Помощь в учёбе, очень быстро...
Работаем вместе до победы

Создание эффективного процесса биотрансформации L-изолейцина в 4-гидроксиизолейцин методами метаболической инженерии Escherichia coli

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В настоящее время сформировался рынок биологически активных добавок, содержащих 4-HIL. Во-первых, считают, что его инсулинотропная активность (при отсутствии инсулинорезистентности) помогает запасать энергию в мышечной ткани (в виде гликогена) и способствует, таким образом, ее пролиферации у спортсменов, занимающихся наращиванием мышечной массы. С другой стороны, 4-HIL предлагается использовать… Читать ещё >

Содержание

  • СПИСОК ИСПОЛЬЗУЕМЫХ СОКРАЩЕНИЙ
  • 1. ВВЕДЕНИЕ
    • 1. 1. Актуальность проблемы
    • 1. 4. Цели и задачи работы
    • 1. 3. Научная новизна и практическая значимость работы
  • 2. ОБЗОР ЛИТЕРАТУРЫ
    • 2. 1. Введение
    • 2. 2. Сахарный диабет II типа как эволюционный вызов современной цивилизации
    • 2. 3. Молекулярно-биологические основы инсулиновой регуляции гомеостаза глюкозы
      • 2. 3. 1. ИНЗСД и гомеостаз глюкозы
      • 2. 3. 2. Инсулин и его секреция ß--клетками
      • 2. 3. 3. Инсулиновая регуляция гомеостаза глюкозы
    • 2. 4. Немедикаментозная терапия и профилактика ИНЗСД
      • 2. 4. 1. Физические упражнения
    • 2. 5. Современная медикаментозная терапия и профилактика ИНЗСД: препараты, корректирующие инсулиновую регуляцию метаболизма глюкозы
      • 2. 5. 1. Секретагоги инсулина
      • 2. 5. 2. Ингибиторы синтеза глюкозы в печени
      • 2. 5. 3. Сенсибилизаторы инсулинового действия и инсулиномиметики
      • 2. 6. 4. -гидроксиизолейцин как современное средство лечения и профилактики ИНЗСД
  • 3. МАТЕРИАЛЫ И МЕТОДЫ
    • 3. 1. Бактериальные штаммы и плазмиды
    • 3. 2. Среды, условия культивирования штаммов и проведения ферментативных реакций
    • 3. 3. Определение относительных метаболических потоков углерода
    • 3. 4. Генно-инженерные методики
    • 3. 5. Конструирование штаммов и плазмид
    • 3. 6. Очистка IDO и его идентификация методом «finger printing»
    • 3. 7. Анализ результатов ферментативных реакций и ферментационного культивирования
  • 4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
    • 4. 1. Выбор оптимальной стратегии промышленного синтеза 4-HIL: история вопроса
    • 4. 2. Идентификация гена ido из Bacillus thuringiensis (2-е-2)
      • 4. 2. 1. Выбор стратегии
      • 4. 2. 2. Оптимизация культивирования Bacillus thuringiensis 2-е-2 с целью получения биомассы с максимальной удельной активности IDO
      • 4. 2. 3. Очистка ШО из грубого клеточного лизата Bacillus thuringiensis 2-е
    • 4. 3. Клонирование гена ido и его экспрессия в клетках Е. col
    • 4. 4. Разработка «динамической» биотрансформации L-изолейцина в 4-HIL: сопряжение клеточного роста и гидроксилирования L-изолейцина в штамме 2А
    • 4. 5. Повышение экономичности процесса биотрансформации: перераспределение углеродного потока от синтеза биомассы к реакции гидроксилирования L-изолейцина
  • 5. ВЫВОДЫ

Создание эффективного процесса биотрансформации L-изолейцина в 4-гидроксиизолейцин методами метаболической инженерии Escherichia coli (реферат, курсовая, диплом, контрольная)

1.1. Актуальность проблемы.

На протяжении столетий жители Средиземноморья, северной Африки,.

Индии использовали семена фенугрека (Т^опеПа /оешт-§ гаесит Ь.) в качестве природного лекарственного средства для улучшения пищеварения, лечения лихорадки, бронхита, усиления лактации у кормящих матерей и т. д. Отдельное внимание исследователей привлекали антидиабетические свойства экстрактов из семян фенугрека. Изучение «молекулярных основ» биологической активности фенугрека привело исследователей к открытию инсулинотропной активности (2Б, ЗЯ, 48)-4-гидроксиизо лейцина (4-Н1Ь) — свободной неканонической аминокислоты, в большом количестве содержащейся в его семенах (до 30−50% относительно общего пула всех свободных аминокислот). Было показано, что 4-НТТ, потенцирует секрецию инсулина (3-клетками островков Лангерганса изолированных из поджелудочной железы крысы и человека [1]. Стимулирующее действие 4-Н1Ь строго зависит от концентрации глюкозы, т. е. существенное усиление секреции инсулина в присутствии 4-Н1Ь наблюдалось лишь при концентрации глюкозы от 6 мМ и выше. Таким образом, в отличие от множества современных химических лекарственных препаратов (например — производных сульфонилмочевины), действие 4-Н1Ь строго пропорционально концентрации глюкозы [2−4] Это позволяет регулярно использовать 4-Н1Ь в качестве пищевой добавки, не опасаясь возникновения состояния гипогликемии.

Помимо своей инсулинотропной активности, 4-ШЬ улучшает инсулинорезистентность клеток скелетных мышц и печени посредством активации фосфоинозитид-3 (Р13) киназной активности, ассоциированной с субстратом инсулинового рецептора (ГО.8−1) [5]. Исследования на грызунах показали, что 4-Н1Ь является эффективным средством постоянного контроля над весом тела, гликемией и инсулинемией [5]. Таким образом, 4-Н1Ь является перспективной диетической добавкой для лечения и предотвращения диабета второго типа.

В настоящее время сформировался рынок биологически активных добавок, содержащих 4-HIL. Во-первых, считают, что его инсулинотропная активность (при отсутствии инсулинорезистентности) помогает запасать энергию в мышечной ткани (в виде гликогена) и способствует, таким образом, ее пролиферации у спортсменов, занимающихся наращиванием мышечной массы. С другой стороны, 4-HIL предлагается использовать как антигипогликемический компонент комплексных биологически активных пищевых добавок.

В настоящее время, потребность в 4-HIL удовлетворяется только за счет его экстракции из семян фенугрека. Однако, необходимость введения стадий очистки 4-HIL от сопутствующих биогенных компонентов (включая биологически неактивные изомеры 4-HIL) приводит к существенному удорожанию конечного препарата (~100 $/грамм очищенного 4-HIL), что в свою очередь, сказывается на цене содержащих 4-HIL комплексных БАДов и ограничивает рынок их сбыта. Кроме того, на стоимость 4-HIL влияет также сезонность получения сырья (семян фенугрека). Маркетологами подсчитано, что для массового продвижения 4-HIL на рынке пищевых добавок к продуктам питания, необходимо на порядок снизить его себестоимость.

Предложенные на сегодняшний день методы химического синтеза 4-HIL сложны и дороги, а, следовательно, не могут решить поставленную задачу [6, 7]. Кроме того, одним из последних мировых маркетинговых трендов является активное продвижение на рынок «натуральных продуктов» (natural foods), содержащих «биогенные» компоненты и не включающие «химически синтезированные суррогаты «.

Для крупной биотехнологической компании (например, Ajinomoto), специализирующейся на промышленном производстве аминокислот, в том числе L-изолейцина, биотрансформация последнего в 4-HIL является очевидным решением поставленной выше задачи. В этом случае, согласно экономическим расчетам, удалось бы существенно снизить себестоимость 4-HIL, обеспечив, таким образом, его эффективное продвижение на рынке пищевых добавок. 6.

Таким образом, задача создания эффективного процесса биотрансформации L-изолейцина в 4-HIL, пригодного для использования в промышленных масштабах является достаточно актуальной.

5. ВЫВОДЫ.

1. В ходе работы был впервые идентифицирован и клонирован ген (ido), кодирующий Ь-изолейцин-4-гидроксилазу в геноме штамма Bacillus thuringiensis (2-е-2). Установлена аминокислотная последовательность, соответствующая процессированной активной форме IDO.

2. Проведена оптимизация экспрессии гена ido в составе плазмидного вектора в клетках Е. coli.

3. Впервые предложена и реализована схема модификации метаболизма Е. coli для эффективной биотрансформации L-изолейцина в 4-HIL на основе сопряжения клеточного роста и реакции гидроксилирования. Сконструирован штамм Е. coli 2А, способный после введения в него плазмиды pEL-IDO (Lys, 2-е-2) к эффективной биотрансформации L-изолейцина в 4-HIL.

4. Проведено перераспределение углеродных потоков от синтеза биомассы к ЦТК с целью более экономичной биотрансформации L-изолейцина в 4-H3L. Сконструирован и внедряется в производство штамм 2А tszwf, edd, eda [pEL-IDO (Lys, 2-е-2)], позволяющий, при поддержании коэффициента конверсии L-изолейцин/4-HIL на уровне 88%, уменьшить на 20% потребление глюкозы и снизить на 35% выход биомассы по сравнению со штаммом 2А [pEL-IDO (Lys, 2-е-2)].

5. Предложенная схема может быть использована для гидроксилирования других аминокислот при использовании соответствующих диоксигеназ.

Показать весь текст

Список литературы

  1. Sauvaire, Y., et al., 4-Hydroxyisoleucine: a novel amino acid potentiator ofinsulin secretion. Diabetes, 1998. 47(2): p. 206−10.
  2. Jackson, J.E. and R. Bressler, Clinical pharmacology of sulphonylurea hypoglycaemic agents: part 1. Drugs, 1981. 22(3): p. 211−45.
  3. Jackson, J.E. and R. Bressler, Clinical pharmacology of sulphonylurea hypoglycaemic agents: part 2. Drugs, 1981. 22(4): p. 295−320.
  4. Jennings, A.M., et al., Islet cell antibodies and insulin autoantibodies in patients treated with oral hypoglycaemic agents. Diabet Med, 1989. 6(5): p. 434−9.
  5. Jette, L., et al., 4-Hydroxyisoleucine: a plant-derived treatment for metabolic syndrome. Curr Opin Investig Drugs, 2009. 10(4): p. 353−8.
  6. Wang, Q., et al., A Practical Synthesis of (2S, 3R, 4S)-4-Hydroxyisoleucine, A Potent Insulinotropic a-Amino Acid from Fenugreek. European Journal of Organic Chemistry, 2002. 2002(5): p. 834−839.
  7. Rolland-Fulcrand, V., et al., Chemoenzymatic Synthesis of Enantiomerically Pure (2S, 3R, 4S)-4-Hydroxyisoleucine, an Insulinotropic Amino Acid Isolatedfrom Fenugreek Seeds. European Journal of Organic Chemistry, 2004. 2004(4): p. 873 877.
  8. Oubre, A. Y., et al., From plant to patient: an ethnomedical approach to the identification of new drugs for the treatment ofNIDDM. Diabetologia, 1997. 40(5): p. 614−617.
  9. Yang, W., et al., Prevalence of Diabetes among Men and Women in China. New England Journal of Medicine, 2010. 362(12): p. 1090−1101.
  10. Diamond, J., Medicine: Diabetes in India. Nature, 2011. 469(7331): p. 478−479.
  11. Shera, A.S., et al., Pakistan National Diabetes Survey: prevalence of glucose intolerance and associated factors in the Punjab Province of Pakistan. Prim Care Diabetes, 2010. 4(2): p. 79−83.
  12. Cheng, M.H., Asia-Pacific faces diabetes challenge. Lancet, 2010. 375(9733): p. 2207−10.
  13. Briers, B., et al., Hungry for money: the desire for caloric resources increases the desire for financial resources and vice versa? Psychol Sci, 2006. 17: p. 939 -943.
  14. Lin, Y. and Z. Sun, Current views on type 2 diabetes. J Endocrinol, 2010. 204(1): p. 1−11.
  15. Poulsen, P., et al., Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance—a population-based twin study. Diabetologia, 1999. 42(2): p. 139−45.
  16. Majithia, A.R. and J.C. Florez, Clinical translation of genetic predictors for type 2 diabetes. Curr Opin Endocrinol Diabetes Obes, 2009. 16(2): p. 100−6.
  17. Bonnefond, A., P. Froguel, and M. Vaxillaire, The emerging genetics of type 2 diabetes. Trends Mol Med, 2010.16(9): p. 407−16.
  18. Ridderstrale, M. and L. Groop, Genetic dissection of type 2 diabetes. Mol Cell Endocrinol, 2009. 297(1−2): p. 10−7.
  19. Cockram, C.S., Diabetes mellitus: perspective from the Asia-Pacific region. Diabetes Res Clin Pract, 2000. 50 Suppl 2: p. S3−7.
  20. Cockram, C.S., The epidemiology of diabetes mellitus in the Asia-Pacific region. Hong Kong Med J, 2000. 6(1): p. 43−52.
  21. Reaven, G.M., Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 1988. 37(12): p. 1595−607.
  22. Reaven, G.M., Role of insulin resistance in human disease (syndrome X): an expanded definition. AnnuRevMed, 1993. 44: p. 121−31.
  23. Reaven, G.M., Banting Lecture 1988. Role of insulin resistance in human disease. 1988. Nutrition, 1997. 13(1): p. 65- discussion 64, 66.
  24. Neel, J.V., Diabetes mellitus: a «thrifty» genotype rendered detrimental by «progress»? Am J Hum Genet, 1962.14: p. 353−62.
  25. Neel, J.V., Thrifty genotype rendered detrimental by progress? Lancet, 1989. 2(8667): p. 839−40.
  26. Neel, J.Y., Diabetes mellitus: a «thrifty» genotype rendered detrimental by «progress»? 1962. Bull World Health Organ, 1999. 77(8): p. 694−703- discussion 692−3.
  27. Baschetti, R., Diabetes epidemic in newly westernized populations: is it due to thrifty genes or to genetically unknown foods? J R Soc Med, 1998. 91(12): p. 622−5.
  28. Speakman, J.R., A nonadaptive scenario explaining the genetic predisposition to obesity: the «predation release» hypothesis. Cell Metab, 2007. 6(1): p. 5−12.
  29. Hales, C.N. and D.J. Barker, Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia, 1992. 35(7): p. 595−601.
  30. Watve, M. and C. Yajnik, Evolutionary origins of insulin resistance: a behavioral switch hypothesis. BMC Evol Biol, 2007. 7(1): p. 61.
  31. John P, O.D., Reward representations and reward-related learning in the human brain: insights from neuroimaging. Current Opinion in Neurobiology, 2004. 14(6): p. 769−776.
  32. Briers, B., et al., Hungry for money: the desire for caloric resources increases the desire for financial resources and vice versa. Psychol Sci, 2006. 17(11): p. 93 943.
  33. Eriksson, J., J. Lindstrom, and J. Tuomilehto, Potential for the prevention of type 2 diabetes. Br Med Bull, 2001. 60: p. 183−99.
  34. Tuomilehto, J. and S. Del Prato, Mealtime glucose regulation in type 2 diabetes. Int J Clin Pract, 2001. 55(6): p. 380−3.
  35. Tuomilehto, J., et al., Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med, 2001. 344(18): p. 1343−50.
  36. Valle, T.T., et al., Type 2 diabetes can be prevented by life style changes. Duodecim, 2001.117(15): p. 1517−8.
  37. DeFronzo, R.A., Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. Acollusion responsible for NIDDM. Diabetes, 1988. 37(6): p. 667−87.98
  38. MacDonald, M.J., et al., Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am J Physiol Endocrinol Metab, 2005. 288(1): p. El-15.
  39. Gerich, J.E., Control of glycaemia. Baillieres Clin Endocrinol Metab, 1993. 7(3): p. 551−86.
  40. Straub, S.G. and G.W. Sharp, Hypothesis: one rate-limiting step controls the magnitude of both phases ofglucose-stimulated insulin secretion. Am J Physiol Cell Physiol, 2004. 287(3): p. C565−71.
  41. Matschinsky, F.M., Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes, 1990. 39(6): p. 647−52.
  42. MacDonald, M.J., et al., Pyruvate dehydrogenase and pyruvate carboxylase. Sites of pretranslational regulation by glucose of glucose-induced insulin release in pancreatic islets. J Biol Chem, 1991. 266(33): p. 22 392−7.
  43. Malaisse, W.J., et al., Regulation of calcium fluxes and their regulatory roles in pancreatic islets. Ann N Y Acad Sci, 1978. 307: p. 562−82.
  44. Ashcroft, F.M., D.E. Harrison, and S.J. Ashcroft, Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature, 1984. 312(5993): p. 446−8.
  45. Prentki, M., et al., Cyclic AMP raises cytosolic Ca2+ and promotes Ca2+ influx in a clonal pancreatic beta-cell line (HIT T-15). FEBS Lett, 1987. 220(1): p. 1037.
  46. Prentki, M. and F.M. Matschinsky, Ca2+, cAMP, andphospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev, 1987. 67(4): p. 1185−248.
  47. Gembal, M., P. Gilon, and J.C. Henquin, Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest, 1992. 89(4): p. 1288−95.
  48. Miki, T., et al., Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci USA, 1998. 95(18): p. 10 402−6.
  49. Remedi, M.S., et al., Hyperinsulinism in mice with heterozygous loss ofK (ATP) channels. Diabetologia, 2006. 49(10): p. 2368−78.
  50. MacDonald, P.E. and M.B. Wheeler, Voltage-dependent K (+) channels in pancreatic beta cells: role, regulation and potential as therapeutic targets. Diabetologia, 2003. 46(8): p. 1046−62.
  51. Obici, S., et al., Hypothalamic insulin signaling is requiredfor inhibition of glucose production. Nat Med, 2002. 8(12): p. 1376−1382.
  52. Margolis, R.U. and N. Altszuler, Insulin in the cerebrospinal fluid. Nature, 1967. 215(5108): p. 1375−6.
  53. Folli, F., et al., Insulin receptor substrate-1 (IRS-1) distribution in the rat central nervous system. J Neurosci, 1994. 14(11 Pt 1): p. 6412−22.
  54. Pocai, A., et al., Hypothalamic K (ATP) channels control hepatic glucose production. Nature, 2005. 434(7036): p. 1026−31.
  55. Inoue, H., et al., Role of hepatic STAT3 in brain-insulin action on hepatic glucose production. Cell Metab, 2006. 3(4): p. 267−75.
  56. Kandror, K.V. and P.F. Pilch, Compartmentalization of protein traffic in insulinsensitive cells. Am J Physiol, 1996. 271(1 Pt 1): p. El-14.
  57. Taniguchi, C.M., B. Emanuelli, and C.R. Kahn, Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol, 2006. 7(2): p. 8596.
  58. Storz, P. and A. Toker, 3'-phosphoinositide-dependent kinase-1 (.PDK-1) in PI 3-kinase signaling. Front Biosci, 2002. 7: p. d886−902.
  59. Barthel, A. and D. Schmoll, Novel concepts in insulin regulation of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab, 2003. 285(4): p. E685−92.
  60. DeFronzo, R.A., et al., The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes, 1981. 30(12): p. 1000−7.
  61. Sato, Y., et al., Physical exercise improves glucose metabolism in lifestyle-related diseases. Exp Biol Med (Maywood), 2003. 228(10): p. 1208−12.
  62. Henriksen, E .J., Invited review: Effects of acute exercise and exercise training on insulin resistance. J Appl Physiol, 2002. 93(2): p. 788−96.
  63. Holloszy, J.O. and H.T. Narahara, Studies of tissue permeability. X. Changes in permeability to 3-methylglucose associated with contraction of isolated frog muscle. J Biol Chem, 1965. 240(9): p. 3493−500.
  64. Ivy, J.L. and C.H. Kuo, Regulation of GLUT4 protein and glycogen synthase during muscle glycogen synthesis after exercise. Acta Physiol Scand, 1998. 162(3): p. 295−304.
  65. Neufer, P.D. and G.L. Dohm, Exercise induces a transient increase in transcription of the GLUT-4 gene in skeletal muscle. Am J Physiol, 1993. 265(6 Pt 1): p. C1597−603.
  66. Folli, F., et al., Insulin stimulation of phosphatidylinositol 3-kinase activity and association with insulin receptor substrate I in liver and muscle of the intact rat. J Biol Chem, 1992. 267(31): p. 22 171−7.
  67. Kraegen, E.W., et al., In vivo insulin resistance in individual peripheral tissues of the high fat fed rat: assessment by euglycaemic clamp plus deoxyglucose administration. Diabetologia, 1986. 29(3): p. 192−8.
  68. Kahn, B.B. and O. Pedersen, Suppression of GLUT4 expression in skeletal muscle of rats that are obese from high fat feeding but not from high carbohydrate feeding or genetic obesity. Endocrinology, 1993. 132(1): p. 13−22.
  69. Kahn, B.B., Dietary regulation of glucose transporter gene expression: tissue specific effects in adipose cells and muscle. J Nutr, 1994. 124(8 Suppl): p. 1289S-1295S.
  70. Cerf, M.E., High fat diet modulation of glucose sensing in the beta-cell. Med Sci Monit, 2007. 13(1): p. RA12−7.
  71. Philipson, L.H. and D.F. Steiner, Pas de deux or more: the sulfonylurea receptor and K+ channels. Science, 1995. 268(5209): p. 372−3.
  72. Mitrakou, A., et al., Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med, 1992. 326(1): p. 22−9.
  73. Virally, M., et al., Type 2 diabetes mellitus: epidemiology, pathophysiology, unmet needs and therapeutical perspectives. Diabetes Metab, 2007. 33(4): p. 23 144.
  74. Morral, N., Novel targets and therapeutic strategies for type 2 diabetes. Trends Endocrinol Metab, 2003.14(4): p. 169−75.
  75. DeFronzo, R.A., Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med, 1999.131(4): p. 281−303.
  76. Hoist, J.J., The physiology of glucagon-like peptide 1. Physiol Rev, 2007. 87(4): p. 1409−39.
  77. Vilsboll, T. and J.J. Hoist, Incretins, insulin secretion and Type 2 diabetes mellitus. Diabetologia, 2004. 47(3): p. 357−66.
  78. Wajchenberg, B.L., beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev, 2007. 28(2): p. 187−218.
  79. Toft-Nielsen, M.B., S. Madsbad, and J.J. Hoist, Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients. Diabetes Care, 1999. 22(7): p. 1137−43.
  80. Zander, M., et al., Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: aparallel-group study. Lancet, 2002. 359(9309): p. 824−30.102
  81. Farilla, L., et al., Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology, 2002. 143(11): p. 4397−408.
  82. Perfetti, R., et al., Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology, 2000. 141(12): p. 4600−5.
  83. Drucker, D.J. and M.A. Nauck, The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidylpeptidase-4 inhibitors in type 2 diabetes. Lancet, 2006. 368(9548): p. 1696−705.
  84. Gautier, J.F., et al., Biological actions of the incretins GIP and GLP-1 and therapeutic perspectives in patients with type 2 diabetes. Diabetes Metab, 2005. 31(3 Pt 1): p. 233−42.
  85. Eng, J., et al., Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem, 1992. 267(11): p. 7402−5.
  86. Nielsen, L.L. and A.D. Baron, Pharmacology of exenatide (synthetic exendin-4) for the treatment of type 2 diabetes. Curr Opin Investig Drugs, 2003. 4(4): p. 4015.
  87. Thorens, B., et al., Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9−39) an antagonist of the receptor. Diabetes, 1993. 42(11): p. 1678−82.
  88. Kim, W. and J.M. Egan, The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev, 2008. 60(4): p. 470−512.
  89. Kolterman, O.G., et al., Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm, 2005. 62(2): p. 173−81.
  90. Briones, M. and M. Bajaj, Exenatide: a GLP-1 receptor agonist as novel therapy for Type 2 diabetes mellitus. Expert Opin Pharmacother, 2006. 7(8): p. 1055−64.
  91. Iltz, J.L., et al., Exenatide: an incretin mimetic for the treatment of type 2 diabetes mellitus. Clin Ther, 2006. 28(5): p. 652−65.
  92. Lam, S. and S. See, Exenatide: a novel incretin mimetic agent for treating type 2 diabetes mellitus. Cardiol Rev, 2006. 14(4): p. 205−11.
  93. Nicolucci, A. and M.C. Rossi, Incretin-based therapies: a new potential treatment approach to overcome clinical inertia in type 2 diabetes. Acta Biomed, 2008. 79(3): p. 184−91.
  94. Ahmed, M., E. Grapengiesser, and B. Hellman, Amino acid transformation of oscillatory Ca2+ signals in mouse pancreatic beta-cells. J Endocrinol, 1999. 160(2): p. 191−5.
  95. DeFronzo, R.A., Pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: a balanced overview. Diabetologia, 1992. 35(4): p. 389−97.
  96. DeFronzo, R.A., R.C. Bonadonna, and E. Ferrannini, Pathogenesis ofNIDDM. A balanced overview. Diabetes Care, 1992. 15(3): p. 318−68.
  97. Bailey, C.J. and R.C. Turner, Metformin. N Engl J Med, 1996. 334(9): p. 574−9.
  98. Wollen, N. and C.J. Bailey, Inhibition of hepatic gluconeogenesis by metformin. Synergism with insulin. Biochem Pharmacol, 1988. 37(22): p. 4353−8.
  99. Johnson, A.B., et al., The impact of metformin therapy on hepatic glucose production and skeletal muscle glycogen synthase activity in overweight type II diabetic patients. Metabolism, 1993. 42(9): p. 1217−22.
  100. Stumvoll, M., et al., Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med, 1995. 333(9): p. 550−4.
  101. Radziuk, J., et al., Effects of metformin on lactate uptake and gluconeogenesis in the perfused rat liver. Diabetes, 1997. 46(9): p. 1406−13.
  102. He, L., et al., Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell, 2009.137(4): p. 635−46.
  103. Modi, P., Diabetes beyond insulin: review of new drugs for treatment of diabetes mellitus. Curr Drug Discov Technol, 2007. 4(1): p. 39−47.
  104. Florkowski, C.M., Management of co-existing diabetes mellitus and dyslipidemia: defining the role of thiazolidinediones. Am J Cardiovasc Drugs, 2002. 2(1): p. 15−21.
  105. Noble, J., M.O. Baerlocher, and J. Silverberg, Management of type 2 diabetes mellitus. Role of thiazolidinediones. Can Fam Physician, 2005. 51: p. 683−7.
  106. Diani, A.R., et al., Pioglitazone preserves pancreatic islet structure and insulin secretory function in three murine models of type 2 diabetes. Am J Physiol Endocrinol Metab, 2004. 286(1): p. El 16−22.
  107. Zeender, E., et al., Pioglitazone and sodium salicylate protect human beta-cells against apoptosis and impairedfunction induced by glucose and interleukin-lbeta. J Clin Endocrinol Metab, 2004. 89(10): p. 5059−66.
  108. Peraldi, P., M. Xu, and B.M. Spiegelman, Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling. J Clin Invest, 1997. 100(7): p. 1863−9.
  109. Roden, M., et al., Non-insulin-like action of sodium orthovanadate in the isolated perfused liver of fed, non-diabetic rats. Diabetologia, 1993. 36(7): p. 602−7.
  110. Brichard, S.M., W. Okitolonda, and J.C. Henquin, Long term improvement of glucose homeostasis by vanadate treatment in diabetic rats. Endocrinology, 1988.123(4): p. 2048−53.
  111. Domingo, J.L., et al., Improvement of glucose homeostasis by oral vanadyl or vanadate treatment in diabetic rats is accompanied by negative side effects. Pharmacol Toxicol, 1991. 68(4): p. 249−53.
  112. Srivastava, A.K., Anti-diabetic and toxic effects of vanadium compounds. Molecular and Cellular Biochemistry, 2000. 206(1): p. 177−182.
  113. Yadav, U.C., K. Moorthy, and N.Z. Baquer, Effects of sodium-orthovanadate and Trigonella foenum-graecum seeds on hepatic and renal lipogenic enzymes and lipid profile during alloxan diabetes. J Biosci, 2004. 29(1): p. 81−91.
  114. Ezaki, O., The insulin-like effects of selenate in rat adipocytes. J Biol Chem, 1990. 265(2): p. 1124−8.
  115. Shisheva, A., D. Gefel, and Y. Shechter, Insulinlike effects of zinc ion in vitro and in vivo. Preferential effects on desensitized adipocytes and induction of normoglycemia in streptozocin-induced rats. Diabetes, 1992. 41(8): p. 982−8.
  116. Baquer, N.Z., et al., The modifying effect of manganese on the enzymic profiles and pathways of carbohydrate metabolism in rat liver and adipose tissue during development. Biochem Biophys Res Commun, 1975. 62(3): p. 634−641.
  117. Fowden, L., H.M. Pratt, and A. Smith, 4-Hydroxyisoleucine from seed of Trigonella foenum-graecum. Phytochemistry, 1973. 12(7): p. 1707−1711.
  118. Alcock, N.W., et al., Stereochemistry of the 4-hydroxyisoleucine from Trigonella foenum-graecum. Phytochemistry, 1989. 28(7): p. 6.
  119. Broca, C., et al., Insulinotropic agent ID-1101 (4-hydroxyisoleucine) activates insulin signaling in rat. Am J Physiol Endocrinol Metab, 2004. 287(3): p. E463−71.
  120. Broca, C., et al., 4-Hydroxyisoleucine: experimental evidence of its insulinotropic and antidiabetic properties. Am J Physiol, 1999. 277(4 Pt 1): p. E617−23.
  121. Broca, C., et al., 4-Hydroxyisoleucine: effects of synthetic and natural analogues on insulin secretion. Eur J Pharmacol, 2000. 390(3): p. 339−45.
  122. Haeri, M.R., et al., The effect offenugreek 4-hydroxyisoleucine on liver function biomarkers and glucose in diabetic and fructose-fed rats. Phytother Res, 2009. 23(1): p. 61−4.
  123. Sergent, D., et al., Synthesis ofhydantoin analogues of (2S, 3R, 4S)-4-hydroxyisoleucine with insulinotropicproperties. Bioorg Med Chem Lett, 2008. 18(15): p. 4332−5.
  124. Kodera, T., et al., A novel l-isoleucine hydroxylating enzyme, l-isoleucine dioxygenase from Bacillus thuringiensis, produces (2S, 3R, 4S)-4-hydroxyisoleucine. Biochem Biophys Res Commun, 2009. 390(3): p. 506−10.
  125. Katashkina Zh, I., et al., Tuning of expression level of the genes of interest located in the bacterial chromosome. Mol Biol (Mosk), 2005. 39(5): p. 823−31.
  126. Datsenko, K.A. and B.L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sei USA, 2000. 97(12): p. 6640−5.
  127. Szyperski, T., et al., Support of 1H NMR assignments in proteins by biosynthetically directedfractional 13C-labeling. J Biomol NMR, 1992. 2(4): p. 323−34.
  128. Cavanagh, J., Protein NMR spectroscopy: principles and practice. 2. ed. 2007, Burlington, MA: Elsevier Academic Press, xxv, 885 s.
  129. Shaka, A.J., P.B. Barker, and R. Freeman, Computer-optimized decoupling scheme for wideband applications and low-level operation. Journal of Magnetic Resonance (1969), 1985. 64(3): p. 547−552.
  130. Bartels, C., et al., The program XEASYfor computer-supported NMR spectral analysis of biological macromolecules. JBiomol NMR, 1995. 6(1): p. 1−10.
  131. Szyperski, T., Biosynthetically directedfractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur J Biochem, 1995. 232(2): p. 433−48.
  132. Sambrook, J., E.F. Fritsch, and T. Maniatis, Molecular cloning: A laboratory manual 1−3. 2.ed. ed. 1989, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. Forsk.pag.
  133. Peredelchuk, M.Y. and G.N. Bennett, A method for construction of E. coli strains with multiple DNA insertions in the chromosome. Gene, 1997. 187(2): p. 231−8.
  134. Haldimann, A. andB.L. Wanner, Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J Bacterid, 2001.183(21): p. 6384−93.
  135. Govorun, V.M., et al., Comparative analysis ofproteome maps of Helicobacter pylori clinical isolates. Biochemistry (Mosc), 2003. 68(1): p. 42−9.
  136. Ogawa, J., et al., Synthesis of 4-hydroxyisoleucine by the aldolase-transaminase coupling reaction and basic characterization of the aldolase from Arthrobacter simplex AKU626. Biosci Biotechnol Biochem, 2007. 71(7): p. 1607−15.
  137. Smirnov, S.V., et al., A novel strategy for enzymatic synthesis of 4-hydroxyisoleucine: identification of an enzyme possessing HMKP (4-hydroxy-3-methyl-2-keto-pentanoate) aldolase activity. FEMS Microbiol Lett, 2007. 273(1): p. 70−7.
  138. Haefele, C., C. Bonfils, and Y. Sauvaire, Characterization of a dioxygenase from Trigonella foenum-graecum involved in 4-hydroxyisoleucine biosynthesis. Phytochemistry, 1997. 44(4): p. 563−6.
  139. Hausinger, R.P., Fell/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol, 2004. 39(1): p. 21−68.
  140. Shibasaki, T., et al., Microbial proline 4-hydroxylase screening and gene cloning. Appl Environ Microbiol, 1999. 65(9): p. 4028−31.
  141. Shibasaki, T., H. Mori, and A. Ozaki, Enzymatic production of trans-4-hydroxy-L-proline by regio- and stereospecific hydroxylation of L-proline. Biosci Biotechnol Biochem, 2000. 64(4): p. 746−50.
  142. Samsonova, N.N., et al., Identification of Escherichia coli K12 YdcW protein as a gamma-aminobutyraldehyde dehydrogenase. FEBS Lett, 2005. 579(19): p. 410 712.
  143. Lane, C.S., Mass spectrometry-basedproteomics in the life sciences. Cellular and Molecular Life Sciences, 2005. 62(7): p. 848−869.
  144. Creaghan, I.T. and J.R. Guest, Succinate dehydrogenase-dependent nutritional requirement for succinate in mutants of Escherichia coli K12. J Gen Microbiol, 1978.107(1): p. 1−13.
  145. Wolfe, A.J., The acetate switch. Microbiol Mol Biol Rev, 2005. 69(1): p. 12−50.
  146. Adams, M.D., et al., Nucleotide sequence and genetic characterization reveal six essential genes for the LIV-I and LS transport systems of Escherichia coli. Journal of Biological Chemistry, 1990. 265(20): p. 11 436−11 443.
  147. Stucky, K., et al., Cloning and characterization ofbrnQ, a gene encoding a low-affinity, branched-chain amino acid carrier in Lactobacillus delbruckii subsp. lactis DSM7290. Mol Gen Genet, 1995. 249(6): p. 682−90.
  148. Tauch, A., et al., Isoleucine uptake in Corynebacterium glutamicum ATCC 13 032 is directed by the brnQ gene product. Arch Microbiol, 1998.169(4): p. 303−12.
  149. Sauer, U., et al., The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem, 2004. 279(8): p. 6613−9.
Заполнить форму текущей работой