Помощь в учёбе, очень быстро...
Работаем вместе до победы

Понятие синергетики. 
Понятие синергетики

РефератПомощь в написанииУзнать стоимостьмоей работы

Основное понятие синергетики — определение структуры как состояния, возникающего в результате многовариантного и неоднозначного поведения таких многоэлементных структур или многофакторных сред, которые не деградируют к стандартному для замкнутых систем усреднению термодинамического типа, а развиваются вследствие открытости, притока энергии извне, нелинейности внутренних процессов, появления… Читать ещё >

Понятие синергетики. Понятие синергетики (реферат, курсовая, диплом, контрольная)

Синергетика, или теория сложных систем — междисциплинарное направление науки, изучающее общие закономерности явлений и процессов в сложных неравновесных системах (физических, химических, биологических, экологических, социальных и других) на основе присущих им принципов самоорганизации. Синергетика является междисциплинарным подходом, поскольку принципы, управляющие процессами самоорганизации, представляются одними и теми же безотносительно природы систем, и для их описания должен быть пригоден общий математический аппарат.

Основное понятие синергетики — определение структуры как состояния, возникающего в результате многовариантного и неоднозначного поведения таких многоэлементных структур или многофакторных сред, которые не деградируют к стандартному для замкнутых систем усреднению термодинамического типа, а развиваются вследствие открытости, притока энергии извне, нелинейности внутренних процессов, появления особых режимов с обострением и наличия более одного устойчивого состояния. В обозначенных системах неприменимы ни второе начало термодинамики, ни теорема Пригожина о минимуме скорости производства энтропии, что может привести к образованию новых структур и систем, в том числе и более сложных, чем исходные. В отдельных случаях образование новых структур имеет регулярный, волновой характер, и тогда они называются автоволновыми процессами (по аналогии с автоколебаниями).

Феномен появления структур часто трактуется синергетикой как всеобщий механизм повсеместно наблюдаемого в природе направления эволюции: от элементарного и примитивного — к сложносоставному и более совершенному. С мировоззренческой точки зрения синергетику иногда позиционируют как «глобальный эволюционизм» или «универсальную теорию эволюции», дающую единую основу для описания механизмов возникновения любых новаций, подобно тому, как некогда кибернетика определялась, как «универсальная теория управления», одинаково пригодная для описания любых операций регулирования и оптимизации: в природе, в технике, в обществе и т. д.

Однако время показало, что всеобщий кибернетический подход оправдал далеко не все возлагавшиеся на него надежды. Аналогичным образом, и расширительное толкование применимости методов синергетики также подвергается критике.

История Автором термина синергетика является Ричард Бакминстер Фуллер — известный дизайнер, архитектор и изобретатель из США. Ч. Шеррингтон называл синергетическим, или интегративным, согласованное воздействие нервной системы (спинного мозга) при управлении мышечными движениями.

Убедившись на практике исследований сложных систем в ограниченности по отдельности как аналитического, так и численного подхода к решению нелинейных задач, И. Забуский в 1967 году пришёл к выводу о необходимости единого «синергетического» подхода, понимая под этим «…совместное использование обычного анализа и численной машинной математики для получения решений разумно поставленных вопросов математического и физического содержания системы уравнений». Определение термина «синергетика», близкое к современному пониманию, ввёл Герман Хакен в 1977 году в своей книге «Синергетика».

Предмет, методы и школы синергетики Область исследований синергетики чётко не определена и вряд ли может быть ограничена, так как её интересы распространяются на все отрасли естествознания. Общим признаком является рассмотрение динамики любых необратимых процессов и возникновения принципиальных новаций. Математический аппарат синергетики скомбинирован из разных отраслей теоретической физики: нелинейной неравновесной термодинамики, теории катастроф, теории групп, тензорного анализа, дифференциальной топологии, неравновесной статистической физики.

Существуют несколько школ, в рамках которых развивается синергетический подход:

Школа нелинейной оптики, квантовой механики и статистической физики Германа Хакена, с 1960 года профессора Института теоретической физики в Штутгарте. В 1973 году он объединил большую группу учёных вокруг шпрингеровской серии книг по синергетике, в рамках которой к настоящему времени увидели свет 69 томов с широким спектром теоретических, прикладных и научно-популярных работ, основанных на методологии синергетики: от физики твёрдого тела и лазерной техники и до биофизики и проблем искусственного интеллекта.

Физико-химическая и математико-физическая Брюссельская школа Ильи Пригожина, в русле которой формулировались первые теоремы (1947 г.), разрабатывалась математическая теория поведения диссипативных структур (термин Пригожина), раскрывались исторические предпосылки и провозглашались мировоззренческие основания теории самоорганизации, как парадигмы универсального эволюционизма. Эта школа, основные представители которой работают теперь в США, не пользуется термином «синергетика», а предпочитает называть разработанную ими методологию «теорией диссипативных структур» или просто «неравновесной термодинамикой», подчёркивая преемственность своей школы пионерским работам Ларса Онзагера в области необратимых химических реакций (1931 г.).

В России.

Концептуальный вклад в развитие синергетики внёс академик Н. Н. Моисеев — идеи универсального эволюционизма и коэволюции человека и природы.

Математический аппарат теории катастроф, пригодный для описания многих процессов самоорганизации, разработан российским математиком В. И. Арнольдом и французским математиком Рене Томом.

В рамках школы академика А. А. Самарского и члена-корреспондента РАН С. П. Курдюмова разработана теория самоорганизации на базе математических моделей и вычислительного эксперимента (включая теорию развития в режиме с обострением).

Синергетический подход в биофизике развивается в трудах членов-корреспондентов РАН М. В. Волькенштейна и Д. С. Чернавского.

Синергетический подход в теоретической истории (историческая математика) с подразделами клиодинамика и клиометрика, развивается в работах Д. С. Чернавского, Г. Г. Малинецкого, Л. И. Бородкина, С. П. Капицы, А. В. Коротаева, С. Ю. Малкова, П. В. Турчина, А. П. Назаретяна и др.

Приложения синергетики распределились между различными направлениями:

теория динамического хаоса исследует сверхсложную, скрытую упорядоченность поведения наблюдаемой системы; напр. явление турбулентности;

теория фракталов занимается изучением сложных самоподобных структур, часто возникающих в результате самоорганизации. Сам процесс самоорганизации также может быть фрактальным;

теория катастроф исследует поведение самоорганизующихся систем в терминах бифуркация, аттрактор, неустойчивость;

лингвистическая синергетика и прогностика (труды профессора Р. Г. Пиотровского и его учеников и последователей;

семантическая синергетика.

Синергетический подход в естествознании Основные принципы:

Природа иерархически структурирована в несколько видов открытых нелинейных систем разных уровней организации: в динамически стабильные, в адаптивные, и наиболее сложные — эволюционирующие системы.

Связь между ними осуществляется через хаотическое, неравновесное состояние систем соседствующих уровней.

Неравновесность является необходимым условием появления новой организации, нового порядка, новых систем, то есть — развития.

Когда нелинейные динамические системы объединяются, новое образование не равно сумме частей, а образует систему другой организации или систему иного уровня.

Общее для всех эволюционирующих систем: неравновесность, спонтанное образование новых микроскопических (локальных) образований, изменения на макроскопическом (системном) уровне, возникновение новых свойств системы, этапы самоорганизации и фиксации новых качеств системы.

При переходе от неупорядоченного состояния к состоянию порядка все развивающиеся системы ведут себя одинаково (в том смысле, что для описания всего многообразия их эволюций пригоден обобщённый математический аппарат синергетики).

Развивающиеся системы всегда открыты и обмениваются энергией и веществом с внешней средой, за счёт чего и происходят процессы локальной упорядоченности и самоорганизации.

В сильно неравновесных состояниях системы начинают воспринимать те факторы воздействия извне, которые они бы не восприняли в более равновесном состоянии.

В неравновесных условиях относительная независимость элементов системы уступает место корпоративному поведению элементов: вблизи равновесия элемент взаимодействует только с соседними, вдали от равновесия — «видит» всю систему целиком и согласованность поведения элементов возрастает.

В состояниях, далёких от равновесия, начинают действовать бифуркационные механизмы — наличие кратковременных точек раздвоения перехода к тому или иному относительно долговременному режиму системы аттрактору. Заранее невозможно предсказать, какой из возможных аттракторов займёт система.

Синергетика объясняет процесс самоорганизации в сложных системах следующим образом:

Система должна быть открытой. Закрытая система в соответствии с законами термодинамики должна в конечном итоге прийти к состоянию с максимальной энтропией и прекратить любые эволюции.

Открытая система должна быть достаточно далека от точки термодинамического равновесия. В точке равновесия сколь угодно сложная система обладает максимальной энтропией и не способна к какой-либо самоорганизации. В положении, близком к равновесию и без достаточного притока энергии извне, любая система со временем ещё более приблизится к равновесию и перестанет изменять своё состояние.

Фундаментальным принципом самоорганизации служит возникновение нового порядка и усложнение систем через флуктуации (случайные отклонения) состояний их элементов и подсистем. Такие флуктуации обычно подавляются во всех динамически стабильных и адаптивных системах за счёт отрицательных обратных связей, обеспечивающих сохранение структуры и близкого к равновесию состояния системы. Но в более сложных открытых системах, благодаря притоку энергии извне и усилению неравновесности, отклонения со временем возрастают, накапливаются, вызывают эффект коллективного поведения элементов и подсистем и, в конце концов, приводят к «расшатыванию» прежнего порядка и через относительно кратковременное хаотическое состояние системы приводят либо к разрушению прежней структуры, либо к возникновению нового порядка. Поскольку флуктуации носят случайный характер, то состояние системы после бифуркации обусловлено действием суммы случайных факторов.

Самоорганизация, имеющая своим исходом образование через этап хаоса нового порядка или новых структур, может произойти лишь в системах достаточного уровня сложности, обладающих определённым количеством взаимодействующих между собой элементов, имеющих некоторые критические параметры связи и относительно высокие значения вероятностей своих флуктуаций. В противном случае эффекты от синергетического взаимодействия будут недостаточны для появления коллективного поведения элементов системы и тем самым возникновения самоорганизации. Недостаточно сложные системы не способны ни к спонтанной адаптации ни, тем более, к развитию и при получении извне чрезмерного количества энергии теряют свою структуру и необратимо разрушаются.

Этап самоорганизации наступает только в случае преобладания положительных обратных связей, действующих в открытой системе, над отрицательными обратными связями. Функционирование динамически стабильных, неэволюционирующих, но адаптивных систем — а это и гомеостаз в живых организмах и автоматические устройства — основывается на получении обратных сигналов от рецепторов или датчиков относительно положения системы и последующей корректировки этого положения к исходному состоянию исполнительными механизмами.

В самоорганизующейся, в эволюционирующей системе возникшие изменения не устраняются, а накапливаются и усиливаются вследствие общей положительной реактивности системы, что может привести к возникновению нового порядка и новых структур, образованных из элементов прежней, разрушенной системы. Таковы, к примеру, механизмы фазовых переходов вещества или образования новых социальных формаций.

Самоорганизация в сложных системах, переходы от одних структур к другим, возникновение новых уровней организации материи сопровождаются нарушением симметрии. При описании эволюционных процессов необходимо отказаться от симметрии времени, характерной для полностью детерминированных и обратимых процессов в классической механике. Самоорганизация в сложных и открытых — диссипативных системах, к которым относится и жизнь, и разум, приводят к необратимому разрушению старых и к возникновению новых структур и систем, что наряду с явлением неубывания энтропии в закрытых системах обуславливает наличие «стрелы времени» в Природе.

Эвристика (от лат. Evrica — «отыскиваю», «открываю») — отрасль знания, изучающая творческое, неосознанное мышление человека.

Эвристика связана с психологией, физиологией высшей нервной деятельности, кибернетикой и другими науками, но сама как наука ещё полностью не сформировалась.

синергетика сложный система эволюция История возникновения В Древней Греции под эвристикой понимали систему обучения, практиковавшуюся Сократом, когда учитель приводит ученика к самостоятельному решению какой-либо задачи, задавая ему наводящие вопросы. Понятие «эвристика» встречается в трактате греческого математика Паппа «Искусство решать задачи» (300 год н. э.).

Долгое время в основе творчества лежали методы проб и ошибок, перебора возможных вариантов, ожидание озарения и работа по аналогии. Так, Томас Эдисон провел около 50 тысяч опытов, пока разрабатывал устройство щелочного аккумулятора. А об изобретателе вулканизированной резины Чарльзе Гудиер (Goodyear) писали, что он смешивал сырую резину (каучук) с любым попадавшимся ему под руку веществом: солью, перцем, сахаром, песком, касторовым маслом, даже с супом. Он следовал логическому заключению, что рано или поздно перепробует всё, что есть на земле и, наконец, наткнется на удачное сочетание.

Однако со временем такие методы начали приходить в противоречие с темпами создания и масштабами современных объектов. Наиболее интенсивно поиском и разработкой эвристических методов занялись со второй половины 20 века, причём не только посредством изучения приемов и последовательности действий инженеров и других творческих работников, но и на основе достижений психологии и физиологии мозга.

Эвристические методы Эвристическими методами называются логические приемы и методические правила научного исследования и изобретательского творчества, которые способны приводить к цели в условиях неполноты исходной информации и отсутствия четкой программы управления процессом решения задачи.

В узком смысле слова под эвристикой понимают интуитивные (неосознанные) методы решения задач, в том числе:

систему обучения, берущую свои истоки от сократовской майевтики (т. н. сократические беседы);

эвристические методы проектирования;

методы инженерного (изобретательского) творчества;

эвристический алгоритм, представляющий совокупность приёмов в поиске решения задачи, которые позволяют ограничить перебор.

В настоящее время разработано и эффективно используется несколько десятков эвристических методов. Универсальных среди них нет, и в каждой конкретной ситуации рекомендуют пробовать применять ряд методов, поскольку основное их предназначение заключается в активизации творческой деятельности. Это достигается следующими мерами:

преодоление психологической инерции, обусловленной привычными образом мышления и типовыми методами решения задач определенного класса. Замечено, что около 80% нововведений вначале специалистами отрицается как нереальные. Инерцию развивают и усиливают:

рецептурное обучение и проектирование по аналогии;

подсознательная вера в то, что каждая вещь и явление служат строго определенной цели;

(техническая) терминология. Ф. Энгельс писал: «В науке каждая новая точка зрения влечет за собою революцию в технических терминах»;

мобилизация подсознания;

расширение перспектив видения, чему препятствует чрезмерная специализация образования и узкопрактический подход.

Необходимо применение разнообразных методов, расширение области поиска новых идей и увеличение их количества.

Эвристические модели Эвристика как наука занимается построением эвристических моделей процесса поиска оригинального решения задачи. Существуют следующие типы таких моделей:

модель слепого поиска, которая опирается на метод проб и ошибок;

лабиринтная модель, в которой решаемая задача рассматривается как лабиринт, а процесс поиска решения — как блуждание по лабиринту;

структурно-семантическая модель, которая исходит из того, что в основе эвристической деятельности по решению задачи лежит принцип построения системы моделей, которая отражает семантические отношения между объектами, входящими в задачу.

Особенности эвристической деятельности Эвристические методы и моделирование присущи только человеку и отличают его от искусственных интеллектуальных (мыслящих) систем. В настоящее время к сфере человеческой деятельности относят:

постановку задачи;

выбор методов её решений и построение (разработка) моделей и алгоритмов, выдвижение гипотез и предположений;

осмысление результатов и принятие решений.

Стоит отметить, что важной особенностью именно человеческой деятельности является наличие в ней элемента случайности: необъяснимые поступки и сумасбродные решения часто лежат в основе оригинальных и неожиданных идей.

Однако с развитием вычислительной техники выполнение всё большего числа функций берут на себя автоматические системы, при этом выполняя работу быстрее и эффективнее человека. Задача человека как homo sapiens, прежде всего, совершенствоваться в эвристических процедурах, а не в выполнении алгоритмизированных операций, чтобы впоследствии не оказаться вытесненным «разумной» техникой.

Результаты эвристической деятельности В науке и технике выделяют следующие результаты эвристической (творческой) деятельности:

открытие, то есть установление ранее неизвестных объективных закономерностей, свойств и явлений материального мира с обязательным экспериментальным подтверждением. Открытие, в основном, является продуктом научной деятельности, но решающим и революционным образом определяет развитие техники. На открытие существует приоритет (право первенства), но нет права собственности на использование;

изобретение, то есть новое и обладающее существенными отличиями техническое решение задачи, которое не является очевидным следствием известных решений. Изобретение относится к объектам интеллектуальной собственности и защищается патентным правом (главным образом — в виде предоставления патентообладателю исключительного права на использование изобретения). Содержание изобретения публикуется. Изобретателю выдается патент, свидетельствующий о его праве и приоритете на изобретение (в России ранее вместо патента выдавали авторское свидетельство). Исключительное право может быть уступлено (продано). Изобретение может быть использовано в коммерческих целях только с разрешения патентообладателя на основе лицензионного договора;

рационализаторское предложение, то есть предложение по улучшению конструкции реального изделия или процесса его изготовления, не содержащее существенно новых решений (с недостаточно существенными отличиями) и с незначительной эффективностью. Часто в качестве рацпредложения оформляют применение решения, неизвестного на данном предприятии, но известного в других местах (но следует быть осторожным с возможным нарушением авторских прав). Понятие рацпредложения существует всего в нескольких странах как способ поощрения изобретательства и вовлечения в него широкого круга работников предприятия;

ноу-хау (know-how, «знаю, как «). Под этим термином обычно подразумевают техническую, организационную или коммерческую информацию, составляющую секрет производства (любого) и имеющую коммерческую ценность (ноу-хау не относится к государственным секретам). В отличие от патента на изобретение, на ноу-хау существует только право на защиту имущественных интересов в случае их незаконного получения и использования.

Показать весь текст
Заполнить форму текущей работой