ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² ΡƒΡ‡Ρ‘Π±Π΅, ΠΎΡ‡Π΅Π½ΡŒ быстро...
Π Π°Π±ΠΎΡ‚Π°Π΅ΠΌ вмСстС Π΄ΠΎ ΠΏΠΎΠ±Π΅Π΄Ρ‹

Π Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… систСм ΠΈ ΠΈΡ… влияниС Π½Π° свойства Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ²

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ структурной ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ (ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠΈ) Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² — ваТная ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°, Π±Π΅Π· Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠ»ΡƒΡ‡ΡˆΠΈΡ‚ΡŒ ΠΈΡ… ΡΠ²ΠΎΠΉΡΡ‚Π²Π° ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ пСрспСктивныС области ΠΈΡ… ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΡ. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² (Π² Ρ‚ΠΎΠΌ числС ΠΈ Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ²) Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ стабилизаторов наночастиц ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΈΡΡ‚ΠΎΡ€ΠΈΡŽ. Π’Π°Ρ€ΡŒΠΈΡ€ΡƒΡ свойства ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² (Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ…… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • 1. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅
  • 2. Π›ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ ΠΎΠ±Π·ΠΎΡ€
    • 2. 1. Π‘ΠΈΠ½Ρ‚Π΅Π· наночастиц Π² Π½Π°Π½ΠΎΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π°Ρ…
      • 2. 1. 1. ВвСрдая полимСрная Ρ„Π°Π·Π°
      • 2. 1. 2. ΠšΠΎΠ»Π»ΠΎΠΈΠ΄Π½Ρ‹Π΅ растворы наноструктурированных ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ²
        • 2. 1. 2. 2. ΠœΠΈΡ†Π΅Π»Π»Ρ‹ Π°ΠΌΡ„ΠΈΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π±Π»ΠΎΠΊ-сополимСров ΠΊΠ°ΠΊ срСда для формирования наночастиц
        • 2. 1. 2. 3. ΠœΠΈΠΊΡ€ΠΎΠ³Π΅Π»ΠΈ ΠΊΠ°ΠΊ нанострутурированныС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ Π² Ρ€Π°ΡΡ‚Π²ΠΎΡ€Π΅
        • 2. 1. 2. 4. Π”Π΅Π½Π΄Ρ€ΠΈΠΌΠ΅Ρ€Ρ‹
    • 2. 2. Бвойства ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ²
      • 2. 2. 1. ΠšΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ свойства
      • 2. 2. 2. ΠœΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Π΅ свойства
      • 2. 2. 3. БиомСдицинскиС свойства
  • 3. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ
    • 3. 1. Бписок сокращСний
    • 3. 2. ΠžΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ исслСдования
      • 3. 2. 1. Π Π΅Π°Π³Π΅Π½Ρ‚Ρ‹ ΠΈ Ρ€Π°ΡΡ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΠΈ
      • 3. 2. 2. Π‘ΠΈΠ½Ρ‚Π΅Π· Π‘ΠΎ- ΠΈ Ag-содСрТащих мономакромолСкулярных
  • ΠŸΠ’ΠšΠ›
    • 3. 2. 3. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ вирусоподобных частиц с ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌ ядром
    • 3. 2. 4. Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ наночастиц Π² ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ‚ΠΎΠ½ΠΊΠΈΡ… полиэлСктролитных слоях, нанСсСнных Π½Π° ΠΎΠΊΠΈΡΡŒ алюминия
    • 3. 2. 5. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования
  • 4. ΠžΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ²
    • 4. 1. Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ мономакромолСкулярных мСталлосодСрТащих структур ΠΏΡ€ΠΈ взаимодСйствии ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² с Ρ‚Π΅Ρ€ΠΌΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠΌ
    • 4. 2. ΠŸΡ€ΠΈΠ΄Π°Π½ΠΈΠ΅ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… свойств ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΌ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π°ΠΌ с ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ ядро-ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠ°
      • 4. 2. 1. Π‘ΠΈΠ½Ρ‚Π΅Π· ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… наночастиц
      • 4. 2. 2. Ѐункционализация повСрхности наночастиц с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ фосфолипидов, содСрТащих ПЭО
      • 4. 2. 3. Бамосборка ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΎΠ² вируса BMV Π²ΠΎΠΊΡ€ΡƒΠ³ наночастиц, ΠΏΠΎΠΊΡ€Ρ‹Ρ‚Ρ‹Ρ… фосфолипидом
      • 4. 2. 4. ΠœΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Π΅ свойства вирусоподобных наночастиц
    • 4. 3. ΠŸΡ€ΠΈΠ΄Π°Π½ΠΈΠ΅ каталитичСских свойств ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΌ систСмам: Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ°Π»Ρ‹Ρ… частиц Π² ΡƒΠ»ΡŠΡ‚Ρ€Π°Ρ‚ΠΎΠ½ΠΊΠΈΡ… полиэлСктролитных слоях, нанСсСнных Π½Π° ΠΎΠΊΠΈΡΡŒ алюминия
      • 4. 3. 1. Π‘ΠΈΠ½Ρ‚Π΅Π· ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ структуры ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ² с ΠΎΠ΄Π½ΠΈΠΌ слоСм полиэлСктролитов
      • 4. 3. 2. Π‘ΠΈΠ½Ρ‚Π΅Π· ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ² с Π΄Π²ΡƒΡ…слойным нанСсСниСм ПЭ
      • 4. 3. 3. ИсслСдованиС структуры Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ² с Π΄Π²ΡƒΡ…слойным нанСсСниСм ПЭ
      • 4. 3. 4. ΠšΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ свойства ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… систСм с Π΄Π²ΡƒΡ…слойным нанСсСниСм ПЭ
  • 5. Π’Ρ‹Π²ΠΎΠ΄Ρ‹

Π Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… систСм ΠΈ ΠΈΡ… влияниС Π½Π° свойства Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ² (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π’ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Π³ΠΎΠ΄Ρ‹ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Π²Π·Ρ€Ρ‹Π² интСрСса ΠΊ ΡΠΎΠ·Π΄Π°Π½ΠΈΡŽ ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡŽ Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… структур, Ρ‚. Π΅. структур, Ρ‡ΡŒΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ находятся Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ ΠΎΡ‚ 1 Π΄ΠΎ 100 Π½ΠΌ. Частицы Π½Π°Π½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ²Ρ‹Ρ… Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ особыС свойства, ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΎΡ‚ ΡΠ²ΠΎΠΉΡΡ‚Π² Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Ρ… массивных ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ²: мСханичСскиС, оптичСскиС, элСктричСскиС, каталитичСскиС ΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Π΅. Одной ΠΈΠ· Π³Π»Π°Π²Π½Ρ‹Ρ… ΠΏΡ€ΠΈΡ‡ΠΈΠ½ измСнСния физичСских ΠΈ Ρ…имичСских свойств ΠΌΠ°Π»Ρ‹Ρ… частиц ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ ΠΈΡ… Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² являСтся возрастаниС Π² Π½ΠΈΡ… ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π΄ΠΎΠ»ΠΈ повСрхностных Π°Ρ‚ΠΎΠΌΠΎΠ², находящихся Π² ΠΈΠ½Ρ‹Ρ… условиях (ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ число, симмСтрия локального окруТСния ΠΈ Ρ‚. Π΄.), Ρ‡Π΅ΠΌ Π°Ρ‚ΠΎΠΌΡ‹ Π² ΠΎΠ±ΡŠΠ΅ΠΌΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. Π‘ ΡΠ½Π΅Ρ€Π³Π΅Ρ‚ичСской Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² частиц ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°Π½ΠΈΡŽ Π΄ΠΎΠ»ΠΈ повСрхностной энСргии Π² Π΅Π΅ Ρ…имичСском ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π΅.

Π‘ΡƒΡ€Π½ΠΎΠ΅ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ этой области Π½Π°ΡƒΠΊΠΈ ΠΏΡ€ΠΈΠ²Π΅Π»ΠΎ ΠΊ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡŽ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎ Π½ΠΎΠ²Ρ‹Ρ… Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠ². НаиболСС ΠΎΠ±Ρ‰ΠΈΠ΅ ΠΈΠ· Π½ΠΈΡ… — Π½Π°Π½ΠΎΠ½Π°ΡƒΠΊΠ° ΠΈ Π½Π°Π½ΠΎΡ‚Схнология [1]. Нанонаука — это Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ химия, Ρ„ΠΈΠ·ΠΈΠΊΠ° ΠΈΠ»ΠΈ биология, Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ созданиСм ΠΈ/ΠΈΠ»ΠΈ исслСдованиСм наноструктур. НанотСхнология — ΠΎΠ±Π»Π°ΡΡ‚ΡŒ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½ΠΎΠΉ Π½Π°ΡƒΠΊΠΈ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ, Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‰Π°ΡΡΡ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ свойств ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ устройств с Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ порядка Π½Π°Π½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ².

ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ структурной ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ (ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠΈ) Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² — ваТная ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°, Π±Π΅Π· Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠ»ΡƒΡ‡ΡˆΠΈΡ‚ΡŒ ΠΈΡ… ΡΠ²ΠΎΠΉΡΡ‚Π²Π° ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ пСрспСктивныС области ΠΈΡ… ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΡ. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² (Π² Ρ‚ΠΎΠΌ числС ΠΈ Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ²) Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ стабилизаторов наночастиц ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΈΡΡ‚ΠΎΡ€ΠΈΡŽ [2−4]. Π’Π°Ρ€ΡŒΠΈΡ€ΡƒΡ свойства ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² (Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ, ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΡƒΡŽ массу, Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΈΠ»ΠΈ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΈ Ρ‚. Π΄.) ΠΌΠΎΠΆΠ½ΠΎ Π²Π»ΠΈΡΡ‚ΡŒ Π½Π° ΡΠ²ΠΎΠΉΡΡ‚Π²Π° ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ².

Под наноструктурами Π² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Ρ… ΠΌΡ‹ ΠΏΠΎΠ½ΠΈΠΌΠ°Π΅ΠΌ рСгулярныС микрогСтСрогСнности (Ρ‚.Π΅. участки ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠ΅ ΠΌΠ΅ΠΆΡ„Π°Π·Π½ΠΎΠΉ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ) Π½Π°Π½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ²Ρ‹Ρ… Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ². ИспользованиС наноструктурированных ΠΌΠ°Ρ‚Ρ€ΠΈΡ† для формирования наночастиц Π΄Π°Π΅Ρ‚ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ прСимущСства. Наноструктуры Π² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… систСмах ΠΈΠ³Ρ€Π°ΡŽΡ‚ Ρ€ΠΎΠ»ΡŒ Π½Π°Π½ΠΎΡ€Π΅Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Ρ€Π°ΡΡ‚ΡƒΡ‰ΠΈΠΌ наночастицам: Ρ€Π°Π·ΠΌΠ΅Ρ€, распрСдСлСниС ΠΏΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌ ΠΈ Ρ„ΠΎΡ€ΠΌΠ° наночастиц ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ наноструктур ΠΈ ΡƒΡΠ»ΠΎΠ²ΠΈΡΠΌΠΈ синтСза. ΠŸΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ Ρ‚Π°ΠΊΠΈΡ… наноструктурированных систСм ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΌΠΈΡ†Π΅Π»Π»Ρ‹ Π±Π»ΠΎΠΊ-сополимСров, Ρ‚ΠΎΠ½ΠΊΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ слои, нанопористыС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ сСтки ΠΈ Ρ‚. Π΄.

ИзмСняя ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡŽ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ с Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌΠΈ свойствами. Π’Π°ΠΊ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, для каталитичСских ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ пСрспСктивной являСтся морфология мноТСства ΠΌΠ΅Π»ΠΊΠΈΡ… частиц (для увСличСния ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ повСрхности) Π² Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΠΏΡ€ΠΎΠ½ΠΈΡ†Π°Π΅ΠΌΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅. Для ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… свойств наночастиц Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ Ρ‚ΠΎΠ½ΠΊΠΈΠΉ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ Π·Π° Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ частиц ΠΏΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌ ΠΈ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎ ΠΈΡ… ΠΊΡ€ΠΈΡΡ‚алличСской структуры.

ЦСлью настоящСй диссСртации являСтся Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ² с Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ, которая являСтся Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠ΅ΠΉ с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ свойств ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ². Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ процСссов формирования ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ² Π² Π²ΠΈΠ΄Π΅ частиц ΠΈΠ»ΠΈ слоСв позволяСт ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ основныС закономСрности ΠΈ Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ влияниС состава ΠΈ ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Ρ‹ Π½Π° ΡΠ²ΠΎΠΉΡΡ‚Π²Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ².

2. Π›ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ ΠΎΠ±Π·ΠΎΡ€

НаноструктурированныС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹, содСрТащиС ΠΌΠ΅Ρ‚Π°Π»Π» Π² Π²ΠΈΠ΄Π΅ комплСксов ΠΈΠ»ΠΈ наночастиц ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΠΈΠ½Ρ‚Π΅Ρ€Π΅ΡΠ½ΡƒΡŽ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π½Π°Π½ΠΎΠ½Π°ΡƒΠΊΠΈ ΠΈ Π½Π°Π½ΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ², ΠΈΡ… ΠΎΠΊΡΠΈΠ΄ΠΎΠ² ΠΈΠ»ΠΈ комплСксов позволяСт ΠΏΡ€ΠΈΠ΄Π°Π²Π°Ρ‚ΡŒ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ свойства ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΌ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°ΠΌ: каталитичСскиС, оптичСскиС, ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Π΅, ΠΈ Ρ‚. Π΄. ΠŸΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΠΈΠ΅ мСталлокомплСксов Π² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… систСмах, ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ наноструктур. Π’ ΡΠ²ΠΎΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, присутствиС наноструктур Π² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… систСмах позволяСт ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡ‚ΡŒ Ρ‚ΠΎΠ½ΠΊΠΈΠΉ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ Π½Π°Π΄ ростом наночастиц, ΠΈΡ… Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌ, ΠΈ ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΎΠΉ повСрхности частиц. Π’Ρ‹ΡˆΠ΅ΡƒΠΏΠΎΠΌΡΠ½ΡƒΡ‚Ρ‹Π΅ характСристики Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π°ΠΆΠ½Ρ‹ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ свойств Π½Π°Π½ΠΎΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΈ ΠΈΡ… Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΉ. Π£Π·ΠΊΠΎΠ΅ распрСдСлСниС наночастиц ΠΏΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌ являСтся критичСским Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ высокоорганизованных ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² для ΠΌΠ½ΠΎΠ³ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΉ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ оптичСскиС, ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Π΅ ΠΈ ΠΊΠ°Ρ‚алитичСскиС свойства сильно зависят ΠΎΡ‚ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° частиц. Π­Ρ‚Π° спСцифичСская ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π½Π°ΡƒΠΊΠΈ Π½Π°Ρ‡Π°Π»Π° Ρ€Π°Π·Π²ΠΈΠ²Π°Ρ‚ΡŒΡΡ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ 15 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄, ΠΊΠΎΠ³Π΄Π° Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ появились ΡΡ‚Π°Ρ‚ΡŒΠΈ ΠΎ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ наночастиц Π² ΠΌΠΈΠΊΡ€ΠΎΡΠ΅Π³Ρ€Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π±Π»ΠΎΠΊ-сополимСрах ΠΈ Π±Π»ΠΎΠΊ-сополимСрных ΠΌΠΈΡ†Π΅Π»Π»Π°Ρ… [5]. Π’ Π½Π°ΡΡ‚оящСС врСмя Π² ΡΡ‚ΠΎΠΉ области Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ ΡΡ‚Ρ€Π΅ΠΌΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ рост числа ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΉ ΠΈ Π±Ρ‹ΡΡ‚Ρ€Ρ‹ΠΉ прогрСсс Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΠΈ Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² [6].

5. Π’Ρ‹Π²ΠΎΠ΄Ρ‹.

1. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π±Ρ‹Π»ΠΈ синтСзированы ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ мономакромолСкулярныС структуры с ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ ядро-ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠ° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Ρ‚Π΅Ρ€ΠΌΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π° — ΠΏΠΎΠ»ΠΈ (Π«-Π²ΠΈΠ½ΠΈΠ»ΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚Π°ΠΌΠ°) Π·Π° ΡΡ‡Π΅Ρ‚ комплСксообразования с ΠΈΠΎΠ½Π°ΠΌΠΈ ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π°. Показано, Ρ‡Ρ‚ΠΎ для формирования монодиспСрсных мономакромолСкулярных наноструктур Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ комплСксообразования Π² Π²ΠΎΠ΄Π½ΠΎΠΌ растворС Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ присутствиС устойчивых глобулярных Π°Π³Ρ€Π΅Π³Π°Ρ‚ΠΎΠ² ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ число ΠΈΠΎΠ½Π° ΠΌΠ΅Ρ‚Π°Π»Π»Π° Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ достаточным для обСспСчСния сшивки звСньСв ΠΏΠΎ Π»ΠΈ (Π’1-Π²ΠΈΠ½ΠΈΠ» ΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚Π°ΠΌΠ°).

2. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ синтСзированы ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Π΅ вирусоподобныС частицы с Ρ‚риангуляционным числом Π±ΠΎΠ»Π΅Π΅ Ρ‚Ρ€Π΅Ρ… Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ монодиспСрсных частиц оксида ΠΆΠ΅Π»Π΅Π·Π°. Показано, Ρ‡Ρ‚ΠΎ фосфолипиды с Π±Π»ΠΎΠΊΠ°ΠΌΠΈ полиэтилСноксида ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹ΠΌΠΈ ΠΊΠ°Ρ€Π±ΠΎΠΊΡΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для создания ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΈ биосовмСстимых Ρ‚Π΅ΠΌΠΏΠ»Π°Ρ‚ΠΎΠ², способных ΠΈΠ½ΠΈΡ†ΠΈΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ самосборку ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΎΠ²ΠΎΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΈ вирусов ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ вирусоподобных частиц.

3. Показана Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ эффСктивности инкорпорирования наночастиц, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… фосфолипидом, ΠΎΡ‚ ΠΈΡ… Ρ€Π°Π·ΠΌΠ΅Ρ€Π° ΠΈ ΡƒΡΡ‚Π°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Π΅ эффСкты ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ плотности ΠΈ Π·Π°Ρ€ΡΠ΄Π° фосфолипидной ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΈ для наночастиц Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ².

4. Показано, Ρ‡Ρ‚ΠΎ вирусоподобныС частицы ΡΠ²Π»ΡΡŽΡ‚ΡΡ супСрпарамагнитными, Ρ‡Ρ‚ΠΎ прСдставляСт большой интСрСс Π² Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅ΠΌ ΠΈΡ… ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠ°ΠΊ Π°Π³Π΅Π½Ρ‚ΠΎΠ² для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ контраста Π² ΡΠΏΠ΅Ρ†ΠΈΡ„ичСской магниторСзонансной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ.

5. Π˜Π·ΡƒΡ‡Π΅Π½ΠΎ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π°, состоящСго ΠΈΠ· ΠΏΠΎΠ»ΠΈΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ»ΠΈΡ‚Π½Ρ‹Ρ… слоСв Π½Π° ΠΎΠΊΠΈΡΠΈ алюминия. Показано, Ρ‡Ρ‚ΠΎ нанСсСниС ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ слоСм Π°Π½ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ»ΠΈΡ‚Π°ΠΏΠΎΠ»ΠΈΡΡ‚ΠΈΡ€ΠΎΠ»ΡΡƒΠ»ΡŒΡ„ΠΎΠ½Π°Ρ‚Π° натрия позволяСт Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠ»ΡƒΡ‡ΡˆΠΈΡ‚ΡŒ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ°Ρ‚ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Ρ…ΠΈΡ‚ΠΎΠ·Π°Π½ΠΎΠ²ΠΎΠ³ΠΎ слоя.

6. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ наночастицы Pd Π² ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ‚ΠΎΠ½ΠΊΠΎΠΌ слоС Ρ…ΠΈΡ‚ΠΎΠ·Π°Π½Π°, нанСсСнном Π½Π° Π½Π΅ΠΎΡ€Π³Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒ, ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ»ΠΈΡΡ‚ΠΈΡ€ΠΎΠ»ΡΡƒΠ»ΡŒ Ρ„ΠΎΠ½ Π°Ρ‚ΠΎΠΌ натрия. Показано, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ способны ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π·Π°Ρ€ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΈ Ρ€ΠΎΡΡ‚ наночастиц.

7. Π˜Π·ΡƒΡ‡Π΅Π½ΠΎ влияниС условий формирования Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ² Π½Π° ΠΈΡ… ΠΊΠ°Ρ‚алитичСскиС свойства. Показано, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΠ°Π»Π»Π°Π΄ΠΈΠ΅Π²Ρ‹Π΅ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Ρ‹ ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΠΊΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ гидрирования Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ½Π°Π»ΠΎΠΎΠ»Π°. Π‘Ρ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ², простота получСния ΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ дСшСвизна ΡΠ²Π»ΡΡŽΡ‚ΡΡ нСоспоримыми прСимущСствами Π½ΠΎΠ²Ρ‹Ρ… систСм.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Π“. Π‘. Π‘Π΅Ρ€Π³Π΅Π΅Π², Нанохимия.//УнивСрситСт, Москва, 2006- 333.
  2. G. p. Schmid, Clusters and Colloids: From Theory to Applications.// VCH: Weinheim, Germany, 1994- 555.
  3. J. H. Fendler, Nanoparticles and Nanostructured Films: Preparation, Characterization and Applications.// Wiley-VCH: New-York, 1998.
  4. R. M. Crooks, et al. Dendrimer-encapsulated metals and semiconductors: Synthesis, characterization, and applications.// Topics Curr. Chem. 2001. V. 212.P. 81.
  5. S. Forster, M. Antonietti. Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids.// Adv. Mater. 1998. V. 10.P. 195.
  6. Functional Nanostructures.// Chemical Reviews. 2005. V. 105. № 4.
  7. I. U. Hamley, The Physics of Block Copolymers.//Oxford University Press, Oxford, UK, 1998.
  8. F. S. Bates, G. H. Fredrickson. Phys. Today. 1999. V. 52.P. 32.
  9. L. M. Bronstein, P. M. Valetsky. Specific features of complexation of organometallic compounds with polybutadiene and its copolymer in solution // J. Inorg. Organomet. Polym. 1994. V. 4.P. 415.
  10. M. Moffitt, et al. Size Control of Nanoparticles in Semiconductor-Polymer Composites. 2. Control via Sizes of Spherical Ionic Microdomains in Styrene-Based Diblock Ionomers.// Chem. Mater. 1995. V. 7. № 6. P. 1185.
  11. L. Bronstein, et al. Transition metal complex induced morphology change in an ABC-triblock copolymer.// Polym. Bull. 1997. V. 39.P. 361.
  12. J. F. Ciebien, et al. Brief review of metal nanoclusters in block copolymer films.//New J. Chem. 1998. V. 22.P. 685.
  13. Π’. Hashimoto, et al. Incorporation of Metal Nanoparticles into Block Copolymer Nanodomains via in-Situ Reduction of Metal Ions in Microdomain Space.//Macromolecules. 1999. V. 32.P. 6867.
  14. Y. Lvov, et al. Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly (vinyl sulfate) and poly (allylamine).// Langmuir. 1993. V. 9.P. 481.
  15. G. Π’. Sukhorukov, et al. Layer-by-layer self assembly of polyelectrolytes on colloidal particles.// Colloids Surf., A. 1998. V. 137.P. 253.
  16. R. A. Caruso, et al. Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres // Chem. Mater. 2001. V. 13. № 2. P. 400.
  17. H. Xiong, et al. Supramol. Sci. 1998. V. 5.P. 623.
  18. N. A. Kotov, et al. Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films.// J. Phys. Chem. 1995. V. 99.P. 13 065.
  19. A. R. Khokhlov, et al. Conformational transitions in polymer gels: Theory and experiment // Adv.Polym.Sci. 1993. V. 109.P. 123.
  20. A. R. Khokhlov, et al. Macromol. Theory Simul. 1992. V. l.P. 105.
  21. Y. V. Khandurina, et al. Vysokomol. Soedin., Ser. A Ser. B. 1994. V. 36.P. 235.
  22. H. Okuzaki, Y. Osada. Ordered-Aggregate Formation by Surfactant-Charged Gel Interaction.// Macromolecules. 1995. V. 28.P. 380.
  23. F. Yeh, et al. Nanoscale Supramolecular Structures in the Gels of Poly (Diallyldimethylammonium Chloride) Interacting with Sodium Dodecyl Sulfate//J. Am. Chem. Soc. 1996. V. 118. № 28. P. 6615.
  24. L. M. Bronstein, et al. Complexes of Polyelectrolyte Gels with Oppositely Charged Surfactants: Interaction with Metal Ions and Metal Nanoparticle Formation.//Langmuir. 1998. V. 14.P. 252.
  25. L. M. Bronstein, et al. Metal colloid formation in the complexes of polyelectrolyte gels with oppositely charged surfactants.// Colloids Surf A. 1999. V. 147. № 1−2. P. 221.
  26. D. I. Svergun, et al. Small-Angle X-ray Scattering Study of Platinum-Containing Hydrogel/Surfactant Complexes // J. Phys. Chem. B. 2000. V. 104.P. 5242.
  27. J. C. Hulteen, C. R. Martin, Template Synthesis of Nanoparticles in Nanoporous Membranes. In Nanoparticles and Nanostructured Films,// J. H. Fendler, Wiley-VCH Verlag: Weinheim, 1998- P. 235.
  28. Y. Plyuto, et al. Ag nanoparticles synthesised in template-structured mesoporous silica films on a glass substrate.// Chem. Commun. 1999. P. 1653.
  29. L. M. Bronstein, et al. Sub-Nanometer Noble-Metal Particle Host Synthesis in Porous Silica Monoliths.//Adv. Mater. 2001. V. 13.P. 1333.
  30. V. A. Davankov, M. P. Tsyurupa. Structure and properties of hypercrosslinked polystyrene—the first representative of a new class of polymer networks.//React. Polym. 1990. V. 13.P. 27.
  31. M. P. Tsyurupa, V. A. Davankov. The study of macronet isoporous styrene polymers by gel permeation chromatography // J. Polym. Sci.: Polym. Chem. Ed. 1980. V. 18.P. 1399.
  32. R. M. C. Sutton, et al. High-performance chelation ion chromatography for the determination of traces of bismuth in lead by means of a novel hypercrosslinked polystyrene resin.// Journal of Chromatography, A. 1997. V. 789.P. 389.
  33. S. N. Sidorov, et al. Cobalt Nanoparticle Formation in the Pores of Hyper-Cross-Linked Polystyrene: Control of Nanoparticle Growth and Morphology //Chem. Mater. 1999. V. 11. № 11. P. 3210.
  34. S. V. Vonsovskii, Magnetism.//Nauka, Moscow, 1971.
  35. C. P. Bean, et al. Determination of precipitate particle shape by ferromagnetic resonance.// ActaMetall. 1957. V. 5.P. 682.
  36. S. N. Sidorov, et al. Platinum-Containing Hyper-Cross-Linked Polystyrene as a Modifier-Free Selective Catalyst for L-Sorbose Oxidation // J. Am. Chem. Soc. 2001. V. 123. № 43. P. 10 502.
  37. A. N. Parikh, et al. n-Alkylsiloxanes: From Single Monolayers to Layered Crystals. The Formation of Crystalline Polymers from the Hydrolysis of n-Octadecyltrichlorosilane // J. Am. Chem. Soc. 1997. V. 119. № 13. p. 3135.
  38. W. R. Thompson, J. E. Pemberton. Characterization of Octadecylsilane and Stearic Acid Layers on A1203 Surfaces by Raman Spectroscopy.// Langmuir. 1995. V. 11.P. 1720.
  39. L. M. Bronstein, et al. Metal Nanoparticles Grown in the Nanostructured Matrix of Poly (octadecylsiloxane).//Langmuir. 2000. V. 16.P. 8221.
  40. D. I. Svergun, et al. Formation of Metal Nanoparticles in Multilayered Poly (octadecylsiloxane) As Revealed by Anomalous Small-Angle X-ray Scattering // Chem. Mater. 2000. V. 12. № 12. P. 3552.
  41. Z. Lu, et al. Palladium Nanoparticle Catalyst Prepared in Poly (Acrylic Acid)-lined Channels of Diblock Copolymer Microspheres.// Nano Lett. 2001. V. l.P. 683.
  42. M Antonietti, et al. Synthesis and characterization of noble metal colloids in block copolymer micelles.//Adv. Mater. 1995. V. 7.P. 1000.
  43. L. M. Bronstein, et al. Controlled Synthesis of Novel Metallated Poly (aminohexyl)-(aminopropyl)silsesquioxane Colloids.// Langmuir. 2003. V. 19.P. 7071.
  44. M. Mikhaylova, et al. Superparamagnetism of Magnetite Nanoparticles: Dependence on Surface Modification.// Langmuir. 2004. V. 20.P. 2472.
  45. B. Lindlar, et al. Synthesis of monodisperse magnetic methacrylate polymer particles.//Adv. Mater. 2002. V. 14.P. 1656.
  46. J. Zhang, et al. A New Approach to Hybrid Nanocomposite Materials with Periodic Structures.// J. Am. Chem. Soc. 2002. V. 124.P. 14 512.
  47. H. H. Pham, E. Kumacheva. Core-shell particles: Building blocks for advanced polymer materials.//Macromol. Symp. 2003. V. 192.P. 191.
  48. I. L. Radtchenko, et al. Inorganic Particle Synthesis in Confined Micron-Sized Polyelectrolyte Capsules.// Langmuir. 2002. V. 18.P. 8204.
  49. G. Kickelbick, et al. Hybrid Inorganic-Organic Core-Shell Nanoparticles from Surface-Functionalized Titanium, Zirconium, and Vanadium Oxo Clusters.// Chem. Mater. 2002. V. 14.P. 4382.
  50. C. R. Vestal, Z. J. Zhang. Atom Transfer Radical Polymerization Synthesis and Magnetic Characterization of MnFe204/Polystyrene Core/Shell Nanoparticles.// J. Am. Chem. Soc. 2002. V. 124.P. 14 312.
  51. S. C. Farmer, Π’. E. Patten. Photoluminescent Polymer/Quantum Dot Composite Nanoparticles.//Chem. Mater. 2001. V. 13.P. 3920.
  52. J. Pyun, et al. Synthesis and characterization of organic/inorganic hybrid nanoparticles: kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films.// Macromolecules. 2003. V. 36.P. 5094.
  53. Y. Deng, et al. A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core-shell structure.// Adv. Mater. 2003. V. 15.P. 1729.
  54. H. Skaff, T. Emrick. A Rapid Route to Amphiphilic Cadmium Selenide Nanoparticles Functionalized with Poly (ethylene glycol).// Chem. Comm. 2003. P. 52.
  55. J. Jang, B. Lim. Facile Fabrication of Inorganic-Polymer Core-Shell Nanostructures by a One-Step Vapor Deposition Polymerization.// Angew. Chem. Int. Ed. 2003. V. 42.P. 5600.
  56. J. Deng, et al. Magnetic and conducting Fe304-cross-linked polyaniline nanoparticles with core-shell structure.//Polymer. 2002. V. 43 .P. 2179.
  57. J. L. Arias, et al. Synthesis and characterization of poly (ethyl-2-cyano aery late) nanoparticles with a magnetic core.// J. Controll. Release. 2001. V. 77.P. 309.
  58. M. P. Morales, et al. Contrast agents for MR1 based on iron oxide nanoparticles prepared by laser pyrolysis.// J. Magn. Magn. Mater. 2003. V. 266.P. 102.
  59. Y. Zhang, et al. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake.// Biomaterials. 2002. V. 23 .P. 1553.
  60. M. Antonietti, S. Henz. Supermolecular structures at polymers. A way towards intelligent materials?// Nachr. Chem: Technol. Lab. 1992. V. 40.P. 308.
  61. R. Saito, et al. Introduction of colloidal silver into poly (2-vinylpyridine) microdomains of microphage-separated poly (styrene-b-2-vinylpyridine) film. 3. Poly (2-vinylpyridine) spherical microdomain.// Polymer. 1993. V. 34.P. 1189.
  62. J. P. Spatz, et al. Gold nanoparticles in micellar poly (styrene)-b-poly (ethylene oxide) films. Size and interparticle distance control in monoparticulate films.// Adv. Mater. 1996. V. 8.P. 337.
  63. A. B. R. Mayer, et al. Palladium and platinum nanocatalysts protected by amphiphilic block copolymers.// Polym. J. 1998. V. 30.P. 197.
  64. A. B. R. Mayer, J. E. Mark. Transition metal nanoparticles protected by amphiphilic block copolymers as tailored catalyst systems.// Colloid Polym. Sci. 1997. V. 275.P. 333.
  65. L. M. Bronstein, et al. Interaction of Polystyrene-block-poly (ethylene oxide) Micelles with Cationic Surfactant in Aqueous Solutions. Metal Colloid Formation in Hybrid Systems.// Langmuir. 2000. V. 16.P. 3626.
  66. L. M. Bronstein, et al. The Hybrids of Polystyrene-block-Poly (ethylene Oxide) Micelles and Sodium Dodecyl Sulfate in Aqueous Solutions: Interaction with Rh Ions and Rh Nanoparticle Formation.// J. Colloid Interface Sci. 2000. V. 230.P. 140.
  67. L. M. Bronstein, et al. Comicellization of Polystyrene-block-Poly (ethylene oxide) with Cationic and Anionic Surfactants in Aqueous Solutions: Indications and Limits.// J. Phys. Chem. B. 2001. Y. 105.P. 9077.
  68. L. M. Bronstein, et al. Synthesis of Pd-, Pt-, and Rh-containing polymers derived from polystyrene-polybutadiene block copolymers- micellization of diblock copolymers due to complexation.// Macromol. Chem. Phys. 1998. V. 199.P. 1357.
  69. L. M. Bronstein, et al. Interaction of metal compounds with 'double-hydrophilic' block copolymers in aqueous medium and metal colloid formation.// Inorg. Chim. Acta. 1998. V. 280.P. 348.
  70. S. N. Sidorov, et al. Stabilization of Metal Nanoparticles in Aqueous Medium by Polyethyleneoxide-Polyethyleneimine Block Copolymers.// J. Colloid Interface Sci. 1999. V. 212.P. 197.
  71. M. Michaelis, A. Henglein. Reduction of Pd (Il) in Aqueous Solution: Stabilization and Reactions of an Intermediate Cluster and Pd Colloid Formation.// J. Phys. Chem. 1992. V. 96.P. 4719.
  72. M. Antonietti. Microgels Polymers with a Special Molecular Architecture.// Angew. Chem. Int. Ed. 1988. V. 27.P. 1743.
  73. M. Antonietti, et al. Microgels: model polymers for the crosslinked state.// Macromolecules. 1990. V. 23.P. 3796.
  74. M. Antonietti, et al. Nonclassical Shapes of Noble-Metal Colloids by Synthesis in Microgel Nanoreactors.// Angew. Chem. Int. Ed. 1997. V. 36.P. 2080.
  75. N. T. Whilton, et al. Organized functionalization of mesoporous silica supports using prefabricated metal-polymer modules.// Adv. Mater. 1999. V. 11.P. 1014.
  76. F. Zeng, S. C. Zimmerman. Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly // Chem. Rev. 1997. V. 97. № 5. P. 1681.
  77. M. Zhao, R. M. Crooks. Dendrimer-Encapsulated Pt Nanoparticles: Synthesis, Characterization, and Applications to Catalysis.// Adv. Mater. 1999. V. 11.P. 217.
  78. К. Esumi, et al. Preparation of Gold Colloids with UV Irradiation Using Dendrimers as Stabilizer.//Langmuir. 1998. V. 14.P. 3157.
  79. K. Esumi, et al. Preparation of Gold Colloids with UV Irradiation Using Dendrimers as Stabilizer.//Langmuir. 1998. V. 14.P. 3157.
  80. M. Benito, et al. Transition metal clusters containing carbosilane dendrimers.// J. Organomet. Chem. 2001. V. 619.P. 245.
  81. M. Benito, et al. Very large neutral and polyanionic Fe/Au cluster-containing dendrimers.// J. Organomet. Chem. 2001. V. 622.P. 33.
  82. O. Ross ell, et al. Gold-containing dendrimers: A new class of macromolecules.// Gold Bulletin. 2001. V. 34.P. 88.
  83. Z. B. Shifrina, et al. Poly (Phenylene-pyridyl) Dendrimers: Synthesis and Templating of Metal Nanoparticles.// Macromolecules. 2005. V. 38. № 24. P. 9920.
  84. A. Wieckowski, et al., Catalysis and Electrocatalysis at Nanoparticle Surfaces.//Marcel Dekker, Inc., New York, N. Y., 2003- 970.
  85. G. Schmid, Nanoparticles: From Theory to Application.// Wiley-VCH Verlag GmbH & Co.: Weinheim, 2004- 434.
  86. G. A. Somorjai, et al. Clusters, surfaces, and catalysis.// Proc. Nat. Acad. Sci. 2006. V. 103. № 28. P. 10 577.
  87. D. Astruc, et al. Nanoparticles as recyclable catalysts. The frontier between homogeneous and heterogeneous catalysis.// Angew. Chem. Int. Ed. 2005. V. 44.P. 7852.
  88. C. Mueller, et al. Continuous homogeneous catalysis.// European Journal of Inorganic Chemistry. 2005. V. 20.P. 4011.
  89. L. M. Bronstein, Nanoparticles in Nanostructured Polymers. In Encyclopedia of Nanoscience and Nanotechnology,// H. S. Nalwa, APS: Stevenson Ranch, CA, 2004- V. 7, P. 193.
  90. L. M. Bronstein, Polymer Colloids and Their Metallation. In Dekker Encyclopedia of Nanoscience and Nanotechnology,// J. A. Schwarz, Π‘. I. Contescu and K. Putyera, Marcel Dekker, Inc.: New York, 2004- P. 2903.
  91. S. Klingelhoefer, et al. Preparation of Palladium Colloids in Block Copolymer Micelles and Their Use for the Catalysis of the Heck Reaction // J. Am. Chem. Soc. 1997. V. 119. № 42. P. 10 116.
  92. M. V. Seregina, et al. Preparation of Noble-Metal Colloids in Block Copolymer Micelles and Their Catalytic Properties in Hydrogenation.// Chem. Mater. 1997. V. 9.P. 923.
  93. R. S. Underbill, G. Liu. Triblock Nanospheres and Their Use as Templates for Inorganic Nanoparticle Preparation.// Chem. Mater. 2000. V. 12.P. 2082.
  94. R. S. Mulukutla, et al Nanoparticles of RhOx in the MCM-41: a novel catalyst for NO-CO reaction in excess 02.// Scripta. Mater. 2001. V. 44.P. 1695.
  95. T. F. Jaramillo, et al. Catalytic Activity of Supported Au Nanoparticles Deposited from Block Copolymer Micelles.// J. Am. Chem. Soc. 2003. V. 125. № 24. P. 7148.
  96. B. Roldan Cuenya, et al. Size- and Support-Dependent Electronic and Catalytic Properties of Au0/Au3+ Nanoparticles Synthesized from Block Copolymer Micelles.// J. Am. Chem. Soc. 2003. V. 125. № 42. P. 12 928.
  97. R. Nakao, et al. Hydrogenation and Dehalogenation under Aqueous Conditions with an Amphiphilic-Polymer-Supported Nanopalladium Catalyst.// Organic Letters. 2005. V. 7. № 1. P. 163.
  98. L. Groeschel, et al. Hydrogenation of Propyne in Palladium-Containing Polyacrylic Acid Membranes and Its Characterization.// Industrial & Engineering Chemistry Research. 2005. V. 44. № 24. P. 9064.
  99. L. Groeschel, et al. Characterization of Palladium Nanoparticles Adsorbed on Polyacrylic Acid Particles as Hydrogenation Catalyst.// Catalysis Letters.2004. V. 95. № 1−2. P. 67.
  100. Z. Liu, et al. Silver nanocomposite layer-by-layer films based on assembled polyelectrolyte/dendrimer.// J. Colloid Interface Sci. 2005. V. 287. № 2. P. 604.
  101. Y Li, M. A. El-Sayed. The Effect of Stabilizers on the Catalytic Activity and Stability of Pd Colloidal Nanoparticles in the Suzuki Reactions in Aqueous Solution.//J. Phys. Chem., B. 2001. V. 105.P. 8938.
  102. R. Narayanan, M. A. El-Sayed. Effect of Colloidal Catalysis on the Nanoparticle Size Distribution: Dendrimer-Pd vs PVP-Pd Nanoparticles Catalyzing the Suzuki Coupling Reaction.// J. Phys. Chem. 2004. V. 108. № 25. P. 8572.
  103. J. Lemo, et al. Efficient Dendritic Diphosphino Pd (II) Catalysts for the Suzuki Reaction of Chloroarenes.// Organic Letters. 2005. V. 7. № 11. P. 2253.
  104. M. Zhao, R. M. Crooks. Intradendrimer Exchange of Metal Nanoparticles // Chem. Mater. 1999. V. 11. № 11. P. 3379.
  105. Y. Niu, et al. Size-Selective Hydrogenation of Olefins by Dendrimer-Encapsulated Palladium Nanoparticles.// J. Am. Chem. Soc. 2001. V. 123. № 28. P. 6840.
  106. S.-K. Oh, et al. Size-Selective Catalytic Activity of Pd Nanoparticles Encapsulated within End-Group Functionalized Dendrimers.// Langmuir.2005. V. 21. № 22. P. 10 209.
  107. О. M. Wilson, et al. Effect of Pd Nanoparticle Size on the Catalytic Hydrogenation of Allyl Alcohol.// J. Am. Chem. Soc. 2006. V. 128. № 14. P. 4510.
  108. К. Esumi, et al. Preparation and catalytic activity of platinum-dendrimer nanocomposites.// Shikizai Kyokaishi. 2000. V. 73. № 9. P. 434.
  109. J. C. Garcia-Martinez, et al. Dendrimer-Encapsulated Pd Nanoparticles as Aqueous, Room-Temperature Catalysts for the Stille Reaction.// J. Am. Chem. Soc. 2005. V. 127. № 14. P. 5097.
  110. T. Endo, et al. Synthesis and catalytic activity of gold-silver binary nanoparticles stabilized by Π ΠΠœΠΠœ dendrimer.// J. Colloid Interface Sci. 2005. V. 286. № 2. P. 602.
  111. Y. Du, et al. Preparation of Platinum Core-polyaryl Ether Aminediacetic Acid Dendrimer Shell Nanocomposite for Catalytic Hydrogenation of Phenyl Aldehydes.// Catalysis Letters. 2006. V. 107. β„–> 3−4. P. 177.
  112. J. Dai, M. L. Bruening. Catalytic Nanoparticles Formed by Reduction of Metal Ions in Multilayered Polyelectrolyte Films.// Nano Lett. 2002. V. 2.P. 497.
  113. M. I. Baraton, Synthesis, functionalisation and surface treatment of nanoparticles.//Am. Sci. Publ., Los-Angeles, CA, 2002.
  114. E. ΠšΠΎΠ½Π΄ΠΎΡ€ΡΠΊΠΈΠΉ. Π”ΠΎΠΊΠ». АН Π‘Π‘Π‘Π . 1952. V. 82.Π . 365.
  115. Π‘. Kittel. Theory of the Structure of Ferromagnetic Domains in Films and Small Particles // Phys. Rev. 1946. V. 70.P. 965.
  116. W. F. Brown Jr. Thermal Fluctuations of a Single-Domain Particle.// J. Appl. Phys. 1963. V. 34.P. 1319.
  117. W. C. Elmor. Ferromagnetic Colloid for Studying Magnetic Structures.// Phys. Rev. 1938. V. 54.P. 309.
  118. C. P. Bean, I. S. Jacobs. Magnetic Granulometry and Super-Paramagnetism // J. Appl. Phys. 1955. V. 27.P. 1448.
  119. E. F. Kneller, F. E. Luborsky. Particle Size Dependence of Coercivity and Remanence of Single-Domain Particles.// J. Appl. Phys. 1963. V. 34.P. 656.
  120. J. R. Thomas. Preparation and Magnetic Properties of Colloidal Cobalt Particles.//J. Appl. Phys. 1966. V. 37.P. 2914.
  121. G. A. Prinz. Magnetoelectronics applications.// J. Magn. Magn. Mater. 1999. V. 200.P. 57.
  122. D. Das, et al. Synthesis of nanocrystalline nickel oxide by controlled oxidation of nickel nanoparticles and their humidity sensing properties.// J. Appl. Phys. 2000. V. 88.P. 6856.
  123. W. J. Parak, et al. Biological applications of colloidal nanocrystals.// Nanotechnology. 2003. V. 14.P. R15.
  124. O. A. Platonova, et al. Cobalt nanoparticles in block copolymer micelles: Preparation and properties.// Colloid Polym. Sci. 1997. V. 275. № 5. P. 426.
  125. M. Rutnakornpituk, et al. Formation of cobalt nanoparticle dispersions in the presence of polysiloxane block copolymers.// Polymer. 2002. V. 43 .P. 2337.
  126. P. A. Dresco, et al. Preparation and Properties of Magnetite and Polymer Magnetite Nanoparticles.//Langmuir. 1999. V. 15.P. 1945.
  127. V. S. Zaitsev, et al. Physical and Chemical Properties of Magnetite and Magnetite-Polymer Nanoparticles and Their Colloidal Dispersions.// J. Colloid Interface Sci. 1999. V. 212.P. 49.
  128. T. A. Taton. Nanostructures as tailored biological probes // Trends Biotechnol. 2002. V. 20.P. 277.
  129. C. Mah, et al. Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo.// Mol Therapy. 2000. V. 1 .P. S239.
  130. D. Panatarotto, et al. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses.// Chemistry&Biology. 2003. V. 10.P. 961.
  131. R. L. Edelstein, et al. The BARC biosensor applied to the detection of biological warfare agents.// Biosensors Bioelectron. 2000. V. 14.P. 805.
  132. J. M. Nam, et al. Nanoparticles-based bio-bar codes for the ultrasensitive detection of proteins.// Science. 2003. V. 301.P. 1884.
  133. R. Mahtab, et al. Protein-sized quantum dot luminescence can distinguish between «straight», «bent», and «kinked» oligonucleotides.// J. Am. Chem. Soc. 1995. V. 117.P. 9099.
  134. J. Ma, et al. Biomimetic processing of nanocrystallite bioactive apatite coating on titanium.//Nanotechnology. 2003. V. 14.P. 619.
  135. A. de la Isla, et al. Nanohybrid scratch resistant coating for teeth and bone viscoelasticity manifested in tribology.// Mat. Resr. Innovat. 2003. V. 7.P. 110.
  136. J. Yoshida, T. Kobayashi. Intracellular hyperthermia for cancer using magnetite cationic liposomes.//J. Magn. Magn. Mater. 1999. V. 194.P. 176.
  137. R. S. Molday, D. MacKenzie. Immunospecific ferromagnetic iron dextran reagents for the labeling and magnetic separation of cells.// J. Immunol. Methods. 1982. V. 52.P. 353.
  138. M. Bruchez, et al. Semiconductor nanocrystals as fluorescent biological labels.// Science. 1998. V. 281.P. 2013.
  139. W. C. W. Chan, S. M. Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection.// Science. 1998. V. 281.P. 2016.
  140. S. Wang, et al. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates.//Nano Letters. 2002. V. 2.P. 817.
  141. R. Weissleder, et al. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging.// Radiology. 1990. V. 175.P. 489.
  142. V. A. Sinani, et al. Collagen coating promotes biocompatibility of semiconductor nanoparticles in stratified LBL films.// Nano Letters. 2003. V. 3.P. 1177.
  143. M. Han, et al Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules.//Nature Biotechnology. 2001. V. 19.P. 631.
  144. I. Roy, et al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy.// J. Am. Chem. Soc. 2003. V. 125.P. 7860.
  145. J. L. West, N. J. Halas. Applications of nanotechnology to biotechnology.// Curr. Opin. Biotechnol. 2000. V. 11.P. 215.
  146. S. R. Sershen, et al. Temperature-sensitive polymer-nanoshell composite for photothermally modulated drug delivery.// J. Biomed. Mater. Res. 2000. V. 51.P. 293.
  147. Q. A. Pankhurst, et al. Applications of magnetic nanoparticles in biomedicine.// J. Phys. D: Appl. Phys. 2003. V. 36.P. R167.
  148. D. H. Reich, et al. Biological applications of multifunctional magnetic nanowires.// J. Appl. Phys. 2003. V. 93.P. 7275.
  149. Π‘. H. Cunningham, et al. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles.// Magn. Reson. Med. 2005. V. 53.P. 999.
  150. M. Johannsen, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique.// Int. J. Hyperthermia. 2005. V. 21. № 7. P. 637.
  151. R. Jurgons, et al. Drug loaded magnetic nanoparticles for cancer therapy.// J. Phys.: Condens. Matter. 2006. V. 18. № 38. P. S2893.
  152. B. Dubertret, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles.// Science. 2002. V. 298. № 5599. P. 1759.
  153. C. Chen, et al. Nanoparticle-Templated Assembly of Viral Protein Cages.// Nano Lett. 2006. V. 6. № 4. P. 611.
  154. S. К. Dixit, et al. Quantum Dot Encapsulation in Viral Capsids.// Nano Lett. 2006. V. 6. № 9. P. 1993.
  155. V. Holler, et al. Reduction of nitrite-ions in water over Pd-supported on structured fibrous materials.//Appl. Catal. 2001. V. B32.P. 143.
  156. A. A. Askadskii, Computational Materials Science of Polymers.//Cambridge International Science Publishing, Cambridge, 2003.
  157. R. L. Kronenthal, et al. Polymer Science and Technology: Polymers in Medicine and Surgery.// Plenum Press: New York and London,. 1975. V. Vol. 8.
  158. W. S. Shalaby, a. et. Polymers of Biological and Biomedical Significance./7 American Chemical Society: Washington, DC. 1994.
  159. L. M. Mikheeva, et al. Microcalorimetric Study of Thermal Cooperative Transitions in Poly (N-vinylcaprolactam) Hydrogels.// Macromolecules. 1997. V. 30. № 9. P. 2693.
  160. B. Jeong, et al. Biodegradable block copolymers as injectable drug-delivery systems.// Nature. 1997. V. 388(6645).P. 860.
  161. R. M. Ottenbrite, et al. Hydrogels and Biodegradable Polymers for Bioapplications.// American Chemical Society: Washington, DC. 1996.
  162. K. Park. Controlled Drug Delivery-Challenges and Strategies // Amercian Chemical Society: Washington, DC. 1997.
  163. A. S. Hoffman. Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics // J. Controlled Release 1987. V. 6 P. 297.
  164. A. S. Hoffman, et al. Thermally reversible hydrogels: II. Delivery and selective removal of substances from aqueous solutions // J. Controlled Release. 1986. V. 4.P. 213.
  165. H. Feil, et al Molecular separation by thermosensitive hydrogel membranes // J. Membr. Sci. 1991. V. 64.P. 283.
  166. Y. R.-M. Osada, S. B.. Intelligent Gels.// Sci. Am. 1993. V. 259.P. 42.
  167. S. Luo, e. al. Phase Transition Behavior of Unimolecular Micelles with Thermoresponsive Poly (N-isopropylacrylamide) Coronas.// J. Phys. Chem. B. 2006. P. 9132.
  168. A. Mehta, et al. Oriented Nanostructures from Single Molecules of a Semiconducting Polymer: Polarization Evidence for Highly Aligned Intramolecular Geometries.// Nano Lett. 2003. V. 3.P. 603.
  169. P. Kumar, et al. Photon Antibunching from Oriented Semiconducting Polymer Nanostructures.// J. Am. Chem. Soc. 2004. V. 126.P. 3376.
  170. M. Zhang, et al. Template-Controlled Synthesis of Wire-Like Cadmium Sulfide Nanoparticle Assemblies within Core-Shell Cylindrical Polymer Brushes.// Chem. Mater. 2004. V. 16.P. 537.
  171. E. E. Makhaeva, et al. Thermoshrinking behavior of poly (vinyleaprolactam) gels in aqueous solution//Macromol. Chem. Phys. 1996. V. 197.P. 1973.
  172. L. M. Bronstein, et al. Core-Shell Nanostructures from Single Poly (N-vinylcaprolactam) Macromolecules: Stabilization and Visualization.// Langmuir. 2005. V. 21. № 7. P. 2652.
  173. V. Lebedev, et al. Polymer hydration and microphase decomposition in poly (N-vinylcaprolactam)-water complex.// J. Appl. Crystallogr. 2003. V. 36.P. 967.
  174. V. V. Vasilevskaya, et al. Conformational Polymorphism of Amphiphilic Polymers in a Poor Solvent.// Macromolecules. 2003. V. 36.P. 10 103.
  175. F. Zeng, et al. NMR investigation of phase separation in poly (N-isopropylacrylamide)/water solutions.//Polymer. 1997. V. 38.P. 5539.
  176. A. Larsson, et al. 1H NMR of thermoreversible polymers in solution and at interfaces: the influence of charged groups on the phase transition.// Coll. & Surfaces A. 2001. V. 190.P. 185.
  177. К. Yokota, et al. A carbon-13 nuclear magnetic resonance study of covalently crosslinked gels. Effect of chemical composition, degree of crosslinking, and temperature to chain mobility.// Macromolecules. 1978. V. ll.P. 95.
  178. G. Zhang, et al. Structure of a Collapsed Polymer Chain with Stickers: A Single- or Multiflower?// Phys. Rev. Lett. 2003. V. 90.P. 35 506/1.
  179. G. Wilkinson, Comprehensive coordination chemistry: the synthesis, reactions, properties, & applications of coordination compounds.//Pergamon Press, New York, 1987.
  180. G. I. Frolov. Film carriers for super-high-density magnetic storage // Tech.Phys. 2001. V. 46. № 12. P. 1537.
  181. S. H. Sun, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices.// Science. 2000. V. 287. № 5460. P. 1989.
  182. C. Sestier, et al Surface modification of superparamagnetic nanoparticles (Ferrofluid) studied with particle electrophoresis: Application to the specific targeting of cells.//Electrophoresis. 1998. V. 19. № 7. P. 1220.
  183. M Racuciu, et al Synthesis and. rheological properties of an aqueous ferrofluid.// J. Optoelectron. Adv. Mater. 2005. V. 7. № 6. P. 2859.
  184. J. W. Bulte, D. L. Kraitchman. Iron oxide MR contrast agents for molecular and cellular imaging.//NMR Biomed. 2004. V. 17.P. 484.
  185. W. J. M. Mulder, et al. Lipid-based nanoparticles for contrast-enhanced MRJ and molecular imaging.//NMR Biomed. 2006. V. 19. № 1. P. 142.
  186. Y. R. Chemla, et al Ultrasensitive magnetic biosensor for homogeneous immunoassay //Proc. Nat. Acad. Sci. 2000. V. 97. № 26. P. 14 268.
  187. K. Briley-Saebo, et al. Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging.// Cell & Tissue Res. 2004. V. 316. № 3. P. 315.
  188. Shen L.F., et al. Bilayer surfactant stabilized magnetic fluids: Synthesis and interactions at interfaces // Langmuir. 1999. V. 15. № 2. P. 447.
  189. Fried Π’., et al. Ordered two-dimensional arrays of ferrite nanoparticles // Adv. Mater. 2001. V. 13. β„–> 15. P. 1158.
  190. G. Visalakshi, et al. Compositional characteristics of magnetite synthesized from aqueous-solutions at temperatures up to 523K.// Mater. Res. Bull. 1993. V. 28. № 8. P. 829.
  191. Zhou ZH, et al. Synthesis of Fe304 nanoparticles from emulsions 11 Journal of materials chemistry 2001. V. 11. № 6. P. 1704.
  192. Murray CB, et al. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies.// Annual review of materials science. 2000. V. 30.P. 545.
  193. Tartaj P, Serna Π‘ J. Microemulsion-assisted synthesis of tunable superparamagnetic composites // Chemistry of materials 2002. V. 14. № 10. P. 4396.
  194. S. Sun, H. Zeng. Size-Controlled Synthesis of Magnetite Nanoparticles.// J. Am. Chem. Soc. 2002. V. 124. № 28. P. 8204.
  195. Z. Li, et al. One-Pot Reaction to Synthesize Water-Soluble Magnetite Nanocrystals.// Chem. Mater. 2004. V. 16. № 8. P. 1391.
  196. F. X. Redl, et al. Magnetic, Electronic, and Structural Characterization of Nonstoichiometric Iron Oxides at the Nanoscale.// J. Am. Chem. Soc. 2004. V. 126. № 44. P. 14 583.
  197. W. W. Yu, et al. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts.// Chem. Comm. 2004. № 20. P. 2306.
  198. J. Park, et al. Ultra-large-scale syntheses of monodisperse nanocrystals.// Nature Mater. 2004. V. 3. № 12. P. 891.
  199. Hyeon T, et al. Synthesis of Highly-Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process.// J. Am. Chem. Soc. 2001. V. 123. № 12 798−12 801.
  200. T. Douglas, M. Young. Host-guest encapsulation of materials by assembled virus protein cages.// Nature. 1998. V. 393. № 6681. P. 152.
  201. M. Allen, et al. Protein cage constrained synthesis of ferrimagnetic iron oxide nanoparticles.// Adv. Mater. 2002. V. 14. № 21. P. 1562.
  202. D. V. Talapin, et al., Synthesis and Characterization of Magnetic Nanoparticles. In Nanoparticles,// G. Schmid, Wiley-VCH: Weinheim, 2004- P. 199.
  203. T. Hyeon, et al. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process.// J. Am. Chem. Soc. 2001. V. 123.P. 12 798.
  204. D. Pouliquen, et al. Superparamagnetic iron oxide nanoparticles as a liver MRI contrast agent: contribution of microencapsulation to improved biodistribution.// Magn. Reson. Imag.. 1989. V. 7. № 6. P. 619.
  205. E. M. Shapiro, et al. MRI detection of single particles for cellular imaging.// Proc. Nat. Acad. Sci. 2004. V. 101. № 30. P. 10 901.
  206. Π’. Dragnea, et al. Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses.// J. Am. Chem. Soc. 2003. V. 125. № 21. P. 6374.
  207. L. M. Bronstein, et al. Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation.// Chem. Mater, submitted. 2007. V. 19 № 15. P. 3624.
  208. L. M. Bronstein, et al. Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation.// Chem. Mater, submitted. 2006.
  209. M. F. Casula, et al. The Concept of Delayed Nucleation in Nanocrystal Growth Demonstrated for the Case of Iron Oxide Nanodisks.// J. Am. Chem. Soc, 2006. V. 128. № 5. P. 1675.
  210. G. Ketteler, et al. Bulk and surface phases of iron oxides in an oxygen and water atmosphere at low pressure.// Phys. Chem. Chem. Phys. 2001. V. 3. № 6. P. 1114.
  211. N. Nitin, et al. Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent.// J. Biol. Inorg. Chem.. 2004. V. 9. № 6. P. 706.
  212. Y. T. Lim, et al. Immobilization of histidine-tagged proteins by magnetic nanoparticles encapsulated with nitrilotriacetic acid (NTA)-phospholipids micelle.//Biochem. Biophys. l Res. Comm. 2006. V. 344. № 3. P. 926.
  213. J. Xie, et al. One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications.// Pure Appl. Chem. 2006. V. 78. № 5. P. 1003.
  214. X. Huang, et al. Self-Assembled Virus-like Particles with Magnetic Cores.// Nano Lett. 2007. V. 7. № 8. P. 2407.
  215. R. W. Lucas, et al. The Crystallographic Structure ofBrome Mosaic Virus.// J. Molec. Biol. 2002. V. 317. № 1. P. 95.
  216. К. W. Adolph, P. J. G. Butler. Reassembly of a spherical vims in mild conditions.//Nature. 1975. V. 255.P. 737.
  217. Percec V. Self-assembly of viruses as models for the design of new macromolecular and supramolecular architectures.// Journal of macromolecular science. Part A. Pure & applied chemistry 1996. V. A33. № 10. P. 1479.
  218. J. M. Kaper, The Chemical Basis of Virus Structure, Dissociation and Reassembly .//North-Holland, Amsterdam., 1975- 333.
  219. J. Π’. Bancroft, et al. Structures derived from cowpea chlorotic mottle and brome mosaic virus protein. .// Virology. 1969. V. 38.P. 324.
  220. R. W. Lucas, et al. Crystallization of brome mosaic virus and T=T brome mosaic virus particles following a structural transition.// Virology. 2001. V. 286. № 2. P. 290.
  221. J. Sun, et al. Corecontrolled Polymorphism in Viruslike Particles.// Proc. Nat. Acad. Sci. 2006. V. 104.P. 1354.
  222. R. W. Lucas, et al. The crystallographic structure of brome mosaic virus.// Journal of Molecular Biology. 2002. V. 317. № 1. P. 95.
  223. W. D. Luedtke, U. Landman. Structure and thermodynamics of self-assembled monolayers on gold nanocrystallites.// Journal of Physical Chemistry B. 1998. V. 102. № 34. P. 6566.
  224. U. Hartmann. Magnetic force microscopy.// Annual Review of Materials Science. 1999. V. 29.P. 53.
  225. M. Rasa, et al. Atomic force microscopy and magnetic force microscopy study of model colloids.// Journal of Colloid and Interface Science. 2002. V. 250. № 2. P. 303.
  226. R. B. Proksch, et al. Magnetic Force Microscopy of the Submicron Magnetic Assembly in a Magnetotactic Bacterium.// Applied Physics Letters. 1995. V. 66. № 19. P. 2582.
  227. I. Tsvetkova, et al. Nanostructured catalysts for the synthesis of vitamin intermediate products // Topics in Catalysis. 2006. V. 39. № 3−4.
  228. L. Ruzicka, et al. Polyterpenes and poly terpenoids. CXXV. Rearrangement and cyclization of sclareol and dihydrosclareol.// Helv. Chim. Acta. 1938. V. 21.P. 364.
  229. H. Mayer, et al Chemistry of vitamin E. IV. Absolute configuration of natural a-tocopherol.// Helv. Chim. Acta. 1963. V. 46.P. 963.
  230. V. V. Rusak, et al Russ. J. Appl. Chem. 1994. V. 67.P. 1066.
  231. F. Caruso, et al. Electrostatic Self-Assembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles // J.Am.Chem.Soc. 1998. V. 120. № 33. P. 8523.
  232. F. Caruso, et al. Investigation of Electrostatic Interactions in Poly electrolyte Multilayer Films: Binding of Anionic Fluorescent Probes to Layers assembled onto Colloids.// Macromolecules. 1999. V. 32(7).P. 2317.
  233. I. B. Tsvetkova, et al Structure and behavior of nanoparticulate catalysts based on ultrathin chitosan layers.// J. Mol. Catal. A: Chem. 2007. V. 276.P. 116.
  234. R. Greenwood, K. Kendall. Effect of ionic strenght on the adsorption of cationic polyelectrolytes onto alumina studied using electroacoustic measurements.//Powder Technology. 2000. V. 113.P. 148.
  235. J. R. Anderson, Structure of Metallic Catalysts.//Academic Press, London, 1975.
  236. S. Kidambi, M. L. Bruening. Multilayered polyelectrolyte films containing palladium nanoparticles: synthesis, characterization, and application in selective hydrogenation.// Chem. Mater. 2005. V. 17.P. 301.
  237. IUPAC, Recommendation. Reporting Physisorption Data for Gas/Solid Systemwith Special Reference to the Determination of Surface Area and Porosity.// Pure & Appl. Chem. 1985. V. 57. № 4. P. 603.
  238. IUPAC, Recommendation 1994, 1739. Recommendations for the characterization of porous solids (Technical Report) Commission on Colloid and Surface Chemistry including Catalysis.// Pure & Appl. Chem. 1994. V. 66.P. 1739.
  239. S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area and Porosity.//Academic Press, London, 1982.
  240. K. S. W. Sing. Reporting Physisorption Data for Gas/Solid System. Swith Special Reference to the Determination of Surface Area and Porosity. .// Pure & Appl.Chem. 1982. V. 54. № 11. P. 2201.
  241. E. Brunet, et al. Solid-state reshaping of crystals: Flash increase in porosity of zirconium phosphate-hypophosphite that contains polyethylenoxa diphosphonate pillars.// Angew. Chem. Int. Ed. 2004. V. 43. № 5. P. 619.
  242. K. Kaneko. Determination of pore size and pore size distribution. 1. Adsorbents and catalysts.//J. Memb. Sci. 1994. V. 96.P. 59.
  243. K. Suzuki, et al. Control of the distance between the silicate layers of hectorite by pillaring with alumina in the presence of polyvinyl alcohol.// Chem. Comm. 1991. № 13. P. 873.
  244. К. Suzuki, Π’. Mori. Thermal and catalytic properties of alumina-pillared Montmorillonite prepared in the presence of polyvinyl alcohol.// Appl.Catal. 1990. V. 63.P. 181.
  245. H. Y Zhu, G. Q. Lu. Engineering the Structures of Nanoporous Clays with Micelles of Alkyl Polyether Surfactants.// Langmuir. 2001. V. 17.P. 588.
  246. Y. Lvov, etal. Langmuir. 1993. V. 9.P. 481.
  247. G. B. Sukhorukov, etal. Colloids Surf., A. 1998. V. 137.P. 253.
  248. R. A. Caruso, et al. Chem. Mater. 2001. V. 13.P. 400.
  249. N. A. Kotov, -, et al. J. Phys. Chem. 1995. V. 99.P. 13 065.
  250. A. M. Blokhus, K. Djurhuus. Adsorption of poly (styrene sulfonate) of different molecular weights on a-alumina. Effect of added sodium dodecyl sulfate.// J. Colloid Interface Sci. 2006. V. 296. № 1. P. 64.
  251. K. Nadarajah, et al. Sorption behavior of crawfish chitosan films as affected by chitosan extraction processes and solvent types.// J. Food Sci. 2006. V. 71. № 2. P. E33.
  252. D. A. Miller, et al. The properties of chitosan as a retardant binder in matrix tablets for sustained drug release.// Drug Deliv. Technol.. 2006. V. 6. № 9. P. 44.
  253. S. Kida mbi, et al. Selective hydrogenation by Pd nanoparticles embedded in polyelectrolyte multilayers.// J. AM. CHEM. SOC. 2004. V. 126. № 9. P. 2658.
  254. G. Kumar, et al. Photoelectron Spectroscopy of Coordination Compounds. II. Palladium Complexes.// Inorg. Chem. 1972. V. 11. № 2. P. 296.
  255. Z. Dobrovolna, et al. Competitive hydrogenation in alkene-alkyne-diene systems with palladium and platinum catalysts.// J. Mol. Catal. A: Chem. 1998. V. 130.P. 279.
  256. A. Biffis, et al. Relationships between physico-chemical properties and catalytic activity of polymer-supported palladium catalysts II. Mathematical model.// Appl. Catal. A. 1996. V. 142.P. 327.
  257. L. M. Bronstein, et al. Structure and Properties of Bimetallic Colloids Formed in Polystyrene-block-Poly-4-vinylpyridine Micelles: Catalytic Behavior in Selective Hydrogenation of Dehydrolinalool.// J. Catal. 2000. V. 196.P. 302.
  258. N. V. Semagina, et al. Selective dehydrolinalool hydrogenation with poly (ethylene oxide)-block-poly-2-vinylpyridine micelles filled with Pd nanoparticles.// J. Mol. Cat. A: Chem. 2004. V. 208. № 1−2. P. 273.
  259. E. Sulman, et al. Hydrogenation of dehydrolinalool with novel catalyst derived from Pd colloids stabilized in micelle cores of polystyrene-poly-4-vinylpyridine block copolymers.// Appl. Catal.: A. 1999. V. 176.P. 75.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ