Помощь в учёбе, очень быстро...
Работаем вместе до победы

Протеасомная деградация обратной транскриптазы дикого и лекарственно-устойчивых изоляторов ВИЧ-1 и ее регуляция для целей ДНК-вакцинации

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В заключение необходимо отметить важность изучения деградации белков для решения различных научных и прикладных задач (при работе с различными белками и создании генно-инженерных конструкций). Так, изучение скорости и пути деградации обратной транскриптазы в культуре клеток показало ее медленную протеасомную деградацию. На основании этого было сделано предположение, что обратная транскриптаза… Читать ещё >

Содержание

  • СПИСОК СОКРАЩЕНИЙ
  • ОБЗОР ЛИТЕРАТУРЫ
  • 1. Процесс деградации белков в клетке
  • 2. Убиквитин-протеасомная система деградации белков
    • 2. 1. Система убиквитинирования
    • 2. 2. Убиквитин-независимое направление белков в протеасому
    • 2. 3. 26S протеасома
      • 2. 3. 1. 20S протеасома
      • 2. 3. 2. 19S регуляторный комплекс или РА
    • 2. 4. Иммунопротеасома
    • 2. 5. Локализация протеасом в клетке
    • 2. 6. Процессы, регулируемые убиквитин-протеасомной системой
      • 2. 6. 1. Транскрипция
      • 2. 6. 2. Регуляция клеточного цикла
  • 3. Роль процесса деградации белков в представлении антигена в комплексе с молекулами МНС для узнавания Т-клетками
    • 3. 1. Представление антигенов в комплексе с МНС класса
    • 3. 2. Представление антигенов в комплексе с МНС класса II
  • 4. ДНК-вакцины
    • 4. 1. Развитие технологии ДНК-вакцин
    • 4. 2. Механизм действия
    • 4. 3. Факторы, влияющие на индукцию иммунного ответа
    • 4. 4. Стратегии усиления иммунного ответа на ДНК-вакцинацию
    • 4. 5. Терапевтическое применение ДНК-вакцин
    • 4. 6. Преимущества использования ДНК-вакцин
  • 5. Обратная транскриптаза вируса иммунодефицита человека
    • 5. 1. Роль обратной транскриптазы в жизненном цикле ВИЧ
    • 5. 2. Свойства обратной транскриптазы ВИЧ
    • 5. 3. Лекарственная устойчивость обратной транскриптазы ВИЧ
  • МАТЕРИАЛЫ И МЕТОДЫ
  • 1. Материалы
  • 2. Методы
    • 2. 1. Культивирование и хранение бактериального штамма
    • 2. 2. Культивирование, криоконсервация и хранение клеточной линии НЕК
    • 2. 3. Трансфекция клеток линии НЕК
    • 2. 4. Определение времени полужизни белка методом с импульсным включением метки (pulse-chase)
    • 2. 5. Определение времени полужизни белка методом с остановкой трансляции циклогексимидом и последующим иммуноблотингом (cycloheximide-chase)
    • 2. 6. Определение концентрации белка по методу Брэдфорд
    • 2. 7. Клонирование фрагментов ДНК
      • 2. 7. 1. Амплификация фрагментов ДНК с помощью полимеразной цепной реакции
      • 2. 7. 2. Электрофорез ДНК в агарозном геле
      • 2. 7. 3. Выделение фрагментов ДНК из геля
      • 2. 7. 4. Рестрикционный анализ ДНК
      • 2. 7. 5. Лигирование фрагментов ДНК
      • 2. 7. 6. Приготовление компетентных клеток E. col
      • 2. 7. 7. Трансформация бактериальных клеток плазмидной ДНК
      • 2. 7. 8. Выделение плазмидной ДНК
    • 2. 8. Электрофорез белков в денатурирующем ПААГ
    • 2. 9. Перенос белков из ПААГ на целлюлозную мембрану
    • 2. 10. Иммуноокрашивание мембраны
    • 2. 11. Создание генетических конструкций, использованных в работе
      • 2. 11. 9. Векторные молекулы, содержащие ген обратной транскриптазы
      • 2. 11. 10. Клонирование вектора pCIneoODC
      • 2. 11. 11. Получение векторных молекул, кодирующих белок слияния ОТ-ОДК
    • 2. 12. Флуоресцентная микроскопия эукариотических клеток
    • 2. 13. Иммунизация мышей
    • 2. 14. Иммуноферментный анализ антител в сыворотке крови мышей
    • 2. 15. Выделение спленоцитов из селезенки мыши
    • 2. 16. Анализ спленоцитов иммунизированных мышей
  • РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
  • 1. Экспрессия в культуре клеток обратной транскриптазы дикого и лекарственно-устойчивых изолятов ВИЧ
    • 1. 1. Генетические конструкции
    • 1. 2. Содержание разных вариантов обратной транскриптазы в клетках НЕК
    • 1. 3. Внутриклеточная локализация обратной транскриптазы
  • 2. Деградация в клетках обратной транскриптазы ВИЧ-1 и ее лекарственно устойчивой формы
    • 2. 1. Определение скорости деградации обратной транскриптазы дикого и лекарственно-устойчивых изолятов ВИЧ-1 в клетках
    • 2. 2. Изучение деградации на протеасоме обратной транскриптазы дикого типа и ее лекарственно-устойчивых изолятов ВИЧ
    • 2. 3. Оценка участия различных клеточных протеаз в деградации обратной транскриптазы ВИЧ
  • 3. Искусственное усиление протеасомной деградации обратной транскриптазы ВИЧ
    • 3. 1. Быстрая протеасомная деградация орнитиндекарбоксилазы в клетках НЕК
    • 3. 2. Деградация химерного белка обратная транскриптазаорнитиндекарбоксилаза
      • 3. 2. 12. Дизайн конструкции
      • 3. 2. 13. Время полужизни
      • 3. 2. 14. Стабилизация ингибиторами протеасомы
    • 3. 3. Иммунизация мышей ДНК-вакцинными конструкциями, несущими ген обратной транскриптазы ВИЧ

Протеасомная деградация обратной транскриптазы дикого и лекарственно-устойчивых изоляторов ВИЧ-1 и ее регуляция для целей ДНК-вакцинации (реферат, курсовая, диплом, контрольная)

Деградация белков — один из важнейших механизмов регуляции клеточных процессов. Известно, что большинство внутриклеточных белков разрушается на 26S протеасоме. Протеасомная деградация вовлечена в контроль таких клеточных процессов как дифференцировка, онкогенез, апоптоз, клеточный цикл, деление, репарация ДНК, реакция на стрессовые воздействия и иммунный ответ.

Важная роль протеасомы состоит в образовании эпитопов, представляемых на поверхности клеток в комплексе с молекулами главного комплекса гистосовместимости класса I. Такие комплексы распознаются CD8+ Т-клетками, которые участвуют в образовании клеточного иммунного ответа. Именно эта функция протеасомы привлекает большое внимание исследователей, создающих вакцины нового поколения.

В настоящее время активно разрабатывается стратегия вакцинации против вируса иммунодефицита человека (ВИЧ) на основе белков вируса и их генов. Одним из них является обратная транскриптаза ВИЧ, синтезирующая ДНК-копию одноцепочечного РНК-генома вируса. Синтез ДНК-копии генома ВИЧ — один из ключевых этапов жизненного цикла вируса, что делает обратную транскриптазу одной из основных мишеней действия антиретровирусных препаратов и вакцин. Применение антиретровирусных препаратов приводит к появлению штаммов вирусов, устойчивых к лекарствам, прежде всего за счет мутаций в гене обратной транскриптазы. В совокупности это указывает на необходимость создания вакцин, индуцирующих иммунный ответ, направленный на обратную транскриптазу как диких, так и лекарственно-устойчивых изолятов ВИЧ.

Среди новых направлений в создании профилактических и терапевтических вакцин против ВИЧ весьма перспективными считаются ДНК-вакцины. В самом простом варианте ДНК-вакцина представляет собой плазмидный вектор, содержащий ген белка патогена и элементы, необходимые для транскрипции этого гена. При введении ДНК-вакцины реципиенту в клетках происходит синтез закодированного белка, который активирует иммунную систему.

Несмотря на то, что обратная транскриптаза является столь привлекательной мишенью для индукции ВИЧ-специфического иммунного ответа, ее экспрессия и деградация в клетке до сих пор мало изучены. Данные о протеолизе обратной транскриптазы ВИЧ, имеющиеся в литературе, косвенные и противоречивые. Поэтому для разработки ДНК-вакцин на основе генов обратной транскриптазы диких и лекарственно-устойчивых изолятов ВИЧ особенно необходима информация о синтезе и деградации этого белка в клетке.

Используемые на сегодняшний день ДНК-вакцины имеют сравнительно низкую иммуногенность, в связи с чем ведется разработка различных подходов по повышению их эффективности. Одним из таких молекулярно-биологических подходов является модификация генов ДНК-вакцины, направляющая кодируемый этим геном белок в протеасому. Благодаря ускорению деградации на протеасоме, возможно увеличение презентации эпитопов и повышение уровня Т-клеточного ответа. Таким путем были успешно модифицированы ДНК-вакцины, несущие антигены некоторых патогенов. До сих пор подобные исследования для обратной транскриптазы ВИЧ не проводились. Следует отметить, что наличие специфического Т-клеточного ответа на обратную транскриптазу обнаружено у пациентов с длительным периодом непрогрессирующей ВИЧ-инфекции. Поэтому повышение иммуногенности ДНК-вакцины на основе гена обратной транскриптазы как дикого, так и лекарственно-устойчивых изолятов ВИЧ представляет большой теоретический и практический интерес.

Цель и задачи исследования

.

Целью данного исследования было изучение деградации обратной транскриптазы дикого и лекарственно-устойчивых изолятов ВИЧ-1 и направление обратной транскриптазы по протеасомному пути деградации для повышения иммуногенности ДНК-вакцинной конструкции, созданной на основе ее гена. Для достижения этой цели были поставлены следующие задачи:

— определить время полужизни обратной транскриптазы дикого и лекарственно-устойчивых изолятов ВИЧ-1 в клетке;

— установить участие различных протеаз клетки в деградации обратной транскриптазы дикого и лекарственно-устойчивых изолятов ВИЧ-1;

— увеличить скорость деградации обратной транскриптазы ВИЧ-1 на протеасоме;

— в опытах по ДНК-иммунизации мышей изучить иммуногенность ДНК-вакцинной конструкции, созданной на основе гена модифицированной обратной транскриптазы ВИЧ-1 с усиленной протеасомной деградацией.

ОБЗОР ЛИТЕРАТУРЫ.

выводы.

1. Изучена деградация обратной транскриптазы дикого и двух лекарственно-устойчивых изолятов ВИЧ-1, кодируемых ДНК-вакцинными конструкциями. Обнаружено, что накопление мутаций лекарственной устойчивости в гене обратной транскриптазы ВИЧ-1 приводит к снижению ее содержания в клетке за счет уменьшения времени полужизни белка.

2. Деградацию обратной транскриптазы ВИЧ-1 дикого типа и ее лекарственно-устойчивых вариантов в клетке осуществляет преимущественно протеасома. Обратная транскриптаза ВИЧ-1 с мутациями лекарственной устойчивости имеет повышенную скорость деградации и сродство к протеасоме по сравнению с обратной транскриптазой дикого типа.

3. Присоединение орнитиндекарбоксилазы мыши на С-конец обратной транскриптазы ВИЧ-1 приводит к ускорению протеасомной деградации химерного белка по сравнению с немодифицированной обратной транскриптазой. Показано, что химерный белок деградирует в 6 раз быстрее и стабилизируется протеасомными ингибиторами в 10 раз эффективнее, чем немодифицированная обратная транскриптаза.

4. В экспериментах на мышах показан высокий уровень Т-клеточного ответа у 88% мышей, иммунизированных химерным ДНК-иммуногеном на основе обратной транскриптазы ВИЧ-1 с усиленной протеасомной деградацией, что доказывает высокую эффективность нового ДНК-иммуногена.

ЗАКЛЮЧЕНИЕ

.

В данной работе получены и исследованы ДНК-иммуногены на основе гена обратной транскриптазы ВИЧ-1. В эукариотических клетках (НЕК293) нами был проанализирован синтез обратной транскриптазы ВИЧ-1 дикого типа и лекарственно-устойчивых вариантов, кодируемых ДНК-вакцинными конструкциями. В результате обнаружено, что накопление мутаций лекарственной устойчивости сопровождается снижением содержания белка в клетке. Наиболее вероятным объяснением этого является большая нестабильность мутантных белков в клетке. Для выяснения этого было необходимо исследовать деградацию различных вариантов обратной транскриптазы ВИЧ-1. Следует отметить, белковые компоненты ВИЧ-1 в этом отношении изучены мало. Так, описана деградация интегразы (Mulder and Muesing, 2000) и белка Vif (Fujita et al., 2004) на протеасоме. Данные о деградации ОТ противоречивы и недостаточны. Известно, что в экстрактах клеток периферической крови человека ОТ специфически расщепляется гигантской сериновой протеазой, а протеасома в деградации не участвует (Chateau et al., 2001). В то же время получены данные, подтверждающие, что процессинг ОТ, приводящий к представлению ее эпитопа ILKEPVHGV, зависит от активности протеасомы и не происходит в присутствии ингибиторов протеасомы (Sewell et al., 1999).

В настоящей работе была изучена деградация обратной транскриптазы ВИЧ-1 в клетке. Охарактеризованы такие параметры протеолиза ОТ в культуре клеток, как время полужизни и путь деградации. Показано, что ОТдолгоживущий белок, время полужизни которого в клетке составляет 18−20 ч. При наличии четырех мутаций лекарственной устойчивости время полужизни ОТ в клетке уменьшается до 6 ч, а двенадцати мутаций — до 2 ч. Таким образом, впервые было обнаружено, что накопление мутаций лекарственной устойчивости приводит к повышению скорости деградации лекарственноустойчивых вариантов обратной транскриптазы, что объясняет их низкий уровень содержания в клетке.

С использованием различных ингибиторов проведен анализ механизма деградации обратной транскриптазы ВИЧ-1 и ее лекарственно-устойчивых вариантов. Наибольшее повышение содержания белка обратной транскриптазы в клетке наблюдалось при ингибировании протеасомы. ОТ с мутациями множественной лекарственной устойчивости стабилизировалась протеасомными ингибиторами в 2 раза сильнее, чем ОТ дикого типа. По сравнению с ингибиторами протеасомы, ингибиторы других клеточных протеаз незначительно стабилизировали как дикий, так и лекарственно-устойчивые варианты ОТ. Следовательно, обратная транскриптаза ВИЧ и, еще в большей степени, ОТ с мутациями множественной лекарственной устойчивости, деградируют преимущественно по протеасомному пути. Это может быть связано с тем, что мутации приводят к неправильной укладке молекулы белка, и такие белки являются более доступной мишенью для деградации на протеасоме.

В поиске способов борьбы с инфекционными заболеваниями в настоящий момент активно разрабатывается такой подход, как ДНК-вакцинация. Однако эффективность ДНК-вакцин, имеющихся на сегодняшний день, является сравнительно низкой, поэтому различными способами пытаются повысить их иммуногенность. Один из таких способов — генно-инженерное изменение генов, входящих в ДНК-вакцинный вектор. В результате может быть увеличено сродство к протеасоме белков, кодируемых этими генами, и, таким образом, усилена презентация вакцинного антигена по пути МНС класса I. Так удалось увеличить иммуногенность некоторых ДНК-вакцин. Однако, также известны работы, в которых подобная модификация не привела к увеличению иммунного ответа.

Конечная цель настоящей работы состояла в создании нового ДНК-иммуногена на основе гена обратной транскриптазы ВИЧ-1, искусственно направленной в протеасому для усиления ее представления по пути МНС класса I. Увеличение направления ОТ в протеасому осуществили путем слияния с орнитиндекарбоксилазой (ОДК), которая быстро деградирует на протеасоме по убиквитин-независимому механизму. В ходе работы создан химерный белок, в котором на С-конец обратной транскриптазы присоединена орнитиндекарбоксилаза мыши. В наших экспериментах было показано, что время полужизни химеры обратной транскриптазы дикого типа с орнитиндекарбоксилазой (ОТ-ОДК) уменьшается в 6 раз по сравнению с исходной формой ОТ. Используя протеасомные ингибиторы, мы подтвердили увеличение именно протеасомной деградации. Так, химерная форма ОТ-ОДК стабилизировалась протеасомными ингибиторами в 10 раз более эффективно, чем ОТ дикого типа. Таким образом, с помощью слияния с орнитиндекарбоксилазой был изменен путь деградации ОТ и повышено ее сродство к протеасоме. Мы предполагали, что это приведет к увеличению презентации ее эпитопов на поверхности клетки и усилению иммунного ответа на данный иммуноген, за счет увеличения Т-клеточной компоненты.

Результаты, полученные при ДНК-иммунизации мышей геном химерного белка ОТ-ОДК, подтвердили, что он действительно является эффективным Т-клеточным иммуногеном. Частота узнавания, как полноразмерной обратной транскриптазы, так и двух ее эпитопов, у мышей, иммунизированных геном химерного белка, возрастала практически в 2 раза, по сравнению с иммунизацией немодифицированным геном обратной транскриптазы. Следовательно, соединив орнитиндекарбоксилазу с обратной транскриптазой, мы направили последнюю преимущественно по протеасомному пути деградации, получив при этом эффективный Т-клеточный иммуноген. В дальнейшем возможны доклинические испытания сконструированных аналогичным образом химер лекарственно-устойчивой ОТ ВИЧ-1 с целью создания средств иммунотерапии и профилактики распространения лекарственно-устойчивых форм ВИЧ-1.

В заключение необходимо отметить важность изучения деградации белков для решения различных научных и прикладных задач (при работе с различными белками и создании генно-инженерных конструкций). Так, изучение скорости и пути деградации обратной транскриптазы в культуре клеток показало ее медленную протеасомную деградацию. На основании этого было сделано предположение, что обратная транскриптаза представляется на поверхности клетки в составе комплексов МНС класса I и стимулирует клеточный иммунный ответ. Иммунизация мышей геном обратной транскриптазы ВИЧ-1 показала, что этот антиген в действительности вызывает значимый Т-клеточный ответ. Следовательно, информация о пути деградации антигена может быть использована в моделировании его иммуногенных свойств. Конструкция ОТ-ОДК, созданная для повышения скорости деградации и сродства к протеасоме ОТ, была успешно использована для ДНК-иммунизации: создание химерного белка с уменьшенным временем полужизни и повышенной протеасомной деградацией усилило Т-клеточный ответ на ДНК-иммуноген. Это показывает, что успешные работы по моделированию, разработке и совершенствованию ДНК-вакцинных конструкций невозможны без широких исследований путей и скорости деградации белков в клетке.

Показать весь текст

Список литературы

  1. Е.Б., Шарова Н.П, Карпов B.JI. Протеасома: разрушать, чтобы жить. Молекуляр. Биология. 2002. 36, 761−776.
  2. М.Н., Воробьев А. А., Донин М. В., Козлов А. П. Некоторые подходы к разработке вакцины против ВИЧ-инфекции. Вестн. РАМН. 2004. 7,51−53.
  3. В.Г. Иммунология: Учебник. М.: Нива России, 2000. -488 е.: ил.
  4. Д.Ю., Народицкий Б. С., Гинцбург А. Л., Воробьев А. А. Генетические вакцины. Вестн. Рос. АМН. 2005.1,14−19.
  5. Медицинская микробиология, вирусология и иммунология: Учебник/ Под.ред. А. А. Воробьева. М.: Медицинское информационное агенство, 2004.
  6. Д.К., Гудима С. О., Есипов Д. С., Добрынин В. Н., Мемелова JI.B., Речинский В. О., Кочетков С. Н. Изучение устойчивости вируса иммунодефицита человека к азидотимидину. Биохимия. 1994. 59, 739−747.
  7. С.Н. Генетическая инженерия: Учеб.-справ. Пособие.- 2-е изд., испр. И доп.- Новосибирск: Сиб.унив.изд-во, 2004.
  8. Abbas А.К., Murphy К.М., Sher A. Functional diversity of helper T lymphocytes. Nature. 1996. 383, 787−793.
  9. Adams J., Behnke M., Chen S., Cruickshank A.A., Dick L.R., Grenier L., Klunder J.M., Ma Y.T., Plamondon L., Stein R.L. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg. Med. Chem. Lett. 1998. 8, 333−338
  10. Aki M, Shimbara N, Takashina M, Akiyama K, Kagawa S., Timura Т., Tanahashi N., Yoshimura Т., Tanaka K., Ichihara A. Interferon-gamma induces different subunit organizations and functional diversity of proteasomes. J. Biochem. 1994. 11,5257−5269.
  11. Arent C.S., Hochstasse M. Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc. Natl. Acad. Sci. USA. 1997. 94, 7156−7161.
  12. Arrogo A.P., Tanaka K., Goldberg A.L., Welch W.J. Identity of the 19S 'prosome' particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature. 1988. 331, 192−194.
  13. Arts E.J., Wainberg M.A. Mechanisms of nucleoside analog antiviral activity and resistance during human immunodeficiency virus reverse transcription. Antimicrob. Agents Chemother. 1996. 40, 527−540.
  14. Asher G., Lotem J., Sachs L., Kahana C., Shaul Y. Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQOl. Proc. Natl.Acad. Sci. USA. 2002. 99,13 125−13 130.
  15. Benaroudj N., Tarcsa E., Cascio P., Goldberg A.L. The unfolding of substrates and ubiquitin-independent protein degradation by proteasomes. Biochimie. 2001. 83,311−318.
  16. Bochtler M., Ditzel L., Groll M., Hartmann C., Humber H. The proteasome. Annu. Rev. Biophys. Biomol. Struct. 1999. 28, 295−317.
  17. Borg J.P., Ihlenfeldt H.G., Jung G., Haas G., Pierres M. Human immunodeficiency virus-1 reverse transcriptase immunodominant CD4+ T-cell epitopes: a peptide-based multyparametric assessment in the mouse. Eur. J. Immunol. 1994. 24,1496−1502.
  18. Boyer P.L., Sarafianos S.G., Arnold E., Hughes S.H. Selective excision of AZTMP by drug-resistant human immunodeficiency virus reverse transcriptase. J. Virol. 2001.75,4832−4842.
  19. Boyle J.S., Brady J.L., Lew A.M. Enhanced responses to a DNA vaccine encoding a fusion antigen that is directed to sites of immune induction. Nature. 1998. 392,408−411
  20. Braciale T.J., Morrison L.A., Sweetser M.T., Sambrook J., Gething M.J., Braciale V.L. Antigen presentation pathways to class I and class II MHC-restricted T lymphocytes. Immunol. Rev. 1987. 98, 95−114.
  21. Buus S., Sette A., Colon S.M., Jenis D.M., Grey H.M. Isolation and characterization of antigen-la complexes involved in T cell recognition. Cell. 1986. 47,1071−77.
  22. Calarota S., Bratt G., Nordlund S., Hinkula J., Leandersson A.C., Sandstrom E., Wahren B. Cellular cytotoxic response induced by DNA vaccination in HIV-1-infected patients. Lancet. 1998.351,1320−1325.
  23. Calarota S.A. and Weiner D.B. Enhancement of human immunodeficiency virus type 1-DNA vaccine potency through incorporation of T-helper 1 molecular adjuvants. Immunol. Rev. 2004.199, 84−99.
  24. Chateau M.T., Robert-Hebmann V., Devaux C., Lazaro J.B., Canard В., Coux O. Human monocytes possess a serine protease activity capable of degrading HIV-1 reverse transcriptase in vitro. Biochem. Biophys. Res. Commun. 2001. 285, 863−872.
  25. Chau V, Tobias J.W., Bachmair A., Marriott D., Ecker D.J., Ganda D.K., Varshavsky A. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science. 1989. 243,1576−1583.
  26. Cid-Arregui A., Juarez V., Hausen H. A synthetic E7 gene of human papillomavirus type 16 that yields enhanced expression of the protein in mammalian cells and is useful for DNA immunization studies. J. Virol. 2003. 77,4928−4937.
  27. Ciechanover A., Heller H., Katz-Etzion R., Hershko A. Activation of the heatstable polypeptide of the ATP-dependent proteolytic system. Proc. Natl. Acad. Sci. USA. 1981. 78, 761−765.
  28. Ciechanover A., Hod Y., Hershko A. A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem. Biophys. Res. Commun. 1978.81,1100−1105.
  29. Condon C., Watkins S.C., Celluzzi C.M., Thompson K., Falo L.D. DNA-based immunization by in vivo transfection of dendritic cells. Nat. Med. 1996. 2, 11 221 128.
  30. Conry R.M., Widera G., LoBuglio A.F., Fuller J.T., Moore S.E., Barlow D.L., Turner J., Yang N.S., Curiel D.T. Selected strategies to augment polynucleotide immunization. Gene Ther. 1996. 3, 67−74.
  31. Corish P., Tyler-Smith C. Attenuation of green fluorescent protein half-life in mammalian cells. Protein Engineering. 1999.12,1035−1040.
  32. Coux О., Tanaka K., Goldberg A.L. Structure and functions of the 20S and 26S proteasome. Annu. Rev. Biochem. 1996. 65, 801−847.
  33. Cresswell P. Antigen presentation. Getting peptides into MHC class II molecules. Annu. Rev. Immunol. 1994.12,259−93.
  34. D’Andrea A. and Pellman D. Deubiquitinating enzymes: a new class of biological regulators. Crit. Rev. Biochem. Mol. Biol. 1998. 33,337−332.
  35. Dahlmann B, Kopp F, Kuehn L, Niedel B, Pfeifer G, Hegerl R., Baumeister W. The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Lett. 1989. 25,125−31
  36. Dalpke A., Zimmermann S., Heeg K. Immunopharmacology of CpG DNA. Biol. Chem. 2002.383,1491−1500.
  37. De Clercq E. HIV resistance to reverse transcriptase inhibitors. Biochem. Pharmacol. 1994.47,155−169.
  38. De Clercq E. Antiviral therapy for human immunodeficiency virus infections. Clin. Microbiol. Rev. 1995. 8, 200−239.
  39. De Duve C. Lysosomes revisited. Eur. J. Biochem. 1983. 137, 391−397.
  40. De Duve C., Gianetto R., Appelmans F., Wattiaux R. Enzymic content of the mitochondria fraction. Nature. 1953. 172,1143−1144.
  41. Dell’Angelica E.C., Mullins С., Caplan S., Bonifacino J.S. Lysosome related organelles. FASEB J. 2000. 14,1265−1278.
  42. DeMartino G.N. and Slaughter C.A. The proteasome, a novel protease regulated by multiple mechanisms. J. Biol. Chem. 1999. 274, 22 123−22 126.
  43. DeMartino G.N. and Goldberg A.L. Identification and partial purification of an ATP-stimulated alkaline protease in rat liver. J. Biol. Chem. 1979. 25, 4 371 243 755.
  44. Ding J., Das K., Moereels H., Koymans L., Andries K., Janssen P.A., Hughes S.H., Arnold E. Structure of HIV-1 RT/TIBO R 86 183 reveals similarity in the binding of diverse nonnucleoside inhibitors. Nat. Struct. Biol. 1995. 2,407−415.
  45. Donnelly J. J., Ulmer J.B., Liu M.A. DNA vaccines. Life Sci. 1997. 60, 163 172.
  46. Donnelly J.J., Wahren В., Liu M.A. DNA vaccines: progress and challenges. J. Immunol. 2005. 175, 633−639.
  47. Doublie S., Sawaya M.R., Ellenberger T. An open and closed case for all polymerases. Structure. 1999. 7, 2−7.
  48. Drabick J.J., Glasspool-Malone J., King A., Malone R.W. Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization. Mol. Ther. 2001. 3, 249−255.
  49. Dubiel W., Pratt G., Ferrell K., Rechsteiner M. Purification of a 1 IS regulator of the multicatalytic proteinase. J. Biol. Chem. 1994. 267, 22 369−22 377.
  50. Dunn W.A. Autophagy and related mechanisms of lysosome mediated protein degradation. Trends Cell. Biol. 1992. 4,139−143.
  51. Esnouf R., Ren J., Ross C., Jones Y., Stammers D., Stuart D. Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors. Nat. Struct. Biol. 1995.2,303−308.
  52. Ferrell K., Wilkinson C.R., Dubiel W., Gordon C. Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem. Sci. 2000. 25, 83−88.
  53. Frankel A.D., and Young J.A. HIV-1: Fifteen Proteins and an RNA. Annu. Rev. Biochem. 1998. 67,1−25.
  54. Fujita M., Akari H., Sakurai A., Yoshida A., Chiba Т., Tanaka K., Strebel K., Adachi A. Expression of HIV-1 accessory protein Vif is controlled uniquely to be low and optimal by proteasome degradation. Microbes Infect. 2004. 6, 791 798.
  55. Gianetto R., de Duve C. Tissue fractionation studies 4. Comparative study of the binding of acid phosphatase, (3-glucoronidase and cathepsin by rat liver particles. Biochem. J. 1955. 59,43338.
  56. Glickman M.H. and Adir N. The proteasome and the delicate balance between destruction and rescue. Plos. Boilogy. 2004.2,25−27
  57. Glickman M.N. and Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol.Rev. 2002. 82, 373 428.
  58. Goff S. P. Retroviral reverse transcriptase: synthesis, structure, and function. J. Acq. Imm. Def. Syndromes. 1990. 3, 817−831.
  59. Gregoriadis G., Bacon A., Caparros-Wanderley W., McCormack B. A role for liposomes in genetic vaccination. Vaccine. 2002.20,1−9.
  60. Groettrup M., Ruppert Т., Kuehn L., Seeger M., Standera S., Koszinovski U., Kloetzel P.M. The interferon-y-inducible 11S regulator (PA28) and126
  61. P2/LMP7 subunits govern the peptide production by the 20S proteasome in vitro. J.Biol.Chem. 1995. 270, 23 808−23 815.
  62. Groll M., Ditzel L., Lfwe J., Stock D., Bochtler M., Bartunik H.D., Huber R. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature. 1997. 386, 463−471.
  63. Guermonprez P. and Amigorena S. Pathways for antigen cross presentation. Springer Semin. Immun. 2005. 26, 257−271.
  64. Gurunathan S., Klinman D.M., Seder R.A. DNA vaccines: immunology, application and optimization. Annu. Rev. Immunol. 2000. 18, 927−974.
  65. Harouse J.M., Gettie A., Tan R.C., Blanchard J., Cheng-Mayer C. 1999. Distinct pathogenic sequela in rhesus macaques infected with CCR5 or CXCR4 utilizing SHIVs. Science 284, 816−819.
  66. Harrigan P.R., Bloor S., and Larder B.A. Relative replicative fitness of zidovudine-resistant HIV-1 isolates in vitro. J. Virol. 1998. 72, 3773−3778.
  67. Hayashi S., Muracami Y., Matsufuji S. Ornithine decarboxylase antizyme: a novel type of regulatory protein. TIBS. 1996. 21,27−30.
  68. Heemels M.T. and Ploegh H. Gereration, translocation and presentation of MHC class I-restricted peptides. Annu. Rev. Biochem. 1995. 64,463−491
  69. Hendil K.B., Khan S., Tanaka K. Simultaneous binding of PA28 and PA700 activators to 20S proteasomes. Biochem. J. 1998. 332, 749−754.
  70. Henell F., Berkenstam A., Ahlberg J., Glaumann H. Degradation of short- and long-lived proteins in perfused liver and in isolated autophagic vacuoles-lysosomes. Exp. Mol. Pathol. 1987. 46, 1−14.
  71. Hershko A. and Ciechanover A. The ubiquitin system. Annu. Rev. Biochem. 1998. 67, 425−479.
  72. Hershko A., Heller H., Elias S., Ciechanover A. Components of ubiquitin-protein ligase system: resolution, affinity purification and role in protein breakdown. J. Biol. Chem. 1983. 258, 8206−8214.
  73. Hershko A., Leshinsky E., Ganoth D. Heller H. ATPdependent degradation of ubiquitin-protein conjugates. Proc. Natl Acad. Sci. USA. 1984. 81,1619−1623.
  74. Hilt W., Wolf D.H. Proteasomes of the yeast S. cerevisiae: genes, structure and functions. Mol. Biol. Rep. 1995. 21, 3−10.
  75. Hirch C. and Ploegh H.L. Intracellular targeting of the proteasome. Trends. Cell. Biol. 1997. 10,268−271.
  76. Hough R., Pratt G., Rechsteiner M. Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J. Biol. Chem. 1986. 261,2400−2408.
  77. Hough R., Pratt G., Rechsteiner M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J. Biol. Chem. 1987. 262, 8303−8313.
  78. Huang H., Chopra R., Verdine G.L., Harrison S.C. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science. 1998. 282, 1669−1675.
  79. Huibregtse J., King R.W., Deshaies R.J., Peters, J.M., Kirschner M.W. How proteolysis drives the cell cycle. Science. 1996. 274, 1652−1659.
  80. Hung C.F. and Wu T.C. Improving DNA vaccine potency via modification of professional antigen presenting cells. Curr. Opin. Mol. Ther. 2003. 5,20−24.
  81. Hung C.F., Hsu K.F., Cheng W.F., Chai C.Y., He L., Ling M., Wu T.C. Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Fms-like tyrosine kinase 3-ligand. Cancer Res. 2001.61,1080−1088
  82. Irvine K.R., Rao J.B., Rosenberg S.A., Restifo N.P. Cytokine enhancement of DNA immunization leads to effective treatment of established pulmonary metastases. J. Immunol. 1996. 156,238−245.
  83. Isaguliants M.G., Pokrovskaya K., Kashuba V.I., Pokholok D., Hinkula J., Wahren В., Kochetkov S.N. Eukaryotic expression of enzymatically active human immunodeciency virus type 1 reverse transcriptase. FEBS Lett. 1999. 447, 232−236.
  84. Jariel-Encontre I., Pariat M., Martin F., Carillo S., Salvat C., Piechaczyk M. Ubiquitinylation is not an absolute requirement for degradation of c-Jun protein by the 26 S proteasomeJ. Biol. Chem. 1995. 270,11 623−11 627.
  85. Jonckheere H., Anne J., De Clercq E. The HIV-1 reverse transcription (RT) process as target for RT inhibitors. Med. Res. Rev. 2000. 20, 129−54.
  86. Kim J.J., Yang J.S., Dang K., Manson K.H., Weiner D.B. Engineering enhancement of immune responses to DNA-based vaccines in a prostate cancer model in rhesus macaques through the use of cytokine adjuvants. Clin. Cancer Res. 2001.7, 882−889.
  87. Kim J.J., Yang J.S., Dentchev Т., Dang K., Weiner D.B. Chemokine gene adjuvants can modulate immune responses induced by DNA vaccines. J. Interferon Cytokine Res. 2000. 20,487−498.
  88. Kisselev A.F. and Goldberg A.L. Proteasome inhibitors: from research tools to drug candidates. Chem. Biol. 2001. 8, 739−758.
  89. Kloetzel P.M. Antigen processing by the proteasome. Nat. Rev. Mol. Cell. Biol. 2001.2, 179−188.
  90. Knowlton J.R., Johnston S.C., Whitby F.G., Realini C., Zhang Z., Rechsteiner M., Hill C.P. Structure of the proteasome activator REG (PA28). Nature. 1997. 390, 639−643.
  91. Kohlstaedt L.A., Wang J., Friedman J.M., Rice P.A., Steitz T.A. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992. 256,1783−1790.
  92. Lee A.H., Suh Y.S., Sung Y.C. DNA inoculations with HIV-1 recombinant genomes that express cytokine genes enhance HIV-1 specific immune responses. Vaccine. 1999. 17,473179.
  93. Lee S.Y., Rasheed S., A simple procedure for maximum yield of hight-quality plasmid DNA. Biotechniques. 1990. 9, 676−679.
  94. Leifert J.A., Rodriguez-Carreno M.P., Rodriguez F., Whitton J.L. Targeting plasmid-encoded proteins to the antigen presentation pathways. Immunol. Rev. 2004. 199,40−53.
  95. Lin L., DeMartino G.N., Greene W.C. Cotranslational biogenesis of NF-kappaB p50 by 26S proteasome. Cell. 1998. 92, 819−828.
  96. Ma C.P., Slaugther C.A., DeMartino G.N. Identification, purification and characterisation of a protein activator (PA28) of the 20S proteasome (macropain). J. Biol. Chem. 1992. 267,10 515−10 523.
  97. MacGregor R.R., Ginsberg R., Ugen K.E., Baine Y., Kang C.U., Tu X.M., Higgins Т., Weiner D.B., Boyer J.D. T-cell responses induced in normal volunteers immunized with a DNA-based vaccine containing HIV-1 env and rev. AIDS. 2002. 16, 2137−2143.
  98. Mayer R.J. The meteoric rise of regulated intracellular proteolysis. Nat. Rev. Mol. Cell. Biol. 2000. 1,145−149.
  99. Meng L., Mohan R., Kwok B.H., Elofsson m., Sin N., Crews G.M. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflamatory activity. Proc. Natl. Acad. Sci. USA. 1999. 96, 10 403−10 408.
  100. Meriin A.B., Gabai V.L., Yaglom J., Shifrin V.I., Sherman M.Y. Proteasome inhibitors activate stress kinases and induce Hsp72. J. Biol. Chem. 1998. 273, 6373−6379.
  101. Miller V, Larder В A. Mutational patterns in the HIV genome and cross-resistance following nucleoside and nucleotide analogue drug exposure. Antivir Ther. 2001.6, 2544.
  102. Mo, X.Y., Cascio P., Lemerise K., Goldberg A.L., Rock K. Distinct proteolytic processes generate the С and N-termini of the MHC class I-binding peptides. J. Immunol. 1999. 163, 5851−5859.
  103. Momburg F., Hammerling G.J. Generation and TAP-mediated transport of peptides for major histocompatibility complex class I molecules. Adv. Immunol. 1998. 68,191−256.
  104. Mulder L.C. and Muesing M.A. Degradation of HIV-1 integrase by the N-end rule pathway. J. Biol. Chem. 2000. 275,29 749−29 753.
  105. Murakami Y., Matsufiiji S., Hayashi S., Tanahashi N., Tanaka K. Degradation of ornithine decarboxylase by the 26S proteasome. Biochem. Biophys. Res. Commun. 2000. 267, 1−6.
  106. Murakami Y., Matsufuji S., Kameji Т., Hayashi S., Igarashi K., Tamura Т., Tanaka K., Ichihara A. Ornithine decarboxylase is degraded by the 26 S proteasome without ubiquitination. Nature. 1992. 360, 597−599.
  107. Muratani M. and Tansey W.P. How the ubiquitin-proteasome system controls transcription. Nat. Rev. Mol. Cell. Biol. 2003. 4, 1−10.
  108. Musial A., Eissa N.T. Inducible nitric-oxide syntase is regulated by the protesome degradation pathway. J. Biol. Chem. 2001. 276, 24 268−24 273.
  109. Neefles J.J., Schumacher N., Ploegh H.L. Assembly and intracellular transport of major histocompatibility complex molecules. Curr. Opin. Cell. Biol. 1991. 3, 601−609.
  110. Negroni M., and Buc H. Mechanisms of retroviral recombination. Annu. Rev. Genet. 2001.35,275−302.
  111. Nijhuis M, Deeks S, Boucher C. Implications of antiretroviral resistance on viral fitness. Curr. Opin. Infect. Dis. 2001. 14, 23−28.
  112. O’Hagan D. Т., Singh M., Ulmer J.B. Microparticles for the delivery of DNA vaccines. Immunol. Rev. 2004. 199, 191−200.
  113. Orlowski M. The multicatalitic proteinase complex. A major extralysosomal proteolytic system. Biochemistry. 1990.29, 10 289−10 297.
  114. Orlowski M. and Wilk S. Ubiquitin-independent proteolytic functions of the proteasome. Arh. Biochem. Bioph. 2003. 415, 1−5.
  115. Ortega J., Heymann J.B., Kajava A.V., Ustrell V., Rechsteiner M. and Steven A.C. The axial channel of the 20S proteasome opens upon binding of the PA200 activator. J. Mol. Biol. 2005. 346, 1221−1227.
  116. Ortiz-Navarrete V., Seelig A., Gernold M., Frentzel S., Kloetzel P.M., Hammerling G.J. Subunit of the '20S' proteasome (multicatalytic proteinase) encoded by the major histocompatibility complex. Nature. 1991. 353, 662−664
  117. Parniak, M. A. and Sluis-Cremer N. Inhibitors of HIV-1 reverse transcriptase. Adv. Pharmacol. 2000. 49, 67−109.
  118. Paster W., Zehetner M., Kalat M., Schuller S., Schweighoffer T. In vivo plasmid DNA electroporation generates exceptionally high levels of epitope-specific CD8+ T-cell responses. Gene Ther. 2003. 10,717−724
  119. Piccinini M., Mostert M., Rinaudo M.T. Proteasomes as drug targets. Curr. Drug Target, 2003. 4, 657−671.
  120. Pickart C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 2001.70, 503−533.
  121. Pickart C.M. and Cohen R.E. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell. Biol. 2004. 5,177−187.
  122. Porgador A., Irvine K.R., Iwasaki A., Barber B.H., Restifo N.P., Germain R.N. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J. Exp. Med. 1998. 188, 10 751 082.
  123. Princiotta M.F., Finzi D., Qian S.B., Gibbs J., Bennink J.R., Yewdell W. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity. 2003. 18,343−354.
  124. Rajapurohitam V., Morales C.R., El-Alfy M., Lefrancois S. Bedard N., Wing S.S. Activation of a UBC4-dependent pathway of ubiquitin conjugation during postnatal development of the rat testis. Dev. Biol. 1999. 212, 217−28.
  125. Rammensee H.G., Friede Т., Stevanovic S. MHC ligands and peptide motifs: first listing. Immunogenetics. 1995. 41,178−228.
  126. Reits E.A., Benham A.M., Plougastel В., Neefjes J., Trowsdale T. Dynamics of proteasome distribution in living cells. EMBO J. 1997. 169, 6087−6094.
  127. Reyes-Sandoval A. and Ertl H.C. DNA vaccines. Curr. Mol. Med. 2001. 1, 217 243.
  128. Rice J., Buchan S., Stevenson F.K. Critical components of a DNA fusion vaccine able to induce protective cytotoxic T cells against a single epitope of a tumor antigen. J. Immunol. 2002. 169, 3908−3918.
  129. Rivett A.J. Proteasomes: multicatalytic proteinase complexes. Biochem. J. 1993. 291,1−10.
  130. Rock K.L. and Goldberg A.L. Degradation off cell proteins and the generation of MHC class I presented peptides. Annu. Rev. Immunol. 1999. 17, 739−779.
  131. Rock K.L., Gramm C., Rothstein L., Clark K., Stein R., Dick L., Hwang D., Goldberg A.L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 1994. 78,761−771
  132. Rodrigues F., Zhang J., Whitton J.L. DNA immunization: ubiquitination of a viral protein enhances CTL induction, and antiviral protection, but abrogates antibody induction. J. Virol. 1997. 71, 8497−8503.
  133. Rogers S., Wells R., Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986. 234, 364−368.
  134. Rosenberg-Hasson Y., Bercovich Z., Ciechanover A., Kahana C. Degradation of ornithine decarboxylase in mammalian cells is ATP dependent but ubiquitin independent. Eur. J. Biochem. 1989. 185, 469−474.
  135. Sallusto, F., Lanzavecchia, A., and Mackay, C.R. Chemokines and chemokine receptors in T cell priming and Thl/Th2-mediated responses. Immunol. Today. 1998. 19, 568−574.
  136. Sarafianos S.G., Das K., Hughes S.H., Arnold E. Taking aim at a moving target: designing drugs to inhibit drug-resistant HIV-1 reverse transcriptases. Curr. Opin. Struct. Biol. 2004.14, 716−730.
  137. Schlessinger D.H., Goldstein G., Niall H.D. The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry. 1975. 14, 2214−2218.
  138. Schmidtke G., Schmidt M., Kloetzel P.M. Maturation of mammalian 20S proteasome: purification and characterization of 13S and 16S proteasome precursor complexes. J. Mol. Biol. 1997. 286, 95−106.
  139. Schwartz A.L. and Ciechanover A. The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annu. Rev. Med. 1999. 50, 57−74.
  140. Sewell A.K., Price D.A., Teisserenc H., Booth B.L. Jr, Gileadi U., Flavin F.M., Trowsdale J., Phillips R.E., Cerundolo V. IFN-gamma exposes a cryptic135cytotoxic T lymphocyte epitope in HIV-1 reverse transcriptase. J. Immunol. 1999. 162, 7075−7079.
  141. Shaw D.R. and Strong T.V. DNA vaccines for cancer. Frontiers in Bioscience. 2006. 11,1189−1198.
  142. Sheaff R.J., Singer J.D., Swanger J., Smitherman M., Roberts J.M., Clurman B.E. Proteasomal turnover of p21Cipl does not require p21Cipl ubiquitination. Mol. Cell. 2000. 5,403−410.
  143. Shulman N, Winters M. A review of HIV-1 resistance to the nucleoside and nucleotide inhibitors. Curr. Drug Targets Infect. Disord. 2003. 3,273−281.
  144. Singh M., Briones M., Ott G., O’Hagan D. Cationic microparticles: a potent delivery system for DNA vaccines. Proc. Natl. Acad. Sci. USA. 2000. 97, 811 816
  145. Spence R.A., Kati W.M., Anderson K.S., Johnson K.A. Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Science. 1995. 267, 988−993.
  146. Spetz A.L., Sorensen A.S., Walther-Jallow L., Wahren В., Andersson J., Holmgren L., Hinkula J. Induction of HIV-1-specific immunity after vaccination with apoptotic HIV-l/murine leukemia virus-infected cells. J. Immunol. 2002. 169, 5771−5779.
  147. Stohwasser R., Salzmann U., Giesebrecht J., Kloetzel P.M., Holzhutter H.G. Kinetic evidences for facilitation of peptide channelling by the proteasome activator PA28. Eur. J. Biochem. 2000. 276, 6221−6239.
  148. Stuart L.M. and Ezekowitz R.A. Phagocytosis: elegant complexity. Immunity. 2005. 22, 539−550.
  149. Svarovskaia E.S., Cheslock S.R., Zhang W.H., Hu W.S., Pathak V.K. Retroviral mutation rates and reverse transcriptase fidelity. Front. Biosci. 2003. 8,117−134.
  150. Tanahashi, N., muracami Y., Minami Y., Shimbara N., Hendil K.B. Tanaka K. Hybrid proteasomes: Induction by interferon-y and contribution to ATP-dependent proteolysis. J. Biol. Chem. 2000. 275,14 336−14 345.
  151. Tanaka K, Yoshimura T, Tamura T, Fujiwara T, Kumatori A, Ichihara A. Possible mechanism of nuclear translocation of proteasomes. FEBS Lett. 1990. 271,41−46.
  152. Tanaka K. Molecular biology of the proteasome. Biochem. Biophys. Res. Commun. 1998.247, 537−541.
  153. Tarcsa E., Szymanska G., Lecker S., O’Connor C.M., Goldberg A.L. Ca2±free calmodulin and calmodulin damaged by in vitro aging are selectively degraded by 26S proteasomes without ubiquitination. J. Biol. Chem. 2000. 275, 2 029 520 301.
  154. Telesnitsky A. and Goff S. P. Reverse transcriptase and the generation of retroviral DNA. In Retroviruses (Coffin, J. M., Hughes, S. H., and Varmus, H. E., Eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY., 1997. 121−160.
  155. Tobery Т., Siliciano R.F. Cutting edge: induction of enhanced CTL-dependent protective immunity in vivo by N-end rule targeting of a model tumor antigen. J. Immunol. 1999. 162, 639−642.
  156. Townsend A., Ohlen C., Bastin J., Ljunggren H-G., Foster L., Karre K. Association of class I major histocompatibility heavy and light chainsinduced by viral peptides. Nature. 1989. 340,443−448.
  157. Turner B.G. and Summers M.F. Structural biology of HIV. J. Mol. Biol. 1999. 285, 1−32.
  158. Ulmer J.B., Donnelly J.J., Parker S.E., Rhodes G.H., Feigner P.L., Dwarki V.J., Gromkowski S.H., Deck R.R., DeWitt C.M., Friedman A. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993. 259,1745−1749.
  159. Unanue E.R. Cellular studies on antigen presentation by class II MHC molecules. Curr. Opin. Immunol. 1992. 4, 63−69.
  160. Ustrell V., Hoffman L., Pratt G., Rechsteiner M. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J. 2002. 21, 3516−3525
  161. Wahren B. and Liu M. Therapeutic vaccination against HIV. Expert. Rev. Vaccines. 2004.3,179−188.
  162. J., Redmann A., Kania M., Турке D., Koster A.J., Baumeister W. 26S proteasome structure revealed by the three-dementional electron microscopy. J. Struc. Biol., 1998. 121, 19−29.
  163. Veazey R.S., Marx P.A., Lackner A.A. The mucosal immune system: primary target for HIV infection and AIDS. Trends Immunol. 2001. 22, 626−633.
  164. Weissman A.M. Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell. Biol. 2001.2, 169−179.
  165. Whitcomb J.M., and Hughes S.H. retroviral reverse transcription and integration: progress and problems. Annu. Rev. Cell Biol. 1992. 8,275−306.
  166. Wilkinson K.D. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 1997. 11, 1245−1256.
  167. Wilkinson K.D. Ubiquitin: a Nobel protein. Cell. 2004. 119,741−745.
  168. Wilkinson K.D., Urban M.K., Haas A.L. Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J. Biol. Chem. 1980. 255, 7529−7532.138
  169. Voges D., Zwickl P., Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 1999. 68,1015−1068.
  170. Wojcik C. Regulation of apoptosis by the ubiquitin and proteasome pathway. J. Cell. Mol. Med. 2002. 6,25−48.
  171. Wojcik C. and DeMartino G.N. Intracellular localization of proteasomes- Int. J. Biochem. Cell. Biol. 2003. 35, 579−589
  172. Wolff J.A., Malone R.W., Williams P., Chong W., Acsadi G., Jani A., Feigner P.L. Direct gene transfer into mouse muscle in vivo. Science. 1990. 247, 1465−1468.
  173. Wong S.B., Buck C.B., Shen X., Siliciano R.F. An evaluation of enforced rapid proteasomal degradation as a means of enhancing vaccine-induced CTL responses. J. Immunol. 2004. 173, 3073−3083.
  174. Wu H., Chi K., Lin W. Proteasome inhibitors stimulate activator protein-1 pathway via reactive oxygen species production. FEBS Lett. 2002. 526, 101 105.
  175. Wu Y., Kipps T.J. Desoxyribonucleic acid vaccines encoding antigens with rapid proteasome-dependent degradation are highly efficient inducers of cytolytic T lymphocytes. J. Immunol. 1997. 159, 6037−6043.
  176. Xiang R., Lode H.N., Chao Т.Н., Ruehlmann J.M., Dolman C.S., Rodriguez F., Whitton J.L., Overwijk W.W., Restifo N.P., Reisfeld R.A. An autologous oral DNA vaccine protects against murine melanoma. Proc. Natl. Acad. Sci. USA. 2000. 97, 5492−5497.
  177. Yang Y., Waters J.B., Fruh K., Peterson P.A. Proteasomes are regulated by interferon gamma: implications for antigen processing. Proc. Natl. Acad. Sci. USA 1992. 89,4928−4932.
  178. Yewdell J., Anton L.C., Bacik I., Schubert U., Snyder H.L., Bennink J.R. Generating MHC class I ligands from viral gene products. Immunol. Rev. 1999. 172, 97−108.
  179. Yewdell J.W. and Belmink J.R. Cell biology of antigen processing and presentation to major histocompatibility complex class I molecule-restricted T lymphocytes. Adv. Itmmmol. 1992. 52,1−123.
  180. Yoshimura T, Kameyama K, Takagi T, Ikai A, Tokunaga F, Koide Т., Tanahashi N., Cejka Z., Baumeister W. Molecular characterization of the «26S» proteasome complex from rat liver. J. Struct. Biol. 1993. 111, 200−211.
  181. Zacksenhaus E. and Sheinin R. Molecular cloning, primary structure and expression of the human X linked A1S9 gene cDNA which complements the ts A1S9 mouse L cell defect in DNA replication. EMBO J. 1990. 9,2923−2929.
  182. Zhang M., MacDonald A.I., Hoyt M.A., Coffino P. Proteasome begins ornithine decarboxylase digestion at the С terminus. J. Biol. Chem. 2004. 279, 2 095 920 965.
  183. Zhang M., Pickart C.M., Coffino P. Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J. 2003. 22, 1489−1496.
  184. Zhou P. Determining protein half-lives. Methods Mol. Biol. 2004. 284, 67−77.
  185. Zhou P. Targeted protein degradation. Curr. Opin. Chem. Biol. 2005. 9, 51−55.1. БЛАГОДАРНОСТИ
  186. Выражаю благодарность заведующему лабораторией доктору биологических наук, профессору B.C. Прасолову и сотрудникам Д. С. Иванову и М. С. Ростовской за ценные советы и помощь в экспериментальной работе.
  187. А также благодарю коллектив группы химии вирусных белков и нуклеиновых кислот отдела общей вирусологии ГУ Научно-исследовательского института вирусологии им. Д. И. Ивановского РАМН.
  188. Благодарю за сотрудничество проф. Б. Варен и всех сотрудников группы Шведского Института Контроля инфекционных заболеваний (Стокгольм, Швеция).
Заполнить форму текущей работой