 2. (Итоги науки и техники. Серия Координационная химия). Изд-во ВИНИТИ. Москва. 1990.
    78. A.F. Berndt, R.E. Marsh. The crystal structure of cyclopentadienyl manganese tricarbonyl, C5H5Mn (CO)3i //Acta Crystallogr. -1963 -V.16. -P. 118−123.
    79. P.J. Fitzpatrick, Y. Le Page, I.S. Butler. The structure of tricarbonylfrj5-cyclopentadienyl)rhenium (I). II Acta Crystallogr. Sect. В -1981. -V.37. -P. 1052−1058.
    80. A. Mitschier, B. Rees, M.S. Lehmann. Electron density in bis (dicarbonyl-.pi.-cyclopentadienyliron) at liquid nitrogen temperature by x-ray and neutron diffraction. II J. Am. Chem. Soc. -1978. -V.100 -P. 3390−3397.
    81. L.J. Todd, J.R. Wilkinson. Carbon-13 nuclear magnetic resonance spectra of metal carbonyl compounds. II J. Organomet. Chem. -1974. V.77. -P. 1−25.
    82. M.H. Chisholm, S. Godleski. Applications of Carbon-13 NMR in Inorganic Chemistry. 11 Prog. Inorg. Chem. -1976. -V.20 -P. 299−436.
    83. J.P. Hickey, I.M. Baibich, I.S. Butler, L.J. Todd. Oxygen-17 NMR Spectra of Somei
    84. Group VIB and VIIB Transition Metal Chalcarbonyl Complexes. II Spectrosc. Lett. -1978. V.ll.-P. 671−680.»
    85. D.M. Adam, A. Squire. Reassignment of the vibrational spectra of n-cyclopentadienyl- and methyl-n-cyclopentadienyl-manganese tricarbonyl. II J. Organomet. Chem. -1973 -V.63. -P. 381−388.
    86. B.V. Lokshin, E.B. Rusach, V.N. Setkina, N.I. Pyshnograeva. A comparative study of the vibrational spectra of (n-pyrrolyl)tricarbonylmanganese and (n-cyclopentadienyl)tricarbonylmanganese. II J. Organomet. Chem. -1974 -V.77. -P. 69−76.
    87. D.J. Parker. Vibrational spectra of tricarbonyl (iz-cyclopentadienyl)manganese, bis-tricarbonyl (n-cyclopentadienyl)molybdenum], and their deuteriated derivatives. II J. Chem. Soc., Dalton Trans. -1974 -P. 155−162.
    88. V.W. Day, B.R. Stults, K.J. Reimer, A. Shaver. Reactions of diazocyclopentadienes. Preparation and structure of halogen substituted pentahaptocyclopentadienylrhodium complexes. II J. Am. Chem. Soc. -1974. -V.96. -P 1227−1229.
    89. A.E. Smith. Crystal and molecular structure of bis (cyclopentadienyl)-2,2'-bi-.pi.-allylbis (nickelj~~(C5H5NiC3H4-C3H4NiC5H5). 11 Inorg. Chem. -1972. -V.ll. -P. 165 170.
    90. D.R. Laws, D. Chong, K. Nash, A.L. Rheingold, W.E. Geiger. Cymantrene Radical Cation Family: Spectral and Structural Characterization of the Half-Sandwich Analogues of Ferrocenium Ion. II J. Am. Chem. Soc. -2008. -V. 130. -P 9859−9870.
    91. I.S. Lee, H. Seo, Y.K. Chung. Preparation of (Thiophene)manganese Tricarbonyl Cations for Nonlinear Optics. II Organometallics -1999. -V.18. -P 1091−1096.
    92. Y.M. Terblans, S. Lotz. Synthesis and structure of bimetallic complexes withal-bridged monocarbeneligands. II J. Chem. Soc. Dalton Trans. -1997. -P. 2177−2182.-v I I
    93. A.du Toit, M. Landman, S. Lotz. Synthesis and structure of bimetallic complexes with a, K-bridging thienyl and benzothienylligands. II J. Chem. Soc. Dalton Trans. -1997. -P. 2955−2962.
    94. T.A. Waldbach, P.H.V. Rooyen, S. Lotz. (rj'-tpMn, rf-tpCr) → (rj'-tpCr, rf-tpMn) Thiophene (tp) Conversion due to Bimetallic Activation: A Novel Metal-Exchange Reaction. II Angew. ChemJ Int. Ed. -1993. -V.32. -P. 710−712.
    95. T.A. Waldbach, P.H. V. Rooyen, S. Lotz. Trimetallic complexes with.sigma.,.sigma.,.pi.-bonded thienylene ligands. // Organometallics -1993. -V.12. -P 4250−4253.
    96. M.J. Sanger, R.J. Angelici. Dynamic NMR Studies of the Restricted Rotation of Thiophenes (Th) and Selenophenes (Seln) in the Cr (CO)3(.eta.5-Th) and Cr (CO)3(.eta.5-Seln) Complexes. II Organometallics -1994. -V. 13. -P 1821−1831.
    97. C. Ganter, L. Brassat, B. Ganter. Diastereoselective Synthesis of Tricarbonyl (thiophene)chromium Complexes. II Chem.Ber. -1997. -V.130. -P. 659−662.
    98. M.S. Loft, T.J. Mowlem, D.A. Widdowson, D.J. Williams. Enhanced lability of asilyl groups in thiophenetricarbonylchromium (O) complexes. II J. Chem. Soc. Perkin Trans. 1. -1995. -P. 105−109.
    99. G. Huttner, O.S. Mills. Ubergangsmetallkomplexe cyclischer n-Liganden, III. Kristall- und Molekulstruktur von Tricarbonyl (N-methyl-pyrrol)chrom (0). II Chem. Ber. -1972.-V.105.-P. 301−311.
    100. G.E. Herberich, B. Hessner, J.A.K. Howard, D.P.J. Koffer, R. Saive. Synthesis of Anionic Triple-Decker Complexes Having Closed 30e Valence Shells by Stacking of Sandwich Anions with Cr (CO)3 Fragments. //Angew. Chem. Int. Ed. -1986. -V.25. -P. 165.
    101. T. Eicher, S. Hauptman, A. Speicher. The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications 3rd, Completely Revised and Enlarged Edition. II Wiley-VCH. -2013.
    102. A.R. Dias, A.M. Galvao, A.C. Galvao, M.S. Salema. Synthesis, characterisation, crystal structure, reactivity and bondingin titanium complexes containing!, 3,4,5-tetramethylpyrrolyl II J. Chem. Soc. Dalton Trans. -1997. -P. 1055−1062.
    103. G. Frison, F. Mathey, A. Sevin Electronegativity versus lone pair shape: A comparative study of phosphaferrocenes and azaferrocenes. II J. Phys. Chem. A. -2002. -V.106-P. 5653−5659.
    104. R. Wiest, B. Rees, A. Mitschier, F. Mathey. Molecular Structure of Phosphaferrocene and Charge Density Distribution at Low Temperature. 11 Inorg. Chem. -1981. -V.20. -P. 2966−2970.
    105. N.M. Kostic, R.F. Fenske. Bonding in Phosphaferrocenes and Reactivity of the Phospholyi Ligand Studied by Molecular Orbital Calculations. II Organometallics. -1983.-V.2.-P. 1008−1013. '
    106. F. Mathey. Phosphametallocenes: from discovery to applications. II J. Organomet. Chem. -2002. -V.646. -P. 15−20.
    107. D.L. Kershner, A.L. Rheingold, F. Basolo. Synthesis, CO substitution, and structure of tricarbonyl (eta-5−3,4-dimethylpyrrolyl)manganese (I) evidence for slippage toward nitrogen of the N-heterocycle II Organometallics -1987. -V.6. -P. 196−198.
    108. J.A.D. Jeffreys, C.Metters. Crystal and molecular structure of tricarbonyl (2-methylindolyljmanganese. II J. Chem. Soc. Dalton Trans. -1977. -P. 1624−1627.
    109. W.A. Herrmann, I. Schweizer, P. S. Skell, M.L. Ziegler, K. Weidenhammer, B. Nuber. Chemie der Ubergangsmetall-Heterocyclen-Komplexe, I. Uber eine elektrophile Pyrrolyl-Eliminierung aus Azacymantren. II Chem. Ber. -1979. -V.112. -P. 2423−2435.
    110. V.G. Andrianov, Yu.T. Struchkov, N.I. Pyshnograeva, V.N. Setkina, D.N. Kursanov. n-complexes as ligands in transition metal compounds V. Interaction of n-pyrrolyltricarbonylmanganese with picric acid. II J. Organomet. Chem. -1981. -V.206. -P. 177−184.
    111. N.I. Pyshnograeva, V.N. Setkina, V.G. Andrianov, Yu.T. Struchkov, D.N. Kursanov. n-Complexes as ligands in transition metal compounds: I. tc-Pyrrolyltricarbonylmanganese, a new two-electron ligand. II J. Organomet. Chem. -1978. -V.157.-P. 431−436.
    112. F. Mathey, A. Mitschier, R. Weiss. Synthetic, physicochemical, and structural study ofphosphacymantrenes. II J. Am. Chem. Soc. -1978. -V.100. -P. 5748−5755.
    113. B. Deschamps, P. Toullec, L. Ricard, F. Mathey. Recovering phospholes from phosphacymantrenes. II J. Organomet. Chem. -2001. -V.634. -P. 131−135.
    114. B. Deschamps, L. Ricard, F. Mathey. rf -Phosphole tricarbonylmanganates: a new type of chelating ligands for transition metals. II J. Organomet. Chem. -2004. -V.689. -P. 4647−4649.j
    115. L. Nyulaszi. Aromaticity of Phosphorus Heterocycles // Chem. Rev. -2001 -V.101. -P. 1229−1246.
    116. D. Gudat, B. Lewall, M. Nieger, I. Detmer, L. Szarvas, P. Saarenketo, G. Marconi. Redox-Induced Coordination Isomerization of a Phosphoniobenzophospholide. II Chem. Eur. J. -2003 -V.9. -P. 661−670.
    117. P. Toullec, L. Ricard, F. Mathey. Electrophilic Alkylation of Electron-Rich Arenes by Phosphacymantrenylcarbenium Ions. // Organometallics. -2003. -V.22. -P. 13 401 342.
    118. P. Toullec, L. Ricard, F. Mathey. McMurry Coupling of 2-Acylphosphacymantrenes: E- vs Z-Stereochemistry of the 1,2-Bis (phosphacymantrenyl) Alhenes. II Organometallics. -2002. -V.21. -P. 2635−2638.
    119. L. Brunet, F. Mercier, L. Ricard, F. Mathey. The Reactivity of Phosphacymantrenes towards Palladium (II) and Palladium (O) Compounds: Synthesis, Structure, and Chemistry of Pd2Mn2and Pd3Mn4 Arrays. II Angew. Chem. Int. Ed. -1994. -V.33. -P. 742−745.
    120. L. Brunet, F. Mercier, L. Ricard, F. Mathey. Ruthenium (II) complexes of 3,4-dimethylphosphacymantrene. II Polyhedron. -1994. -V.13. -P. 2555−2561.
    121. D.A. Clemente, A. Marzoitto 22 Space-group changes. II Acta Crystallogr. Sect. B: Struct. Sei. -2003. -V.59. -P. 43−50.
    122. B. Cordero, V. Gomez, A.E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan, S. Alvarez. Covalent radii revisited. II J. Chem. Soc. Dalton Trans. -2008. -P. 2832−2838.
    123. P. Honberg, W. Kohn. Inhomogeneous Electron Gas. II Phys. Rev. B. -1964. -V.136.-P. 864−870.
    124. R.F.W. Bader, T.T. Nguyen-Dang, A. Tal. A topological theory of molecular structure. //Rept. Prog. Phys. -1981. -V.44. -P. 893−948.
    125. R.F.W. Bader. A quantum theory of molecular structure and its applications. II Chem. Rev. -1991. -V.9L-R. 893−928.
    126. R.F.W. Bader, P.L.A. Popelier. T.A. Keith. Theoretical Definition of a Functional Group and the Molecular Orbital Paradigm. II Angew. Chem. Int. Ed. Engl. -1994. -V.33.-P. 620−631.
    127. D. Cremer, E. Kraka. A description of the chemical-bond in terms of local properties of electron-density and energy. II Croat. Chim. Acta. -1984. V.57. -P. 12 591 281.
    128. E. Espinosa, E. Molins, C. Lecomte. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. II Chem. Phys. Letts. -1998. -V.285.-P. 170−173.
    129. E. Espinosa, I. Alkorta, I. Rozas, J. Elguero, E. Molins. About the evaluation of thei* -- 'local kinetic, potential and total energy densities in closed-shell interactions. II Chem. Phys. Letts. -2001. -V.336. -P. 457−461.
    130. E. Cerpa, A. Krapp, A. Vela, G. Merino. The Implications of Symmetry of the External Potential on Bond Paths. II Chem. Eur. J. -2008 -V.14. -P. 10 232−10 234.
    131. J. Poater, M. Sola, F.M. Bickelhaup. A Model of the Chemical Bond Must Be Rooted in Quantum Mechanics, Provide Insight, and Possess Predictive Power. II Chem. Eur. J. -2006 -V.12.-P. 2902−2905.
    132. J. Cioslowski, S.T. Mixon, Universality among topological properties of electron density associated with the hydrogen-hydrogen nonbonding interactions. // Can. J. Chem. -1992 -V.70. -P. 443−449.
    133. A. Krapp, G. Frenking. Is This a Chemical Bond? A Theoretical Study ofNg2@C60
    134. Ng—He, Ne, Ar, Kr, Xe). II Chem. Eur. J. -2007 -V.13. -P. 8256−8270.i i
    135. E. Cerpa, A. Krapp, R. Flores-Moreno, K.J. Donald, G. Merino. Influence of Endohedral Confinement on the Electronic Interaction between He atoms: A He2@C2oH2o Case Study. II Chem. Eur. J. -2009 -V.15. -P. 1985−1990.
    136. M. Hopffgarten, G. Frenking. Chemical Bonding in the Inclusion Complex of He in Adamantane, He@adam: Antithesis and Complement. II Chem. Eur. J. -2008 -V.14. -P. 10 227−10 231.
    137. R.F.W. Bader. Bond Paths Are Not Chemical Bonds. II J. Phys. Chem. A. -2009. -V.113-P. 10 391−10 396.
    138. A.M. Pendas, E. Francisco, M.A. Blanco, C. Gatti. Bond Paths as Privileged Exchange Channels. 11 Chem. Eur. J. -2007 -V.13. -P. 9362−9371.
    139. R.F.W. Bader, T.S. Slee, D. Cremer, E. Kraka. .Description of conjugation and hyperconjugation in terms of electron distributions II J. Am. Chem. Soc. -1983. -V. 105. -P 5061−5068.
    140. P. Macchi, D.M. Proserpio, A. Sironi. Experimental Electron Density Studies for Investigating the Metal n-Ligand Bond: the Case of Bis (l, 5-cyclooctadiene)nickel. II J. Am. Chem. Soc. -1998. -V.120.-P 1447−1455.
    141. A. Reisinger, N. Trapp, I. Krossing, S. Altmannshofer, V. Herz, M. Presnitz, W. Scherer. Homoleptic Silver (I) Acetylene Complexes. II Angew. Chem. Int. Ed. Engl. -2007. -V.46. -P. 8295−8298.i
    142. J. Overgaard, H.F. Clausen, J.A. Platts, B.B. Iversen. Experimental and Theoretical Charge Density Study of Chemical Bonding in a Co Dimer Complex. II J. Am. Chem. Soc. -2008. -V. 130. -P 3834−3843.
    143. H.A. Sparkes, S.K. Brayshaw, A.S. Weller, J.A.K. Howard. Rh (C7Hs)(PPh3)Cl]: an experimental chargedensity study II Acta Crystallogr. Sect. B. -2008. -B.64. -P. 550
    144. J. Overgaard, J.A. Platts, B.B. Iversen. Experimental and theoretical charge-density study of a tetranuclear cobalt carbonyl complex. II Acta Crystallogr. Sect. B. -2009. -B.65. -P. 715−723.
    145. W. Scherer, G. Eickerling, D. Shorokhov, E. Gullo, G.S. McGrady, P. Sirsch.1.I
    146. Valence shell charge concentrations and the Dewar-Chatt-Duncanson bonding model. II New J. Chem. -2006. -V.30. -P. 309−312.
    147. R.F.W. Bader, C.F. Matta. Bonding to Titanium. II Inorg. Chem. -2001. -V.40. -P. 5603−5611.
    148. F. Cortes-Guzman, R.F.W. Bader. Complementarity of QTAIM and MO theory in the study of bonding in donor-acceptor complexes. II Coord. Chem. Rev. -2005. -V.249 -P. 633−662.
    149. K.A. Lyssenko, D.G. Golovanov, M.Yu. Antipin. Topological analysis of the electron density distribution functions of neutral 3d metal metallocenes. II Mendeleev Commun. -2003. -V.13. -P. 209−211.
    150. G. Zhang, H. Zhang, M. Sun, L. Yanhong, P. Xiaohong, Yu. Xiaohong, B. Liu, L. Zesheng. Substitution Effect on the Geometry and Electronic Structure of the Ferrocene. II J. Comput. Chem. -2007. -V.28. -P. 2260−2274.
    151. A.I. Stash, K. Tanaka, K. Shiozawa, H. Makino, V.G. Tsirelson. Atomic interactions in ethylenebisfl-indenyljzirconium dichloride as derived by experimental electron density analysis. // Acta Crystallogr. Sect. B. -2005. -B.61. -P. 418−428.
    152. LJ. Farrugia, C. Evans, M. Tegel. Chemical Bonds without «Chemical Bonding»?i
    153. A Combined Experimentaland Theoretical Charge Density Study on an Iron Trimethylenemethane Complex. II J. Phys. Chem. A. -2006. -V.l 10 -P. 7952−7961.
    154. R.F.W. Bader, C. Gatti. A Green’s function for the density II Chem. Phys. Lett. -1998. -V.287-P. 233−238.
    155. C. Gatti, F. Cargnoni, L. Bertini. Chemical information from the source function. II J. Comput. Chem.-2003.^y.24UP. .422−436.
    156. L.J. Farrugia, P. Macchi. On the Interpretation of the Source Function. // J. Phys. Chem. A. -2009. -V.113 -P. 10 058−10 067.
    157. X. Fradera, M.A. Austen, R.F.W. Bader. The Lewis Model and Beyond. 11 J. Phys. Chem. A. -1999. -V.103 -P. 304−314.
    158. J.G. Angyan, M. Loos, I. Mayer. Covalent Bond Orders and Atomic Valence Indices in the Topological Theory of Atoms in Molecules. II J. Phys. Chem. -1994. -V.98 -P. 5244−5248.
    159. S. Mebs, M.A. Chilleck, S. Grabowsky, T. Braun. Hapticity Uncovered: RealSpace Bonding Indicators for Zincocene Chemistry. II Chem. Eur. J. -2012 -V.18. -P. 11 647−11 661.
    160. A.D. Becke, K.E. Edgecombe. A simple measure of electron localization in atomic and molecular systems. II J. Chem. Phys. -1990 -V.92. -P. 5397−5403.
    161. B. Silvi, A. Savin. Classification of chemical bonds based on topological analysis of electron localization functions. II Nature. -1994. V.371. -P. 683−686.
    162. J. Bruckmann, C. Kruger, F. Lutz. Systematic structural investigations on phosphines. II Z, Naturforsch., B: Chem. Sci. -1995. -V.50. -P. 351−360.
    163. A.G. Ginzburg, V.V. Bashilov, F.M. Dolgushin, A.F. Smol’yakov, A.S. Peregudov, V.I. Sokolov. Unexpected reaction pathway during the palladation of 2,5-diphenylphosphacymantrene. II J. Organomet. Chem. // -2009. -V.694. -P. 72−76.
    164. А.Ф. Смольяков, А.Г., Гинзбург, B.B. Башилов, Ф. М. Долгушин, П.В.
    165. Петровский, К. К. Бабиевский, В. И. Соколов. Первое оптически активное Р-алкоксипроизводное пстладированного фосфацимантрена: синтез, структура и хироптические свойства. //Изв. АН. Сер. хим. -2013. -№ 4-С.1079.
    166. H.D. Flack. On enantiomorph-polarity estimation. II Acta Cryst. Sec. A -1983. -V.39.-P. 876−881.I
    167. B.B. Башилов, А. Г. Гинзбург, А. Ф. Смольяков, Ф. М. Долгушин, П. В. Петровский, В. И. Соколов., Взаимодействие 2,5-дифинилфосфацимантрена с1. iдиэтиламином в присутствии воды. II Изв. АН. Сер. хим. -2010. -№ 2 -С. 476.
    168. MORPHY98, a topological analysis program written by P. L. A Popelier with a contribution from R. G. A. Bone (UMIST, Engl, EU).
    169. А.Ф. Смольяков, Ф. М. Долгушин, М. Ю. Антипин. Конформационная предпочтительность 2,5-замещённых производных фосфацимантрена по данным квантово-химических расчетов и анализа топологии электронного распределения. //Изв. АН. Сер.хим. -20I2. 12 -С. 2185.
    170. T. Douglas, К.Н. Theopold. Synthesis and Crystal Structure of a Phospholyl Anion //Angew. Chem. Int. Ed. -1989. -V.28. -P. 1367−1368.
    171. D.B. Cbesnut, L.D. Quin. Characterization ofNMR Deshielding in Phosphole and the Phospholide Ion. H J. Am. Chem. Soc. -1994. -V.116. -P. 9638−9643.I
    172. E-Dikran,-V.-Bruce,—R. Rocha. Structure and Nature of the Metal-Ligand Interactions in Mixed Iron (II) Phosphametallocenes. II Organometallics -2004. -V.23. -P. 5308−5313.
    173. G.Dettlaf, E.Weiss. Kristallstruktur, 'H-NMR- und massenspektrum von tricarbonylferracyclopentadien-tricarbonyleisen, C4H4Fe2(CO)6- 11 J- Organomet. Chem. -1976. -V.108. -P.-2−13−22−3,--
    174. Ф.М. Долгушин, А. И. Яновский, М. Ю. Антипин. Металлациклопентадиены: особенности строения и координации в комплексах переходных металлов. П Успехи химии. -2004. -№ 6. -С. 563−587.1 i
    175. M. Deutsch, N. Claiser, J.M. Gillet, C. Lecompte, H. Sakiyama, K. Tone, M. Souhassou. d-Orbital orientation in a dimer cobalt complex: link to magnetic properties? II Acta Crystallogr. Sect. B. -2011. -V.67. -P. 324−332.
    176. P.J. Hay, J.C. Thibealut, R. Hoffann. Orbital interactions in metal dimer complexes. II J. Am. Chem. Soc. -1975. -V.97. -P. 4884−4899.
    177. D.M. Hoffman, R. Hoffman. A-Frames. Inorganic Chemistry. -1981. -V.20. -P. 3543−3555.
    178. P. Macchi, A. Sironi. Chemical bonding in transition metal carbonyl clusters:1 icomplementary analysisof theoretical and experimental electron densities. II Coord. Chem. Rev. -2003. -V.238. -P. 383−412.
    179. L.J. Farrugia, C. Evans, H.M. Senn, M.M. Hanninen, R. Sillanpaa. QTAIM View of Metal-Metal Bonding in Di- and Trinuclear Disulfido Carbonyl Clusters. II Organometallics. -2012. -V.31. -P. 2559−2570.
    180. C. Gatti. Challenging-chemical concepts through charge density of molecules and crystals. II Phys. Scr. -2013. -V.87. -P. 1−38.
    181. Blessing R. H. An Empirical Correction for Absorption Anisotropy II Acta Cryst. -1995.-V.51.-P. 33−38.
    182. Programs. SAINT and SADABS. 1999. i i
    183. G.M. Sheldrick. A short-history ofSHELXII Acta Cryst. -2008. -V.A64. -P. 112 122.
    184. N.K. Hansen, P. Coppens. Testing aspherical atom refinements on small-molecule data sets II Acta. Cryst. -1978. -V.A34. -P. 909−921.
    185. Д.А. Киржниц, Ю. Е. Лозовик, Г. В. Шпатаковская. Статистическая модель вещества. II Успехи физических наук. -1975. -№ 711. -С. 3−47.
    186. A.I. Stash, V.G. Tsirelson. WinXPRO: a program for calculating crystal and molecular properties using multipole parameters of the electron density II J. Appl. Crystallogr. 2002. -V.35. -P. 371−373.
    Заполнить форму текущей работой