Помощь в учёбе, очень быстро...
Работаем вместе до победы

Исследование функциональных групп и структуры глутаматдекарбоксилазы из E.coli

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Задачи работы были следующие: исследование роли остатков аргинина и цистеина глутаматдекарбоксилазыхарактеристика процесса реактивации и реконструкции гексамера глутаматдекарбоксилазы при взамодействии димеров апофермента с пиридоксальфосфатомсравнительный анализ элементов вторичной структуры холофермента и апоферментаустановление роли ПЛФ и pH в организации вторичной и четвертичной структуры… Читать ещё >

Содержание

  • ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР
    • 1. 1. Пиридоксалевые ферменты
      • 1. 1. 1. Основы теории пиридоксалевого катализа
      • 1. 1. 2. Классификации пиридокеалевых ферментов
      • 1. 1. 3. Особенности структуры пиридокеалевых ферментов
      • 1. 1. 4. Функциональные группы пиридокеалевых ферментов
      • 1. 1. 5. Структурно-функциональная роль пиридоксальфосфата
      • 1. 1. 6. Общие закономерности механизма действия пиридокеалевых ферментов
    • 1. 2. Декарбоксилазы аминокислот
      • 1. 2. 1. Декарбоксилазы аминокислот из разных источников
      • 1. 2. 2. Глутаматдекарбоксилазы различного происхождения
    • 1. 3. Глутаматдекарбоксилаза из Е. coli, структура и каталитические свойства
      • 1. 3. 1. Функциональная роль бактериальных глутаматдекарбоксилаз
      • 1. 3. 2. Начальные исследования глутаматдекарбоксилазы из Е. col
      • 1. 3. 3. Структура глутаматдекарбоксилазы из Е. col
      • 1. 3. 4. Функциональные группы глутаматдекарбоксилазы
      • 1. 3. 5. Взаимодействие апофермента с пиридоксальфосфатом и его аналогами
      • 1. 3. 6. Каталитические свойства глутаматдекарбоксилазы
        • 1. 3. 6. 1. Исследования субстратной специфичности глутаматдекарбоксилазы
        • 1. 3. 6. 2. Реакция побочного трансаминирования
        • 1. 3. 6. 3. Последовательность стадий ферментативного декарбоксилирования

Исследование функциональных групп и структуры глутаматдекарбоксилазы из E.coli (реферат, курсовая, диплом, контрольная)

Исследования пиридоксалевых ферментов, в основе которых лежат работы акад. А. Е. Браунштейна, являются важным направлением современной энзимологии. Пиридоксалевые ферменты катализируют разнообразные превращения аминокислот в организме и играют, таким образом, существенную роль в фундаментальных физиологических процессах. Современные достижения в понимании структуры и механизма действия этих ферментов, их роли и функции широко используются в различных областях медицины и биотехнологии.

В последнее время достигнуты значительные успехи в установлении детального механизма действия различных пиридоксалевых ферментов. Быстро растет число ферментов, для которых определена трехмерная структура, однако механизм формирования пространственной структуры подробно охарактеризован лишь в некоторых случаях. Исследование процессов образования биологически активной макромолекулы у ГО1Ф-ферментов, принадлежащих к одному и тому же или к разным семействам, может дать важную информацию о том, каким образом первичная структура и взаимодействие белка с коферментом определяют пространственную структуру и функцию фермента.

Среди многих пиридоксалевых ферментов важное физиологическое значение имеют декарбоксилазы аминокислот, катализирующие образование биогенных аминов. Большинство бактериальных декарбоксилаз обладают сложной олигомерной структурой и поэтому могут служить хорошей моделью для изучения закономерностей формирования стабильной четвертичной структуры при ассоциации субъединиц.

Настоящая работа посвящена исследованию свойств глутаматдекарбоксилазы из Е. coli. Фермент является удобным объектом для анализа структурных изменений, происходящих при связывании кофермента с апоферментом и образовании нативной макромолекулы, способной осуществлять каталитическую реакцию.

Цель и задачи исследования

Цель данной работы состояла в изучении функционально важных остатков аминокислот глутаматдекарбоксилазы из E. coli, а также в исследовании процесса сборки биологически активного гексамера из димеров апофермента и установлении влияния pH и пиридоксальфосфата на организацию структуры фермента.

Задачи работы были следующие: исследование роли остатков аргинина и цистеина глутаматдекарбоксилазыхарактеристика процесса реактивации и реконструкции гексамера глутаматдекарбоксилазы при взамодействии димеров апофермента с пиридоксальфосфатомсравнительный анализ элементов вторичной структуры холофермента и апоферментаустановление роли ПЛФ и pH в организации вторичной и четвертичной структуры фермента.

Научная новизна и практическая ценность работы. Разработана методика выращивания биомассы из штаммов-суперпродуцентов и выделения из нее гомогенного рекомбинантного изозима GADa, препараты которого оказались пригодными для кристаллизации. Установлено, что в активный центр глутаматдекарбоксилазы входит остаток аргинина, который участвует в связывании субстрата. Получены данные об изменении доступности остатков цистеина при восстановлении нативного гексамера из димеров апофермента. Проведена сравнительная оценка вторичной структуры различных форм холофермента и апофермента GADa, выявлен вклад кофермента и pH в организацию структуры. Подобраны условия для осуществления количественного декарбоксилирования глутаминовой кислоты с образованием у-аминомасляной кислоты. Получен патент РФ № 2 143 002: «Способ получения у-аминомасляной кислоты» от 20 декабря 1999 г.

ВЫВОДЫ.

1. Разработана методика выращивания штаммов-суперпродуцентов глутаматдекарбоксилазы и получения из бактериального материала гомогенных препаратов изозима вАБа.

2. Установлено, что в активном центре глутаматдекарбоксилазы находится остаток аргинина, который, по-видимому, принимает участие в. связывании субстрата.

3. Показано, что препараты гексамера холофермента и апофермента не содержат доступных остатков цистеинадимер аподекарбоксилазы содержит восемь доступных остатков цистеина на субъединицу. В присутствии БВБ становятся доступными 10 остатков цистеина на субъединицу. При взаимодействии димеров апофермента с пиридоксальфосфатом экранирование остатков цистеина завершается до полной реактивации и реконструкции фермента.

4. Проведен сравнительный анализ элементов вторичной структуры холофермента и апофермента изозима ОАЕ) а* выявлен вклад ПЛФ и рН в организацию вторичной и четвертичной структуры глутаматдекарбоксилазы.

5. Подобраны условия количественного декарбоксилирования глутаминовой кислоты и проверены штаммы с целью разработки способа получения у-аминомасляной кислоты с помощью суперпродуцента глутаматдекарбоксилазы.

Приношу глубокую и сердечную благодарность доктору биологических наук Белле Семеновне Сухаревой за руководство научной работой, постоянное внимание и помощь.

Приношу искреннюю благодарность Н. П. Бажулиной (Институт молекулярной биологии РАН), В. Я. Стельмащуку (Институт кристаллографии РАН), А. А. Шульге и Я. Ермолюку (Институт биоорганической химии РАН), P.P. Кристофорову, А. Г. Арешеву за полезное и плодотворное сотрудничество. Приношу глубокую благодарность сотрудникам Института молекулярной биологии В. М. Лобачеву, В. В. Петухову, Г. С. Носковой за помощь в работе.

Показать весь текст

Список литературы

  1. А.Е., Шемякин М. М. Теория процессов аминокислотного обмена, катализируемых пиридоксалевыми энзимами. — Докл. АН СССР, 1952, т. 85, № 5, с. 1115−1118.
  2. А.Е., Шемякин М. М. Теория процессов аминокислотного обмена, катализируемых пиридоксалевыми энзимами. Биохимия, 1953, т. 18, № 4, с. 393−411.
  3. Braunstein А.Е. Pyridoxal phosphate. In: The Enzymes (Boyer P.D., ed.). New York: Acad. Press, 1960, v. 2, p. 113−184.
  4. Metzler D.E., Ikawa M., Snell E.E. A general mechanism for vitamin Вб catalysed reactions. -J. Amer. Chem. Soc., 1954, v. 76, № 3, p. 648−652.
  5. Alexander F.W., Sandmeier E., Mehta P.K., Christen P. Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific a, (3 and у families. Eur. J. Biochem., 1994, v. 219, № 3, p. 953−960.
  6. Salzmann D., Christen P., Mehta P.K., Sandmeier E. Rates of evolution of pyridoxal-5'-phosphate-dependent enzymes. Biochem. Biophys. Res. Commun., 2000, v. 270, № 2, p. 576−580.
  7. John R. A. Pyridoxal phosphate-dependent enzymes. Biochim. Biophys. Acta, 1995, v. 1248, № 2, p. 81−96.
  8. Momany C., Ghosh R, Hackert M.L. Structural motifs for pyridoxal-5'-phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase. Protein Sci., 1995, v. 4, № 5, p. 849−854.
  9. Hughes R.C., Jenkins W.T., Fisher E. H. The site of binding of pyridoxal-5'-phosphate to heart glutamic-aspartic transaminase. Proc. Nat. Acad. Sci., 1962, v. 48, № 9, p. 1615−1618.
  10. Braunstein A.E. Transamination and transaminases. In: Transaminases (Cristen P., Metzler D.E., eds.). New York: John Wiley & Sons, 1985, p.2−18.
  11. Martinez-Carrion M. Pyridoxal phosphate binding sites in enzymes. In: Coenzymes and cofactors (Dolphin D., Poulson R., Avramovic O., eds.). New York: John Wiley & Sons, 1986, v. 1, part B, p. 1−22.
  12. Isupov M.N., Antson A.A., Dodson E.J., Dodson G.G., Dementieva I.S., Zakomirdina L.N., Wilson K.S., Dauter Z., Lebedev A. A., Harutyunyan E.H. Crystal structure of tryptophanase. -J. Mol. Biol., 1998, v. 276, № 3, p. 603−623.
  13. Antson A.A., Demidkina T.V., Gollnick P., Dauter Z., Von Tersch R.L., Long J., Berezhnoy S.N., Phillips R.S., Harutyunyan E.H. Three dimentional structure of tyrosine phenol-lyase. -Biochemistry, 1993, v. 32, № 16, p. 4195−4206.
  14. Toney M.D., Hohenester E., Keller J.W., Jansonius J.N. Structural and mechanistic analysis of two refined crystal structures of the pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase. J. Mol. Biol., 1995, v. 245, № 2, p. 151−179.
  15. Momany C., Ernst S., Ghosh R., Chang N.L., Hackert M.L. Crystallographic structure of a PLP-dependent ornithine decarboxylase from Lactobacillus 30a to 3.0 A resolution. J. Mol. Biol., 1995, v. 252, № 5, p. 643−655.
  16. Gong J., Hunter G.A., Ferreira G.C. Aspartate-279 in aminolevulinate synthase affects enzyme catalysis through enhancing the fonction of the pyridoxal phosphate cofactor. Biochemistry, 1998, v. 37, № 10, p. 3509−3517.
  17. Pascarella S., Schirch V., Bossa F. Similarity between serine hydroxymethyltransferase and other pyridoxal phosphate-dependent enzymes. FEBS Lett., 1993, v. 331, № 1−2, p. 145−149.
  18. Riordan J.F., Scandurra R. Essential arginyl residues in aspartate aminotransferases. Biochem. Biophys. Res. Commun. 1975, v. 66, № 1, p. 417−424.
  19. Gilbert H.F., O’Leary M.H. Arginine as a substrate binding site in aspartate aminotransferase. -Biochem. Biophys. Res. Commun., 1975, v. 67, № 1, p. 198−202.
  20. A.B., Механик M.H., Егоров Т. А., Торчинский Ю. М. Исследование роли остатков аргинина в аспартаттрансаминазе из цитозоля сердца кур. Биохимия, 1978, т. 43, № 10, с. 686−695.
  21. Kazarinoff M.N., Snell Е.Е. Essential arginine residues in tryptophanase from Escherichia coli. J. Biol. Chem., 1977, v. 252, № 21, p. 7598−7602.
  22. Kazarinoif M.N., Snell E.E. D-serine dehydratase from Escherichia coli. Essential arginine residues in the pyridoxal-5'-phosphate binding site. J. Biol. Chem., 1976, v. 251, № 20, p. 6179−6182.
  23. Cronin C.N., Kirsch J.F. Role of arginme-292 in the substrate specificity of aspartate aminotransferase as examined by site-directed mutagenesis. Biochemistry, 1988, v. 27, № 12, p. 4572−4579.
  24. Delle Fratte S., Iurescia S., Angellaccio S., Bossa F., Schirch V. The function of arginine 363 as the substrate carboxyl-binding site in Escherichia coli serine hydroxymethyltransferase. -Eur. J. Biochem., 1994, v. 225, № 1, p. 395−401.
  25. Tan D., Harrison T., Hunter G.A., Ferreira G.C. The role of arginine 439 in substrate binding of 5-aminolevulinate synthase. Biochemistry, 1998, v. 37, № 6, p. 1478−1484.
  26. Osterman A.L., Brooks H.B., Rizo J., Phillips M.A. The role of Arg-277 in the binding of pyridoxal 5'-phosphate to Trypanosoma brucei ornithine decarboxylase. Biochemistry, 1997, v. 36, № 15, p. 4558−4567.
  27. Miles E.W. Evidence that the essential, photosensitive histidyl residue in the (32 subunut of tryptophan synthetase is in the pyridoxyl peptide. Biochem. Biophys. Res. Commun., 1974, v. 57, № 3, p. 849−856.
  28. Nihira T., Toraya T., Fukui S. Pyridoxal-5'-phosphate-sensitized photoinactivation of tryptophanase and evidence for essential histidyl residues in the active site. Eur. J. Biochem., 1979, v. 101, № 2, p. 341−347.
  29. Humagai EL, Utagawa T., Yamada H. Studies on tyrosine phenol-lyase. Modification of essential histidyl residues by diethylpyrocarbonate. J. Biol. Chem., 1975, v. 250, № 5, p. 1661−1667.
  30. Faleev N.G., Ruvinov S.B., Demidkina T.V., Myagkikh I.V., Gololobov M.Yu., Bakhmutov V.I., Belikov V.M. Tyrosine phenol-lyase from Citrobacter intermedins. Factors controlling substrate specificity. Eur. J. Biochem., 1988, v. 177, № 2, p. 395−401.
  31. Chen H., Gollnick P., Phillips R.S. Site-directed mutagenesis of His343-«AIa in Citrobacter freundii tyrosine phenol-lyase. Effects on the kinetic mechanism and rate-determining step. -Eur. J. Biochem., 1995, v. 229, № 2, p. 540−549.
  32. Ro H.S., Miles E.W. Structure and function of the tryptophan synthase ot2|32 complex. Roles of p subunit histidine 86. J. Biol. Chem., 1999, v. 274, № 51, p. 36 439−36 445.
  33. Bocharov A.L., Demidkina T.V., Karpeisky M.Ya., Polyanovsky O.L. Selective modification of tyrosine and cysteine residues in aspartate aminotransferase from pig heart cytosol. Biochem. Biophys. Res. Commun., 1973, v. 50, № 2, p. 377−383.
  34. Kochkina V.M., Torchinsky Yu.M. Reactivity of the cysteine and tyrosine residues of aspartate transaminase from chicken heart cytosol. Biochem. Biophys. Res. Commun., 1975, v. 63, № 2, p. 392−399.
  35. Petrilli P., Pucci P., Garzillo A.M., Sannia G., Marino G. Reactivity of the sulfhydryl groups of cytosolic and mitochondrial bovine aspartate aminotransferases. Mol. Cell. Biochem., 1981, v. 35, № 2, p. 121−128.
  36. Dominici P., Tancini P., Borri Voltattomi C. Evidence for an essential sulfhydryl residue in pig kidney 3,4-dihydroxyphenylalanine decarboxylase. Bull. Mol. Biol. Med., 1984, v. 9, p. 1−8.
  37. Nihira T., Yasuda T., Kakizono T., Taguchi H., Ichikawa M. Functional role of cysteinyl residues in tryptophanase. Eur. J. Biochem., 1985, v. 149, № 1, p. 129−133.
  38. Gehring H. Detection of conformational changes in aspartate aminotransferase by chemical modification of nonactive-site residues. In: Transaminases (Cristen P., Metzler D. E., eds.). New York: John Wiley & Sons, 1985, p. 321−323.
  39. Dominici D., Moore P. S., Castellani S., Bertoldi M., Voltattomi C.B. Mutation of cysteine 111 in Dopa decarboxylase leads to active site perturbation. Protein Sci., 1997, v. 6, № 9, p. 2007−2015.
  40. Kim Y.T., Churchich J.E. Sequence of the cysteinyl-containing peptides of 4-aminobutirate aminotransferase. Identification of sulfhydryl residues involved in intersubunit linkage. Eur. J. Biochem., 1989, v. 181, № 2, p. 397−401.
  41. Jeffery G.J., Gloss L.M., Petsko G.A., Ringe D. The role of residue outside the active site: structural basis for function of C191 mutants of Escherichia coli aspartate aminotransferase. -Protein Eng., 2000, v. 13, № 2, p. 105−112.
  42. Ю.М. Сера в белках (Браунштейн А.Е., ред.). Москва: Наука, 1997, с. 201 203.
  43. Snell Е.Е. Pyridoxal phosphate in nonenzymic and enzymic reactions. In: Transaminases (CristenP., Metzler D.E., eds.). New York: John Wiley & Sons, 1985, v. 2, p. 19−35.
  44. Ringe D. The control of cofactor chemistry by protein structure. 10th international symposium on vitamin B6 and carbonyl catalysis and 4th meeting on PQQ and quinoproteins. Book of abstracs, p. 17. October 31 — November 5, 1999. Santa Fe, USA.
  45. Miles E.W., Moriguchi M. Tryptophan synthase of Escherichia coli. Removal of pyridoxal phosphate and separation of the a and p2 subunits. J. Biol. Chem., 1977, v. 252, № 19, p. 6594−6599.
  46. Relimpio A., Iriate A., Chlebowski J.F., Martinez-Carrion M. Differential scanning calorimetry of cytoplasmic aspartate transaminase. J. Biol. Chem., 1981, v. 256, № 9, p. 4478−4488.
  47. Artigues A., Iriate A., Martinez-Carrion M. Acid-induced reversible unfolding of mitochondrial aspartate aminotransferase. J. Biol. Chem., 1994, v. 269, № 35, p. 21 990−21 999.
  48. Raibaud O., Goldberg M.E. The tryptophanase from Escherichia coli K-12 .Comparison of the thermal stabilities of apo-, holo-, and hybrid enzymes. J. Biol. Chem., 1973, v. 248, № 10, p. 3451−3455.
  49. Skrzynia C., London G., Goldberg M.E. The tryptophanase from Escherichia coli K-12. Further characterization of hybrids between the apo- and holoenzyme. J. Biol. Chem., 1974, v. 249, № 7, p. 2325−2326.
  50. Venkatesha B., Udgaonkar J.B., Rao N.A., Savithri H.S. Reversible unfolding of sheep liver tetrameric serine hydroxymethyltransferase. Biochim. Biophys. Acta, 1998, v. 1384, № 1, p. 141−152.
  51. Tate S.S., Meister A. L-Aspartate-P-decarboxylase- structure, catalytic activities, and allosteric regulation. Adv. Enzymol., 1974, v. 35, p. 503−543.
  52. Chen C.-H., Wu S.J., Martin D.L. Structural characteristics of brain glutamate decarboxylase in relation to its interaction and activation. Arch. Biochem. Biophys., 1998, v. 349, № 1, p. 175 182.
  53. Cao K., Schirch D., Schirch V. The affinity of pyridoxal 5-phosphate for folding intermediates of Escherichia coli serine hydroxymethyltransferase. J. Biol. Chem., 1995, v. 270, № 33, p. 19 294−19 299.
  54. Balk H., Merkl I., Bartholmes P. Circular dichroism studies on the interaction of tryptophan synthase with pyridoxal 5'-phosphate. Biochemistry, 1981, v. 20, № 22, p. 6391−6395.
  55. Dunathan H.C. Stereochemical aspects of pyridoxal phosphate catalysis. Adv. Enzymol., 1971, v. 35, p. 79−134.
  56. Gale E.F. The production of amines by bacteria. 1. The decarboxylation of amino acids by strains of Bacterium Coli. Biochem. J., 1940, v. 34, № 3, p. 392- 413.
  57. Gale E.F. Studies on bacterial amino acid decarboxylases. 5. The use of specific decarboxylase preparations in the estimation of amino acids in protein analysis. Biochem. J., 1945, v. 39, № 1, p. 46−58.
  58. Gale E.F. The bacterial amino acid decarboxylases. Adv. Enzymol., 1946, v. 6, p. 1−31.
  59. Boeker E.A., Snell E.E. Amino acid decarboxylases. In: The Enzymes (Boyer P.D., ed.). New York: Acad. Press, 1972, v. 6, p. 217−253.
  60. Schales O. Amino acid decarboxylases. In: The Enzymes (Sumner J.B. and Myrback K., eds.). New York: Acad. Press, 1951, v. 2, p. 216−247.
  61. Blaschko H. The amino acid decarboxylases of mammalian tissue. Adv. Enzymol., 1945, v. 5, p. 67 -85.
  62. Sandmeier E., Hale T.I., Christen P. Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases. Eur. J. Biochem. 1994, v. 221, № 3, p. 997−1002.
  63. Wu J.-Y., Denner L., Lin C.-T., Song G. L-Glutamate decarboxylase from brain. Meth. Enzymol., 1985, v. 113, p. 3−10.
  64. Erlander M.G., Tillakaratne N.J.K., Feldblum S., Patel N., Tobin A.J. Two genes encode distinct glutamate decarboxylases. Neuron, 1991, v. 7, № 1, p. 91−100.
  65. Qu K., Martin D.L., Lawrence C.E. Motifs and structural fold of the cofactor binding site of human glutamate decarboxylase. Protein Sci., 1998, v. 7, № 5, p. 1092−1105.
  66. Martin D.L., Martin S.B., Wu S.J., Espina N. Cofactor interactions and the regulation of glutamate decarboxylase activity. -Neurochem. Res., 1991, v. 16, № 3, p. 243−249.
  67. Martin D.L., Rimval К. Regulation of gamma-aminobutiric acid synthesis in the brain. -J. Neurochem., 1993, v. 60, № 2, p. 395−407.
  68. Shukuya R., Schwert G.W. Glutamic Acid Decarboxylase. I. Isolated procedures and properties of the enzyme. J. Biol. Chem., 1960, v. 235, № 6, p. 1649−1652.
  69. Shukuya R, Schwert G.W. Glutamic Acid Decarboxylase. П. The spectrum of the enzyme. -J. Biol. Chem., 1960, v. 235, № 6, p. 1653−1657.
  70. Shukuya R, Schwert G.W. Glutamic Acid Decarboxylase. IH. The inactivation of the enzyme at the low temperatures. J. Biol. Chem., 1960, v. 235, №> 6, p. 1658−1661.
  71. To С. M. Quaternary structure of glutamate decarboxylase of Escherichia coli as revealed by electron microscopy. J. Mol. Biol., 1971, v. 59, № 1, p. 215−217.
  72. Tichonenko A.S., Sukhareva B.S., Braunstein A.E. Electron-microscopic investigation of Escherichia coli glutamate decarboxylase. Biochim. Biophys. Acta, 1968. v. 167, № 3, p. 476−479.
  73. .С., Тихоненко A.C. Исследование частичной диссоциации глутаматдекарбоксилазы Е. coli. Молекуляр. биология, 1972. т. 6, № 6, с. 851−859.
  74. Т.О., Сухарева Б. С. Исследование влияния pH и пиридоксальфосфата на четвертичную структуру глутаматдекарбоксилазы Е. coli. Докл. АН СССР, 1975, т. 225, № 2, с. 457−459.
  75. Strausbauch Р.Н., Fischer E.H. Chemical and physical properties of Escherichia coli glutamate decarboxylase. Biochemistry, 1970. v. 9, № 2, p. 226−233.
  76. Anderson J., Chang W.H.F. Borohydride reduction of L-glutamate decarboxylase. Arch. Biochem. Biophys., 1965, v. 110, № 2, p. 346−349.
  77. Strausbauch P.H., Fischer E.H. Structure of the binding site of pyridoxal phosphate of Escherichia coli glutamate decarboxylase. Biochemistry, 1970, v. 9, № 2, p. 233−238.
  78. М.Л., Торчинский Ю. М. Нонапептид из активного центра глутаматдекарбоксилазы Е. coli. Биохимия, 1970, т. 35, № 3, с. 504−509.
  79. Sukhareva B.S., Torchinsky Yu.M. Some optical properties of bacterial glutamate decarboxylase. Biochem. Biophys. Res. Commun., 1966, v. 25, № 6, p. 585−589.
  80. Hunthley Т.Е., Metzler D.E. Circular dichroism of L-glutamic acid decarboxylase. Biochem. Biophys. Res. Commun., 1967, v. 26, № 2, p. 109−115.
  81. O’Leary M. H., Brummund W. pH Jump studies of glutamate decarboxylase. Evidence for a pH-dependent conformation change. J. Biol. Chem., 1974, v. 249, Ks 12, p. 3737−3745.
  82. Metzler C.M., Cahill A., Metzler D.E. Equilibria and absorption spectra of Schiff bases. -J. Amer. Chem. Soc., 1980, v. 102, № 19, p. 6075−6082.
  83. .С. Субъединичная структура и каталитические свойства глутаматдекарбоксилазы Е. coli. Диссертация на соискание ученой степени доктора биологических наук. Москва: Институт молекулярной биологии РАН, 1983, с.71−72.
  84. Maras В., Sweeney G., Barra D., Bossa F., John R.A. The amino acid sequence of glutamate decarboxylase from Escherichia coli. Evolutionary relationship between mammalian and bacterial enzymes. Eur. J. Biochem., 1992, v. 204, № 1, p. 93−98.
  85. Smith D.K., Kassam Т., Singh В., Elliot G.F. Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. J. Bacterid., 1992, v. 174, № 18, p. 58 205 826.
  86. De Biase D., Tramonti A., John A.R., Bossa F. Isolation, overexpression, and biochemical characterization of the two isolorms of glutamic acid decarboxylase from Escherichia coli. -Prot. Expr. Purif., 1996, v. 8, № 4, p. 430−438.
  87. Sukhareva B.S., Schulga A.A., Darii E.L., Christophorov R.R. Studies on the bacterial glutamate decarboxylase.- 9th meeting on Vitamin Be and carbonyl catalysis. Book of abstracts, p. 253. May 22 27, 1994. Capri, Italy.
  88. .С., Дарий Е. Л., Горюнов А. И., Тюлькова H.A., Маликова Л. Г. Исследование свойств бактериальной глутаматдекарбоксилазы. Биохимия, 1989, т. 54, .№ 5 с. 740 744.
  89. Markovic-Housley Z., Kania М., Vincent M.G., Jansonius J.N., John R.A. Glutamate decarboxylase: preliminary crystallographic data. In: Biochemistry of Vitamin Вб. (Korpela Т., Christen P., eds.). Basel: Birkhauser Verlag, 1987, p. 187−190.
  90. Areshev A.G., Mamaeva O.K., Andreeva N.S., Sukhareva B.S. Structure of glutamate decarboxylase and related PLP-enzymes: computer-graphical studies. J. Biomolec. Struct. & Dynam., 2000, v. 18, № 1, p. 127−136.
  91. Cheung S.T., Fonda M.L. Kinetics of the inactivation of Escherichia coli glutamate apodecarboxylase by phenylglyoxal. Arch. Biochem. Biophys., 1979, v. 198, № 2, p. 541−547.
  92. A.A., Сухарева Б. С. Глутаматдекарбоксилаза из Escherichia coli', каталитическая роль остатка гистидина. Докл. АН СССР, 1986, т. 290, № 5, с. 1268−1271.
  93. Tramonti A., De Biase D., Gartosio A., Bossa F., John R. A. The roles of His-167 and His-275 in the reaction catalysed by glutamate decarboxylase from Escherichia coli. J. Biol. Chem., 1998, v. 273, № 4, p. 1939−1945.
  94. O’Leary M.H., Malik J.M. Kinetics of the binding of pyridoxal 5'-phosphate to glutamate decarboxylase. J. Biol. Chem., 1971, v. 246, № 2, p. 544−545.
  95. ОЪеагу M.H., Malik J.M. Kinetics and mechanism of the binding of pyridoxal 5-phosphate to apoglutamate decarboxylase. Evidence for a rate-determining conformation change. J. Biol. Chem., 1972, v. 247, № 21, p. 7097−7105.
  96. Mechanik M.L., Torchinsky Yu.M., Florentiev V.L., Karpeisky M.Ya. Interaction of the apoenzyme of L-glutamate decarboxylase with pyridoxal phosphate analogues. FEBS Lett., 1971, v. 13, № 3, p. 177−180.
  97. Fonda M.H. Interaction of pyridoxal analogues with glutamate apodecarboxylase and aspartate apoaminotransferase. J. Biol. Chem., 1971, v. 246, № 7, p. 2230−2240.
  98. Fonda M.L. Glutamate decarboxylase. Substrate specificity and inhibition by carboxylic acids. -Biochemistry, 1972, v. 11, №. 7, p. 1304−1309.
  99. Fonda M.L. Glutamate decarboxylase. Inhibition by monocarboxylic acids. Arch. Biochem. Biophys., 1972, v. 153, № 2, p. 763−768.
  100. .С. Глутаматдекарбоксилаза: макромолекулярная структура и каталитические свойства. В сборнике: Физико-химические проблемы ферментативного катализа (Торчинский Ю.М., ред.). Москва: Наука, 1984, с. 185−210.
  101. Mandeles S., Koppelman R., Hanke M.E. Deuterium studies on the mechanism of enzymatic amino acid decarboxylation. J. Biol. Chem., 1954, v. 209, № 1, p. 327−336.
  102. Kalyankar G.D., Snell E.E. Pyridoxal-catalysed decarboxylation of amino acids. Biochemistry, 1962, v. 1, № 4, p. 594−600.
  103. Aaslestad H.G., Larson A.D. Bacterial metabolism of 2-methylalanine. J. Bacterid., 1964, v. 88, № 5, p. 1296−1303.
  104. Bailey G.B., Dempsey W.B. Purification and properties of an a-dialkyl amino acid transaminase. Biochemistry, 1967, v. 6, № 5, p. 1526−1533.
  105. Novogrodsky A., Meister A. Control of aspartates-decarboxylase activity by transamination. -J. Biol. Chem., 1964, v. 239, № з- p. 879−888.
  106. Huntley Т.Е., Metzler D.E. The reaction of a-methyl glutamate with glutamic acid decarboxylase. In: Symposium on pyridoxal enzymes (Yamada K., Katunuma N., Wada H., eds). Tokyo: Maruzen Company Ltd., 1968, p. 81−84.
  107. .С. и Браунштейн A.E. Исследование природы взаимодействия глутаматдекарбоксилазы Е. coli с субстратом и его аналогами. Молекуляр. биология, 1971, т. 5, № 2, с. 302−317.
  108. .С., Маликова Л. Г. Субстратная специфичность глутаматдекарбоксилазы E.coli. Молекуляр. биология, 1977, т. 11, № 2, с. 394−401.
  109. Sukhareva B.S., Dunathan H.C., Braunstein A.E. The stereochemistry of the abortive transamination shown by glutamate decarboxylase. FEBS Lett., 1971, v. 15, № 3, p. 241−244.
  110. Almazov V.P., Braunstein A.E., Morozov Yu.V., Sukhareva B.S. Investigation of the interaction between glutamate decarboxylase and its adequate substrate. Studia Bioph., 1976, v. 57, p. 191−198.
  111. Sambrook J., Fritsh E.F., Maniatis Т. Molecular cloning: a laboratory manual (Ford N., Nolan C., Ferguson M., eds.). New York: Cold Spring Harbor Laboratory Press, 1989, v. 3, p. A2.
  112. Kurien B.T., Scofield R.H. Polyethylene glycol-mediated bacterial colony transformation. -Biotechniques, 1995, v. 18, № 6, p. 1023−1026.
  113. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, v. 72, p. 248−254.
  114. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulphate-polyacrylamide gel electrophoresis. J. Biol. Chem., 1969, v. 244, № 16, p. 4406−4412.
  115. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, v. 227, № 259, p. 680−685.
  116. Takakuwa Т., Konno Т., Meguro H. Standards for CD scale calibration. Anal. Sci., 1985, v. 1, p. 215−225.
  117. В.Ю., Чехов В. О., Бажулина Н. П. Стандартизация процедуры автоматического определения вторичных структур белков из их спектров КД с учетом ароматики. Молекуляр. биология, 1993, т. 27, № 5, с. 1032−1038.
  118. В.Ю., Чехов В. О., Бажулина Н. П. Метод автоматического определения «реперных» спектров КД элементов вторичной структуры белков с учетом «вклада ароматики». Молекуляр. биология, 1995, т. 29, № 1, с. 135−143.
  119. Valentine R.C., Shapiro В.М., Stadtman E.R. Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry, 1968, v. 7, № 9, p. 2143−2152
  120. Ehrlich R.S., Colman R.F. The role of arginine in the triphosphopyridine nucleotide dependent isocitrate dehydrogenase of pig heart. Biochemistry, 1977, v. 16, № 15, p. 3378−3383.
  121. Riordan J.F. Arginyl residues and anion binding sites in proteins. Mol. Cell. Biochem., 1979, v. 26, № 2, p. 71−92.
  122. Tomlinson G., Viswanatha T. Determination of the arginine content of proteins by the Sakaguchi procedure. Anal. Biochem., 1974, v. 60, № 1, p. 15−42.
  123. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. -Biochemistry, 1967, v. 6, № 7, p. 1948−1954.
  124. Ellman G.L. Tissue suifhydryl groups. Arch. Biochem. Biophys., 1959, v. 82, № 1, p. 70−77.
  125. Boyer P.D. Spectrophotometric study of the reaction of protein suifhydryl groups with organic mercurials. J. Amer. Chem. Soc., 1954, v. 76, Jfe 17, p. 4331−4337.
  126. Grassetti D.R., Murray J.F. Determination of SH-groups with 2,2'- or 4,4'-dithiodipyridine. -Arch. Biochem. Biophys., 1967, v. 119, № 1, p. 41−49.
  127. Riordan J.F. Functional arginyl residues in carboxypeptidase A. Modification with butanedione. Biochemistry, 1973, v. 12, № 20, p. 3915−3923.99
  128. Rohrbach M.S., Bodley J.W. Selective chemical modification of Escherichia coli elongation factor G. butanedione modification of an arginine essential for nucleotide binding. -Biochemistry, 1977, v. 16, № 7, p. 1360−1363.
  129. Kitz R, Wilson I.B. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J. Biol. Chem., 1962, v. 237, № 9, p. 3245−3249.
  130. Levy H.M., Leber P.D., Ryan E.M. Inactivation of myosin by 2,4-dinitrophenol and protection by adenosine triphosphate and other phosphate compounds. J. Biol. Chem., 1963, v. 238, № 11, p. 3654−3659.
  131. Schmidt D.E., Westheimer F.H. PK of the lysine amino group at the active site of acetoacetate decarboxylase. Biochemistry, 1971, v. 10, № 7, p. 1249−1253.
  132. Э.А., Козлов И. А., Метельская В. А., Мильграм Я. М. Ингибирование митохондриальной АТР-азы водорастворимым карбодиимидом. Биохимия, 1978, т. 43, № 8, с. 1405−1413.
  133. Koshland D.E., Jr. Application of a theoiy of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci., 1958, v. 44, Ns 2, p. 98−104.
Заполнить форму текущей работой