Помощь в учёбе, очень быстро...
Работаем вместе до победы

Молекулярные механизмы шапероноподобного действия амфифильных белков и пептидов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

При исследовании синтетических аналогов пептидного антибиотика грамицидина с помощью турбидиметрии и ДЛС показано, что амфифильные пептиды, содержащие 27 и 21 аминокислотных остатков, а также пептиды Ala-Phe-Lys и Arg-Phe при определенных условиях проявляют способность ускорять термоагрегацию МДГ и АДГ. Этим свойством обладает и низкомолекулярный (12 кДа) термостабильный белок, выделенный… Читать ещё >

Содержание

  • СПИСОК СОКРАЩЕНИЙ
  • Актуальность проблемы
  • Цель данной работы
  • Научная новизна и практическое значение работы
  • ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
  • Молекулярные шапероны
  • Участие молекулярных шаперонов в фолдинге
  • Классификация молекулярных шаперонов
  • Малые белки теплового шока
  • Роль белков теплового шока в функционировании живых систем в норме и патологии
  • Шапероноподобные белки
  • Протендисульфидизомераза (PDI)
  • DsbC
  • Пептидил-пролил-цис-транс-изомеразы (PPI)
  • Семейство FKBP
  • PPI в роли шаперонов
  • Фактор ингибирования миграции макрофагов (MIF)
  • Казеин
  • Тубулин
  • Кальнексин и кальретикулин
  • Антитела как специфические шапероны. а-Синуклеин
  • Спектрин
  • Пептиды, обладающие шапероноподобной активностью
  • Влияние аргинина на агрегацию белков
  • Рефолдинг рекомбинантных белков in vivo и in vitro
  • Влияние полиаминов на агрегацию белков
  • Искусственные шапероны
  • Ускорение агрегации белков
  • ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
  • Материалы и методы
  • Материалы
  • Получение экстракта мозга быка
  • Обращенно-фазовая ВЭЖХ
  • N-концевое микросеквенирование
  • Масс-спектральный анализ
  • Электрофорез
  • Концентрацию белка
  • Динамическое лазерное светорассеяние (ДЛС)
  • Анализ шапероноподобной активности
  • ГЛАВА 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
  • Выделение и идентификация FKBP
  • Исследование шапероноподобной активности FKBP
  • Исследование влияния аргинина на агрегацию модельных белковых субстратов
  • Кинетика агрегации АДГ
  • Кинетика агрегации инсулина
  • Исследование влияния трипептида (Ala-Phe-Lys) и дипептида (Arg-Phe) на термоагрегацию АДГ
  • Исследование влияния синтетических аналогов пептидного антибиотика грамицидина на агрегацию модельных белковых субстратов
  • Влияние MIF на кинетику агрегации АДГ
  • ВЫВОДЫ

Молекулярные механизмы шапероноподобного действия амфифильных белков и пептидов (реферат, курсовая, диплом, контрольная)

Актуальность проблемы. Большой интерес к изучению механизмов действия особого класса белков — «молекулярных шаперонов», основной функцией которых является участие в сворачивании полипептидных цепей в нативную структуру, вызван проблемами, связанными с процессами денатурации и агрегации белков вследствие нарушения их конформации при стрессорных воздействиях различного характера.

Молекулярные шапероны обладают способностью взаимодействовать с развернутыми или неправильно свернутыми белками, что препятствует связыванию этих белков между собой и последующей агрегации. Подобное взаимодействие приводит в конечном итоге к сохранению или восстановлению нативного состояния белков.

Многообразие действия шаперонов велико: они участвуют в различных внутриклеточных процессах, в том числе в котрансляционном фолдинге полипептидных цепей при их биосинтезе, транслокации белков через мембраны, включении индивидуальных белков в надмолекулярные структуры, они способствуют также солюбилизации агрегатов белков и их корректному рефолдингу.

Исследования последних лет показали, что традиционные представления о сохранении биологически активной конформации белков в денатурирующих условиях не ограничиваются сведениями о защитных свойствах молекулярных шаперонов. Процессы фолдинга могут осуществляться под действием системы шаперонов, входящих в состав мультишаперонной сети. В эту сеть часто вовлекаются ферменты фолдингапептидил-пролил-цис-транс изомераза (peptidyl-prolyl cys-trans isomerase, PPI) и протеиндисульфидизомераза (protein disulfide isomerase, PDI) и различные шапероноподобные белки. К этим белкам можно отнести тубулин, казеин, фактор ингибирования миграции макрофагов (macrophage migration inhibitory factor, MIF) и др. [Guha et al., 1998; Bhattacharyya, Das, 1999; Souza et al., 2000; Cherepkova et al., 2006]. Кроме того, оказалось, что пептидные фрагменты известных шаперонов (PDI и а-кристаллина) и их синтетические аналоги проявляют шаперонные свойства [Puig et al., 1997; Deuerling et al., 1999; Sharma et al., 2000; Manna et al., 2001]. Было обнаружено также, что шаперонная активность присуща изолированным пептидным фрагментам (и их синтетическим аналогам) молекул некоторых белковых субстратов, в частности, дрожжевой алкогольдегидрогеназы [Bhattacharyya et al., 2003].

Несмотря на огромное число экспериментов, направленных на изучение защитной роли шаперонов, структурно-функциональные особенности, необходимые для характеристики белка как шаперона, не вполне ясны. В соответствии с современными представлениями действие шаперонов осуществляется в результате их связывания с гидрофобными участками молекулы белкового субстрата, которые оказываются экспонированными наружу при нарушении пространственной структуры белка в состоянии стресса. Однако, наряду с гидрофобными взаимодействиями, в образовании агрегатов участвуют химические связи, аналогичные тем, которые стабилизируют белковую глобулу (вандерваальсовы силы, электростатические взаимодействия, водородные связи, дисульфидные связи и др.), что весьма редко учитывается при изучении молекулярных механизмов действия шаперонов.

В этой связи большой интерес вызывает исследование шапероноподобных свойств термостабильных гидрофобных белков, проявляющих способность к образованию амфифильной вторичной структуры. Представляется целесообразным также исследование защитных функций пептидов и свободных аминокислот, содержащих заряженные боковые группы.

Целью данной работы является исследование молекулярных механизмов защитного действия амфифильных белков и пептидов, предотвращающих агрегацию модельных белковых субстратов в состоянии стресса.

В соответствии с этой целью были поставлены следующие задачи:

1. Выделить иммунофилин — низкомолекулярный (12 кДа) цитоплазматический рецептор иммуносупрессора FK506 (FK506-Binding Protein, FKBP12) из мозга быка в гомогенном состоянии.

2. Исследовать шапероноподобную активность FKBP12 в тест-системе in vitro, основанной на торможении агрегации рекомбинантного инсулина человека, индуцированной дитиотреитолом (ДТТ).

3. Изучить молекулярные механизмы действия на кинетику агрегации белковых субстратов — малатдегидрогеназы из сердца свиньи (МДГ) и дрожжевой алкогольдегидрогеназы (АДГ) свободных аминокислот, содержащих положительно заряженные боковые группы (Arg, Lys и их аналоги), а также синтетических Argи/или Lys-содержащих пептидов — трипептида (Ala-Phe-Lys), дипептида (Arg-Phe) и аналогов пептидного антибиотика грамицидина.

4. Проанализировать изменение состояния агрегатов, образовавшихся при тепловом стрессе, после снятия денатурирующего воздействия.

Научная новизна и практическое значение работы. Впервые продемонстрированы шапероноподобные свойства иммунофилина FKBP12 из мозга быка. При этом применен новый оригинальный метод выделения этого белка в гомогенном состоянии, основанный, главным образом, на обратно-фазовой высокоэффективной жидкостной хроматографии (ВЭЖХ). С помощью метода динамического лазерного светорассеяния (ДЛС) показано, что шапероноподобная активность FKBP12 проявляется в концентрационно-зависимом уменьшении интенсивности светорассеяния и размеров (величины гидродинамического радиуса) аморфных агрегатов рекомбинантного инсулина человека.

Новые свойства иммунофилина FKBP12 могут расширить представления о его иммунологических функциях, поскольку в механизмах действия иммуносупрессоров участвуют различные белки, биологически активная структура которых может поддерживаться в присутствии FKBP12 [Snyder, Sabatini, 1995].

С использованием двух модельных систем: термоагрегации АДГ и ДТТ-индуцированной агрегации инсулина показана способность свободной аминокислоты аргинина тормозить агрегацию белков в концентрациях, близких к физиологическим (0,1−10 мМ). Подавление агрегации наблюдали и в присутствии коротких Argили Lys-содержащих пептидов (Ala-Phe-Lys) и (Arg-Phe). Данные пептиды и аргинин могут быть предложены в качестве эффективных средств для повышения выхода биологически активных белков в биотехнологических процессах.

В частности, проблемы, связанные с получением препарата рекомбинантного инсулина биотехнологическим путем и его длительным хранением, остаются в настоящее время актуальными. В этой связи весьма перспективным представляется изучение механизмов стабилизации молекулы инсулина и предотвращения его агрегации.

Практическое значение защиты инсулина от агрегации трудно переоценить. Инсулин, который образует аморфные агрегаты при диссоциации Аи В-цепей в результате восстановления связывающих их S-S-мостиков, является одним из интереснейших объектов исследования. Исследования защитной роли шапероноподобных белков, связывающих инсулин и предотвращающих его агрегацию, могут представлять интерес для нейроэндокринологии при разработке новых подходов к терапии некоторых нейродегенеративных заболеваний, в патогенезе которых участвуют факторы, вызывающие дисфункцию инсулина.

Что касается аргинина, то учитывая его роль во многих метаболических процессах, участвующих в реализации иммунологических и эндокринных функций организма, способность этой аминокислоты влиять на конформацию белков может иметь большое значение при разработке подходов к терапии таких заболеваний как атеросклероз, диабет, сепсис и злокачественные опухоли.

При исследовании синтетических аналогов пептидного антибиотика грамицидина с помощью турбидиметрии и ДЛС показано, что амфифильные пептиды, содержащие 27 и 21 аминокислотных остатков, а также пептиды Ala-Phe-Lys и Arg-Phe при определенных условиях проявляют способность ускорять термоагрегацию МДГ и АДГ. Этим свойством обладает и низкомолекулярный (12 кДа) термостабильный белок, выделенный из мозга быка, — MIF. Однако, несмотря на значительное увеличение размеров агрегатов, образовавшиеся белковые агрегаты оказывались способными к растворению. Предполагается, что в начале развития процесса агрегации (при температурах, близких к физиологически допустимому уровню) эффекторы, обратимо связываясь с развернутым белком, стабилизируют его структуру. После снятия денатурирующего воздействия повышается вероятность ренатурации белка. В этом смысле исследуемые эффекторы могут играть шапероноподобную роль.

Полученные данные, затрагивающие молекулярные механизмы ускорения/подавления агрегации белков с помощью амфифильных низкомолекулярных белков и пептидов, могут дать дополнительную информацию для разработки эффективных добавок с целью оптимизировать процесс фолдинга рекомбинантных белков, а также для создания лекарственных средств, способных предотвращать так называемые «конформационные» заболевания.

выводы.

1. С использованием методов динамического лазерного светорассеяния и турбидиметрии изучена кинетика индуцируемой дитиотреитолом агрегации рекомбинантного инсулина человека, а также термоагрегации малатдегидрогеназы из сердца свиньи и дрожжевой алкогольдегидрогеназы в качестве модельных белковых субстратов.

2. Разработан новый оригинальный метод выделения из мозга быка цитоплазматического белка — иммунофилина (12 кДа), связывающего иммуносупрессор FK506 (FK506-Binding Protein, FKBP 12), основанный, главным образом, на высокоэффективной жидкостной хроматографии. Белок идентифицирован по результатам N-концевого микросеквенирования, масс-спектрального анализа и иммуноблоттинга.

3. Впервые показано, что FKBP 12 обладает шапероноподобными свойствами, проявляющимися в концентрационно-зависимом торможении агрегации инсулина. Предполагается, что в основе наблюдаемых эффектов лежат гидрофобные взаимодействия FKBP 12 с субстратом.

4. В процессе исследования влияния электростатических взаимодействий на кинетику агрегации субстратов показано подавление агрегации алкогольдегидрогеназы и инсулина под действием аргинина (1−10 мМ). Обнаружено перераспределение популяций агрегатов по размерам с преимущественным образованием наночастиц с малым гидродинамическим радиусом, что может свидетельствовать о торможении слипания взаимодействующих частиц в результате включения в них аргинина. Подавление термоагрегации алкогольдегидрогеназы наблюдалось и при действии пептидов Ala-Phe-Lys и Arg-Phe. На примерах агрегации алкогольдегидрогеназы и малатдегидрогеназы в присутствии амфифильных синтетических аналогов пептидного антибиотика грамицидина, а также термостабильного белка — фактора ингибирования миграции макрофагов продемонстрированы стабилизация олигомерной структуры субстратов и повышение растворимости аморфных агрегатов. Предложена гипотетическая модель, в соответствии с которой, несмотря на ускорение агрегации субстратных белков, на начальных этапах развития теплового стресса амфифильные белки и пептиды могут играть шапероноподобную роль.

Работа выполнена при финансовой поддержке Программы «Молекулярная и клеточная биология» Президиума РАН.

Показать весь текст

Список литературы

  1. С. A., Eastwood A. L., Lester Н. A., Dougherty D. A., Horn R. (2006) A cation-pi interaction between extracellular TEA and an aromatic residue in potassium channels. J Gen Physiol., 128, 649−657.
  2. Arakawa Т., Dix D. В., Chang B. S. (2003) The effects of protein stabilizers on aggregation induced by multiple-stresses. Yakugaku Zasshi, 123,95−96.
  3. Т., Tsumoto K. (2003) The effects of arginine on refolding of aggregated proteins: not facilitate refolding, but suppress aggregation. Biochem. Biophys. Res. Commun., 304, 148−152.
  4. J.C., Craig E.A. (1984) Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proc. Natl. Acad. Sci. USA, 81, P. 848−852.
  5. J.A., Donnely S.C. (2003) Macrophage migration inhibitory factor: a neuro endocrine modulator of chronicinflammation. J. Endocrinol., 179, P. 15−23.
  6. R., Casaulta C., Simon D., Conus S., Yousefi S., Simon H.U. (2003) Macrophage migration inhibitory factor delays apoptosis in neutrophils by inhibiting the mitochondria-dependent death pathway. FASEBJ., 17, P. 2221−2230.
  7. Baynes В. M., Wang D. S, and Trout B. L. (2005) Role of arginine in the stabilization of proteins against aggregation. Biochemistry, 44, 49 194 925.
  8. M., Buchner J. (1998) How chaperones fold proteins. Biol Chem., 379,245−259.
  9. Bendrat K., AI-Abed Y., Callaway D.J., Peng Т., Calandra Т., Metz C.N., Bucala R. (1997) Biochemical and mutational investigations of the enzymatic activity of macrophage migration inhibitory factor. Biochemistry, 36, P. 15 356−15 361.
  10. P. J., Calandra Т., Mitchell R.A., Martin S.B., Tracey K.T., Voelter W., Manogue K.R., Cerami A., Bucala R. (1993) MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature, 365. P. 756−762.
  11. Bettelheim F.A., Ansari R., Cheng Q.F. and Zigler J.S.Jr. (1999) The mode of chaperoning of dithiothreitol-denatured alpha-lactalbumin by alpha-crystallin. Biochem. Biophys. Res. Commun., 261, P. 292−297.
  12. Bhattacharyya J., Das K. P. (1999) Molecular chaperone-like properties of an unfolded protein, as-Casein J. Biol. Chem., 274, P. 15 505−15 509.
  13. Bhattacharyya J., Padmanabha Udupa E. G., Wang J., Sharma К. K. (2006) Mini-alphaB-crystallin: a functional element of alphaB-crystallin with chaperone-like activity. Biochemistry, 45, 3069−3076.
  14. Bhattacharyya M, Ray S, Bhattacharya S, Chakrabarti A. (2004) Chaperone activity and prodan binding at the self-associating domain of erythroid spectrin. JBC, 279, 55 080−55 088.
  15. Bhattacharyya J, Santhoshkumar P, Sharma К. K. (2003) A peptide sequence-YSGVCHTDLHAWHGDWPLPVK 40−60.-in yeast alcoholdehydrogenase prevents the aggregation of denatured substrate proteins. Biochem. Biophys. Res. Commun., 307, 1−7.
  16. Boisvert D.C., Wang J., Otwinowsk Z., Horwich A.L., and Sigle P.B. (1996) The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S. Nat. Struct. Biol., 3, 170−177.
  17. B.R., Bennett B. (1966) Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science, 153. P. 80−85.
  18. D.G., Hendershot L.M., Kearney J.F. (1986) Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J. Cell. Biol., 102, P. 1558−1566.
  19. S., Weikl Т., Bugl H., Buchner J. (1996) Chaperone function of Hsp90-associated proteins. Science, 274, P. 1715−1717.
  20. , R. S., Viitanen P. V., Vierling E. (1996) Molecular chaperones and protein folding in plants. Plant Mol. Biol., 32, P. 191−222.
  21. M., Kolakowski L.F., Jenkins N.A., Gilbert D.J., Copeland N.G., David J.R., Gerard C. (1995) Structural characterization and chromosomal location of the mouse macrophage migration inhibitory factor gene and pseudogenes. Genomics, 27, P. 412−419.
  22. M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Analyt. Biochemistry, 72. P. 248−254.
  23. Braig K., Otwinowski Z., Hedge R., Boisvert D.C., Joachimiak A., Horwich A.L. and Sigler P.B. (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature, 371, 578−586.
  24. Brinkmann U., Buchner J., and Pastan I. (1992) Independent domain folding of Pseudomonas exotoxin and single-chain immunotoxins: influence of interdomain connections. Proc Natl.Acad. Sci. USA, 89, 3075−3079.
  25. R. (1996) MIF rediscovered: cytokine, pituitary hormone, and glucocorticoid-induced regulator of the immune response. FASEB J., 10, P. 1607−1613.
  26. Buchner J., and Rudolph R. (1991) Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Biotechnology, 9,157−162.
  27. В., Horwich A.L. (1998) The Hsp70 and Hsp60 Chaperone Machines. Cell, 92, P. 351−366.
  28. N. J., Freedman R. B. (1988) Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature, 335, 649−651.
  29. S. К., Petsko G. A. (1986) Amino-aromatic interactions in proteins. FEBSLett., 203, 139−143.
  30. Cai H., Wang C.C. (1995) Chaperone-like activity of protein disulfide isomerase in the refolding of a protein with no disulfide bonds. Eur. J. Biochem., 231, 312−316.
  31. Calderwood S. K., Mambula S. S., Gray P. J. Jr., Theriault J. R. (2007) Extracellular heat shock proteins in cell signaling. FEBS Lett., 581, P. 3689−3694.
  32. B. J., Tidor В., Biancalana S., Hudson D., Frankel A. D. (1991) Arginine-mediated RNA recognition: the arginine fork. Science, 252, 1167−1171.
  33. Chappie J. P., Grayson C., Hardcastle A. J., Saliba R. S., Van der Spuy J., and Cheetham M. E. (2001) Unfolding retinal dystrophis: a role for molecular chaperones? Trends Mol. Med., 1, 414−421.
  34. L., Sigler P.B. (1999) The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate diversity. Cell, 99, 757−768.
  35. O.A., Lyutova E.M., Eronina T.B., Gurvits B.Ya. (2006) Chaperone-like activity of macrophage migration inhibitory factor. Intern. J. Biochem. Cell Biol. 38, P. 43−55.
  36. J. (1966) Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc. Natl. Acad. Sci. USA, 56, P. 72−78.
  37. В. K., Harding J. J. (2002) Effects of modifications of a-crystallin on its chaperone and other properties. Biochem. J., 364, 711 717.
  38. Deuerling E., Schulze-Specking A., Tomoyasu Т., Mogk A., Bukau B. (1999) Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature, 400, 693−696.
  39. Donnelly S.C. and Bucala, R. (1997) Macrophage migration inhibitory factor: a regulator of glucocorticoid activity with a critical role in inflammatory disease. Mol. Med. Today, 3, P. 502−507.
  40. Dusa A., Kaylor J., Edridge S., Bodner N., Hong D.P. and Fink A.L. (2006) Characterization of oligomers during alpha-synuclein aggregation using intrinsic tryptophan fluorescence. Biochemistry, 45, 2752−2760.
  41. M., Graber S., Gaestel M., Buchner J. (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBOJ., 16, P. 221−229.
  42. D.T., Barbul A., (1998) Modulation of inflammation and immunity by arginine supplements. Curr. Opin. Clin. Nutr. Metab. Care, 6, 531.
  43. R. J. (1990) The molecular chaperone concept. Semin. Cell Biol., 1, P. 1−9.
  44. R.N., Jaroslow B.N., Howard J.B., Faulhaber J.T. (1971) Stabilization of mutant catalase by complex formation with antibody to normal catalase./ Immunol., 106, P. 1316−1322.
  45. A. L. (1998) The Hsp 70 reaction cycle and its role in protein folding. Molecular Chaperones in the Life Cycle of Proteins, P. 123−150.
  46. A.L. (1999) Chaperone-mediated protein folding. Physiol Rev., 79, 425−449.
  47. G., Bang H., Berger E., Schellenberger A. (1984) Conformational specificity of chymotrypsin toward proline-containing substrates. Biochim Biophys Acta, 791, 87−97.
  48. M. M., Mowbray S. L. (1994) Planar stacking interactions of arginine and aromatic side-chains in proteins. J. Mol. Biol., 235, 709 717.
  49. Follmer C., Pereira F.V., DaSilveria N.P. and Carlini C.R. (2004) Jack bean urease (EC 3.5.1.5) aggregation monitored by dynamic and static light scattering. Biophys. Chem., 111, P. 79−87.
  50. Freire de Lima C.G., Nascimento, D.O., Soares M.B., Bozza P.T., Castro-Faria-Neto H.C., de Mello F.G., DosReis G.A., Lopes M.F. (2000) Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature, 403, 199−203.
  51. S. (2002) Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms. Int. J. Pharm., 245,1−7.
  52. A., Lane W.S., Standaert R.F., Schreiber S.L. (1993) A rapamycin-selective 25-kDa immunophilin. Biochemistry, 31, P. 2427−2434.
  53. Galkin O., and Vekilov P.G. (2004) Mechanisms of homogeneous nucleation of polymers of sickle cell anemia hemoglobin in the deoxy state. J Mol Biol., 336, 43−59.
  54. J. P., Dougherty D. A. (1999) Cation-pi interactions in structural biology. Proc Natl Acad Sci USA, 96, 9459−9464.
  55. Glover J. R., Schirmer E. C., Singer M. A., and Lindquist S. L. (1998) Hsp 104. Molecular Chaperones in the Life Cycle of Proteins, P. 193 224.
  56. Guha S., Manna Т. K., Das K. P., Bhattacharyya B. (1998) Chaperone-like activity of tubulin. J. Biol. Chem., 273, P. 30 077−30 080.
  57. B. Ya., Tretyakov O. Yu., Galoyan A. A. (1999) Quantitative determination of folding transitions in the immunosuppressor FK506-binding protein with antibodies raised to its peptide fragment. J. Neurochem., 73, P. 154.
  58. B.Ya., Cherepkova O.A., Klesov R.V. (2003) The brain pool of immunologically active heat-stable proteins in relation to adaptation to heat-shock and other kinds of stress. J. Neurochem., 87, P. 152−153.
  59. B.Ya., Cherepkova O.A., Eronina T.B. (2003) Chaperone-like activity of macrophage migration inhibitory factor from bovine brain. J. Neurochem., 88, P. 23−24.
  60. Hajek P., Koh J. Y., Jones L., Bedwell D. M. (1997) The amino terminus of the Fl-ATPase b-subunit precursor functions as an intramolecular chaperone to facilitate. Mol. Cell. Biol, 17, 7169−7177.
  61. F. U. (1996) Molecular chaperones in cellular protein folding. Nature, 381, 571−579.
  62. M., Galat A., Uehling D., Schriber S.L. (1989) A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature, 341, P. 758−760.
  63. M. (2002) sHsps and their role in the chaperone network. Cell. Mol. Life Sci., 59,1649−1657.
  64. H.C., Freedman R.B. (1991) The reactivities and ionization properties of the active-site dithiol groups of mammalian protein disulphide-isomerase. Biochem. J., 275, 335−339.
  65. Hesterkamp Т., and Bukau B. (1996) The Escherichia coli trigger factor. FEBSLett., 389, 32−34.
  66. Hesterkamp Т., Hauser S., Lutcke H., Bukau, B. (1996) Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc. Natl Acad. Sci. USA, 93,4437−4441.
  67. Huang G. C., Chen J. J., Liu C. P., Zhou J. M. (2002) Chaperone and antichaperone activities of trigger factor. Eur. J. Biochem. 269, 45 164 523.
  68. Huang G. C., Li Z. Y., Zhou J. M., Fischer G. (2000) Assisted folding of D-glyceraldehyde-3-phosphate dehydrogenase by trigger factor. Protein Sci., 9, P. 1254−1261.
  69. Hudson J.D., Shoaibi M.A., Maestro R., Carnero A., Hannon G.J. and Beach D.H. (1999) A proinflammatory cytokine inhibits p53 tumor suppressor activity. J. Exp. Med., 190, P. 1375−1382.
  70. Iwaki T, Kume-Iwaki A, Liem RK, Goldman JE. (1989) Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander’s disease brain. Cell, 57, P. 71−78.
  71. U., Buchner J. (1994) Assisting spontaneity: the role of Hsp90 and small Hsps as molecular chaperones. Trends Biochem. Sci., 19,205−211.
  72. Jin Y.J., Albers M. W., Lane W. S., Bierer В. E., Schreiber S. L. Burakoff S.J. (1991) Molecular cloning of a membrane-associated human FK506- and rapamycin-binding protein, FKBP-13. Proc. Natl. Acad. Sci. USA, 88, P. 6677−6681.
  73. O., Sherman M., Moerschell R., Goldberg A.L. (1997) Trigger factor associates with GroEL in vivo and promotes its binding to certain polypeptides. J. Biol. Chem. 272,1730−1734.
  74. O., Sherman M., Rhode M., Goldberg A.L. (1995) Trigger factor is involved in GroEL-dependent protein degradation in Escherichia coli and promotes binding of GroEL to unfolded proteins. EMBOJ., 14, P. 6021−6027.
  75. W. L., Georgopoulos C. (1992) Chaperones and protein folding. Curr. Opin. Cell. Biol., 4, 984−991.
  76. Kim К. K., Kim R., Kim S. H. (1998) Crystal structure of a small heat-shock protein. Nature, 394, P. 595−599.
  77. Kim Т. D., Paik S. R., Yang С. H., Kim J. (2000) Structural changes in a-synuclein affect its chaperone-like activity in vitro. Protein Science, 9, 2489−2496.
  78. Kim T. D, Paik S. R., Yang С. H. (2002) Structural and functional implications of C-terminal regions of alpha-synuclein. Biochemistry, 41, 13 782−13 790.
  79. Korth C., May В. С. H., Cohen F. E., Pruisner S. B. (2001) Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc Natl Acad Sci USA, 98, 9836−9841.
  80. Kumar L. V. S., Ramakrishna Т., and Rao С. M. (1999) Structural and functional consequences of the mutation of a conserved arginine residue in aA- and aB-crystallins. J. Biol. Chem., 274,24 137−24 141.
  81. U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature, 227, P. 680−685.
  82. E. (2007) Small heat shock proteins-role in apoptosis, cancerogenesis and diseases associated with protein aggregation. Postery Biochem., 53, 19−26.
  83. Loo T. W., and Clarke D. M. (1997) Correction of defective protein kinesis of human P-glycoprotein mutants by substrates and modulars. J. Biol. Chem., 272, 709−712.
  84. Lee G. J., A. M. Roseman H. R. Saibil and Vierling E. (1997) A small heat shock protein stably binds heat-denatured model substrates and canmaintain a substrate in a folding-competent state. EMBO J., 16, P. 659 671.
  85. Leroux M. R., Melki R., Gordon В., Batelier G., Candido, E. P. (1997) Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides, J. Biol. Chem., 272, P. 24 646−24 656.
  86. R.A., Treweek T.M., Carver J.A. (2001) The molecular chaperone alpha-crystallin is in kinetic competition with aggregation to stabilize a monomeric molten-globule form of alpha-lactalbumin. Biochem. J., 354, 79−87.
  87. Litt M., Kramer P., LaMorticella D. M., Murphey W., Lovrien E. W. and Weleber R. G. (1998) Autosomal dominant congenital cataract associated with a missense mutation in the human a-crystallin gene CRYAA. Hum. Mol. Genet, 7,471−474.
  88. Mahler H.C., Muller R., Friess W., Delille A. and Matheus S. (2005) Induction and analysis of aggregates in a liquid IgGl-antibody formulation, Eur. J. Pharm. Biopharm., 59, P 407−417.
  89. P. R., Ganta R. R., Vanam R. P., Seyrek E., Giger K., Dubin P. L. (2006) Electrostatically driven protein aggregation: beta-lactoglobulin at low ionic strength. Langmuir., 22, 9150−9159.
  90. S. C. (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev., 60,512−538.88
  91. Manna Т., Sarkar Т., Poddar A., Roychowdhury M., Das K. P., and Bhattacharyya B. (2001) Chaperone-like activity of tubulin. J. Biol Chem., 276, P. 39 742−39 747.
  92. May В. C., Fafarman А. Т., Hong S. В., Rogers M., Deady L. W., Prusiner S. В., Cohen F. E. (2003) Potent inhibition of scrapie prion replication in cultured cells by bis-acridines. Proc. Natl Acad. Sci. USA, 100, 3416−3421.
  93. Meng F, Park Y, and Zhou H. (2001) Role of proline, glycerol, and heparin as protein folding aids during refolding of rabbit muscle creatine kinase. Int. J. Biochem. Cell Biol, 33, 701−709.
  94. Militello V., Casarino C., Emanuele A., Giostra A., Pullara F. and Leone M. (2004) Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophys. Chem., 107, P. 175 187.
  95. J. В. O., Nandi C. L., McDonald I. K., Thornton J. M., Price S. L. (1994) Amino/aromatic interactions in proteins: is the evidence stacked against hydrogen bonding? J. Mol. Biol, 239, 315−331.
  96. P. E., Treweek Т. M., Lindner R. A., Prince W. E., Carver J. A. (2005) Casein proteins as molecular chaperones. J. Agric. Food Chem., 53,2670−2683.
  97. Morr, С. V., and Ha, E. Y. (1993) Whey protein concentrates and isolates: processing and functional properties. Crit. Rev. Food Sci. Nutr., 33,431−476.
  98. J.N., Chen Y., Soldin S.J. (1994) Identification of a 14 kDa FK-506/rapamycin binding immunophilin from calf thymus. Clin. Biochem., 27, P. 357−365.
  99. N. (2007) Enzymes catalyzing protein folding and their cellular functions. Curr. Protein Pept. Sci., 8, P. 273−282.
  100. Nigam S.K., Jin Y.J., Jin M.J., Bush K.T., Bierer B.E., Burakoff S.J. (1993) Localization of the FK506-binding protein, FKBP 13, to the lumen of the endoplasmic reticulum. Biochem. J., 294, P. 511−515.
  101. Nishihira J., and Ogata A. (2001) Macrophage migration inhibitory factor as atarget molecule in multiple sclerosis. Curr. Opin. Investig. Drugs., 2, P. 778−782.
  102. M., Shiraki K., Kudou M., Nishikori S., Takagi M. (2005) Diamines prevent thermal aggregation and inactivation of lysozyme. J. Biosci. Bioeng. 100, 556−561.
  103. С. L., Напек A. P., Lester H. A., Dougherty D. A., Lummis C. R. (2007) Unnatural amino acid mutagenesis of the GABAa receptor binding site residues reveals a novel cation n interaction between GAB A and /?2Tyr97. J. Neurosci., 24, 886−892.
  104. A., Keller U. (1994) Streptomyces chrysomallus FKBP-33 is a novel immunophilin consisting of two FK506 binding domains- its gene is transcriptionally coupled to the FKBP-12 gene. EMBOJ., 13, P. 34 723 480.
  105. Panasenko 0. 0., Seit Nebi, A., Bukach О. V, Marston, S. В., Gusev N. B. (2002) Structure and properties of avian small heat shock protein with molecular weight 25 kDa. Biochim. Biophy. Acta, 1601, P. 64−74.
  106. Parsell, D. A., Kowal A. S., Singer M. A., and Lindquist S. (1994) Protein disaggregation mediated by heat-shock protein Hspl04. Nature, 372, P. 475−478.
  107. H.R. (1989) Control of protein exit from the endoplasmic reticulum. Annu. Rev. Cell. Biol., 5, P. 1−23.
  108. J., Livolant F., Sikorav J.L. (1996) DNA aggregation induced by polyamines and cobalthexamine. J. Biol Chem., 271, 5656−5662.
  109. Pellequer J.-L., Zhao В., Kao H. I, Bell C. W, Li K, Li Q. L, Karu A. E, Oberts V. A. (2000) Stabilization of bound polycyclic aromatic hydrocarbons by a pi-cation interaction. J. Mol. Biol., 302, 691−699.
  110. Plater, M. L., Goode, D., Crabbe, M. J. (1996) Effects of site-directed mutations on the chaperone-like activity of alphaB-crystallin. J. Biol. Chem., 271, P. 28 558−28 566.
  111. Ponstingel H., Krauhs E., and Little M. (1983) Tubulin amino acid sequence and consequences. J. Submicrosc. Cytol. Pathol., 15, 359−362.
  112. Price E.R., Jin M., Lim D., Pati S., Walsh C.T., and McKeon F.D. (1994) Cyclophilin В trafficking through the secretory pathway is altered by binding of cyclosporin A. Proc. Natl. Acad. Sci. USA, 91, 3931−3935.
  113. Puig A., and Gilbert H. F. (1994) Anti-chaperone behavior of BiP during the protein disulfide isomerase-catalyzed refolding of reduced denatured lysozyme. J. Biol. Chem., 269, P. 25 889−25 896.
  114. Puig A., and Gilbert H.F. (1994) Protein disulfide isomerase exhibits chaperone and anti-chaperone activity in the oxidative refolding of lysozyme. J. Biol. Chem., 269, 7764−7771.
  115. A., Lyles M.M., Noiva R., Gilbert H.F. (1994) The role of the thiol/disulfide centers and peptide binding site in the chaperone and anti-chaperone activities of protein disulfide isomerase. J. Biol. Chem., 269, 19 128−19 135.
  116. C.S., Jemmerson R., Nail B.T. (2000) Antibody-detected folding: kinetics of surface epitope formation are distinct from other folding phases. Protein Sci., 9, P. 129−137.
  117. E., Chaperon I., Leforestier A., Livolant F. (1999) Spermine-induced aggregation of DNA, nucleosome, and chromatin. Biophys. J. 77, 1547−1555.
  118. Rozov A., Burnashev, N. (1999) Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression. Nature, 401, 594−598.
  119. R., Opits U., Hesse F., Riebland R., Fischer S. (1992) Reactivation of microbially produce human tissue-type plasminogen activator. Biotechnology International, P. 321−325.
  120. Samuel D., Kumar Т.К., Ganesh G., Jayaraman G., Yang P.W., Chang M.M., Trivedi V.D., Wang S.L., Hwang K.C., Chang D.K., and Yu C. (2000) Proline inhibits aggregation during protein refolding. Protein Sci., 9, 344−352.
  121. Schreiber S. L., Liu J., Albers M. W., Karmacharya R., Koh E., Martin P.K., Rosen M.K., Standaert R.F., Wandless TJ. (1991) Immunophilin-ligand complexes as probes of intracellular signaling pathways. Transpl. Proceed., 23, P. 2839−2844.
  122. Schuler J., Frank J., Saenger W., and Georgalis Y. (1999) Thermally induced aggregation of human transferrin receptor studied by light-scattering techniques. Biophys J., 11, V. 1117−1125.
  123. R., Chaerkady R., Sharma К. K. (2002) Identification and properties of anti-chaperone-like peptides derived from oxidized bovine lens pL-Crystallins. J. Biol. Chem., 277, P. 39 136−39 143.
  124. К. K. (2000) Synthesis and Characterization of a Peptide Identified as a Functional Element in aA-crystallin. J. Biol. Chem., 275, 3767−3771.
  125. Shimizu Т., Abe R., Nakamure H., Suzuki M., and Nishihira J. (1999) High expression of macrophage migration inhibitory factor in human melanoma cells and its role in tumor cell growt hand angiogenesis. Biochem. Biophys. Res. Commun., 264, P. 751−758.
  126. K., Kudou M., Fujiwara S., Imanaka Т., Takagi M. (2002) Biophysical effect of amino acids on the prevention of protein aggregation. J. Biochem., 132, 591−595.
  127. Shiraki K., Kudou M., Nishikori S., Kitagawa H., Imanaka Т., and Takagi M. (2004) Arginine ethylester prevents thermal inactivation and aggregation of lysozyme. Eur. J. Biochem. Ill, 3242−3247.
  128. Shroff N. P., Cherian-Shaw M., Bera S., and Abraham E. C. (2000) Mutation of R116C results in highly oligomerized aA-crystallin with modified structure and defective chaperone-like function. Biochemistry, 39,1420−1426.
  129. Sideraki V., and Gilbert H.F. (2000) Mechanism of the antichaperone activity of protein disulfide isomerase: facilitated assembly of large, insoluble aggregates of denatured lysozyme and PDI. Biochemistr, 39, 1180−1188.
  130. S. H., Sabatini D. M. (1995) Immunophilins and the nervous system. Nat. Med., 1, 32−37.
  131. Smith, D.F., Whitesell, L., Nair, S.C., Chen, S., Praprprnich, V., and Rimerman, R.A. (1995) Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Mol. Cell. Biol., 15, 6804−6812.
  132. B. (2002) Anti-aggregating antibodies, a new approach towards treatment of conformational diseases. Curr Med Chem., 9, P. 1737−1749.
  133. Solomon В., Koppel R., Frankel D., Hanan-Aharon E. (1997) Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proc. Natl. Acad. Sci. USA, 94, P. 4109−4112.
  134. В., Koppel R., Hanan E., Katzav T. (1996) Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer beta-amyloid peptide. Proc Natl Acad Sci USA, 93, P. 452−455.
  135. J.L., Quan H., Wang C.C. (1997) Dependence of the antichaperone activity of protein disulphide isomerase on its chaperone activity. Biochem. J., 328, 841−846.
  136. Srinivas V., Raman В., Rao К. S., Ramakrishna Т., Rao С. M. (2003) Structural perturbation and enhancement of the chaperone-like activity of alpha-cry stallin by arginine hydrochloride. Protein Sci., 12, 12 621 270.
  137. G., Rucknagel K.P., Nierhaus K.H., Schmid F.X., Fischer G., Rahfeld J.U. (1995) A ribosome-associated peptidyl-prolyl cis/trans isomerase identified as the trigger factor. EMBOJ., 14, 4939−4948.
  138. S., Narberhaus F. (2000) Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins. J. Biol. Chem., 275, P. 37 212−37 218.
  139. Sun F, Li P, Ding Y., Wang L., Bartlam M., Shu C., Shen В., Jianq H., Li S., Rao Z. (2003) Design and structure-based study of new potential FKBP 12 inhibitors. Biophys. J., 85, P. 3194−3201.
  140. Sykes, K., Gething, M.J., and Sambrook, J. (1993) Proline isomerases function during heat shock. Proc. Natl. Acad. Sci. USA, 90, 5853−5857.
  141. Tamarappoo В. K., and Verkman A. S. (1999) Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Invest., 101, 2257−2267.
  142. Tapan K., Chaudhuri, Subhankar P. (2006) Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBSJ., 273,1331−1349.
  143. Theriault J. R., Lambert H., Chavez-Zobel А. Т., Charest G., Lavigne P., Landry J. (2004) Essential role of the N-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27. J. Biol. Chem., 234, P. 1236−1241.
  144. Tissieres A, Mitchell H. K., Tracy U. M. (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol., 84, P. 389−398.
  145. Tongl В. C, Barbul A. (2004) Cellular and physiological effects of arginine. Mini-Reviews in Medicinal Chemistry, 2004, 4, 823−832.
  146. Tsumoto K, Ejima D, Kumagai I, Arakawa T. (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expression Purif., 28, 1−8.
  147. Tsumoto K., Umetsu M, Kumagai I, Ejima D., Philo J. S, Arakawa T. (2004) Role of arginine in protein refolding, solubilization, and purification. Biotechnol. Prog., 20,1301−1308.
  148. Umezawa N, Gelman M. A, Haigis M. C., Raines R. T, Gellman S. H. (2002) Translocation of a beta-peptide across cell membranes. J. Am. Chem. Soc., 124, 368−369.
  149. Vassilakos A, Cohen-Doyle M. F., Peterson P. A, Jackson M. R, Williams D. B. (1996) The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J., 15,1495−1506.
  150. Vicart P, Caron A, Guicheney P, Li Z, Prevost M. C, Faure A, Chateau D, Chapon F, Tome F, Dupret J. M. (1998) A missensemutation in the aBcrystallin chaperone gene causes a desmin-related myopathy. Nat. Genet., 20, 92−95.
  151. Ward L. D., and Timasheff S. N. (1994) Energy transfer studies of the distances between the colchicine, ruthenium red, and bisANS binding sites on calf brain tubulin. Biochemistry, 33, 11 891−11 899.
  152. Welch W. J., and Brown C. R. (1996) Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperone, 1, 109 115.
  153. Wistow G.J., Shaughnessy M.P., Lee D.C., Hodin J., and Zelenka P. S. (1993) A macrophage migration inhibitory factor is expressed in the differentiating cells of the eye lens. Proc. Natl. Acad. Sci. USA, 90, P. 1272−1275.
  154. L.K., Benton B.M., Zhou S., Thorner J., Martin G.S. (1995) The yeast immunophilin Fpr3 is a physiological substrate of the tyrosine-specific phosphoprotein phosphatase Ptpl. J. Biol. Chem., 270, P. 25 185−25 193.
  155. Wilson L. K., Dhillon N., Thorner J, Martin G. (1997) Casein kinase II catalyzes tyrosine phosphorylation of the yeast nucleolar immunophilin Fpr3. J. Biol. Chem., 272, P. 12 961−12 967.
  156. C., Houen G., (1996) Cation-dependent interactions of calreticulin with denatured and native proteins. Acta Chem Scand., 50, 788−795.
  157. Wu G., Morris S. M. Jr. (1998) Arginine metabolism: nitric oxide and beyond. Biochem. J., 336, 1.
  158. I. (1998) Structure and function of the 90-kDa stress protein Hsp90. Molecular Chaperones in the Life Cycle of Proteins, P. 183−192.
  159. Yudin I. K., Nikolaenko G.L., Kosov V.I., Agayan V.A., Anisimov M.A. and Sengers J.V. (1997) Simple photon-correlation spectrometer for research and education. Int. J. Thermophys., 18, P. 1237−1248.
  160. Zheng W. D, Quan H, Song JL, Yang SL, Wang CC. (1997) Does DsbA have chaperone-like activity? ABB., 337, 326−331.
  161. Д.Н., Жердев A.B., Дзантиев Б. Б. (2004) Антитела как специфические шапероны. Биохимия, 69, С. 1515−1521.
  162. . И., Топчиева И. Н. (1998) Рефолдинг белков с участием искусственных шаперонов. Биохимия, 63, 491−499.
  163. Курочкина JL П., Месянжинов В. В. (1996) Фолдинг белка в клетке. Успехи биологической химии, С. 49−86.
  164. Н.К. (1996) Внутриклеточная регуляция формирования нативной пространственной структуры белков. Соросовский образовательный журнал, 7, С.10−18.
  165. Н.К. (2004) Сворачивание белков в клетке: о механизмах его ускорения. Биохимия, 69, С. 1021−1037.
  166. О. О., Ким М. В., Гусев Н. Б. (2003) Структура и свойства малых белков теплового шока, Успехи биологической химии, 43, С 59−98.
  167. О.Ю., Гурвиц Б .Я. (1998) Иммунофилины: молекулярные механизмы действия. Успехи биологической химии, XXXVIII, С. 143−165.
  168. В.Н., Финк Ф. Л. (1998) Самоассоциация может структурировать белковые молекулы, находящися в частично свернутых ненативных состояниях. Биохимия. 63, С. 541−548.
  169. О.A., Lyutova Е.М., Gurvits B.Ya. (2005) Charge heterogeneity of bovine brain macrophage migration inhibitory factor. Neurochem. Research. V. 30. No. 1. P. 151−158.
  170. O.A., Лютова E.M., Гурвиц Б. Я. (2006) Фактор ингибированпя миграции макрофагов- выделение из мозга быка. Биохимия. Т. 71. № 1. С. 90−96.
  171. О.A., Lyutova Е.М., Eronina Т.В., Gurvits B.Ya. (2006) Chaperone-like activity of macrophage migration inhibitory factor. Intern. J. Biochem. Cell Biol. V. 38. No. 1. P. 43−55.
  172. O.A., Лютова E.M., Еронина Т. Б., Гурвиц Б .Я. (2006) Ускорение агрегации белков в условиях теплового стресса под влиянием фактора ингибирования миграции макрофагов. Биохимия. Т. 71. № 2. С. 182−189.
  173. Е.М., Казаков А. С., Гурвиц Б. Я. (2007) Шапероноподобная активность цитоплазматического рецептора иммуносупроссора FK506 иммунофилина FKBP 12 из мозга быка. Нейрохимия. Т. 24. № 3. С. 208−216.
  174. Е.М., Kasakov A.S., Gurvits B.Ya. (2007) Effects of arginine on kinetics of protein aggeregation studied by dynamic laser light scattering and turbidimetry techniques. Biotechnol. Prog. V. 23. No. 6. P. 1380−1387.1. ТЕЗИСЫ
  175. Е.М., Черепкова О. А., Гурвиц Б. Я. (2005) Фактор ингибирования миграции макрофагов- олигомерная структура в состоянии теплового стресса. 9-ая Пущинская школа конференция молодых ученых. «Биология — наука XXI века». Тез. докл. С. 85.
  176. B.Ya., Cherepkova О.А., Lyutova E.M., Eronina T.B. (2005) Macrophage migration inhibitory factor exhibits chaperone and anti-chaperone activities. FEBS J. V. 272. Suppl. 1. P. 353.
  177. Lyutova Е.М., Kasakov A.S., Gurvits, B.Ya. (2007) Chaperone-like activity of adrenocorticotropic hormone. J. Neurochem. V. 102. Suppl. 1. P. 288.1. БЛАГОДАРНОСТИ
  178. Выражаю признательность доктору Станке Стоевой (Stanka Stoeva) из Института физиологической химии, Тюбингенского университета (Германия) за секвенирование белка (FKBP) и масс-спектральный анализ.
  179. Хочу поблагодарить Черепкову Оксану Анатольевну за помощь в проведении экспериментов, а также за моральную поддержку.
Заполнить форму текущей работой