Помощь в учёбе, очень быстро...
Работаем вместе до победы

Сравнительный анализ структуры и экспрессии генов hsp70 у видов Dropsophila с различной термальной адаптацией

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

На основании сравнения структуры генов hsp70 и паттерна БТШ70 D. virilis и D. lummei с данными, полученными для других видов Diptera, определить общее направление эволюции генов hsp70 в данной группе и их участие в термальной адаптации. Клонировать гены hsp70 D. virilis и D. lummei, определить их нуклеотидную последовательность, определить общую структуру кластера и число копий генов hsp70 D… Читать ещё >

Содержание

  • Список используемых сокращений
  • 1. Обзор литературы
    • 1. 1. Экспрессия генов теплового шока: общие аспекты
    • 1. 2. Классификация и функции БТШ
    • 1. 3. Регуляция экспрессии генов ТШ
    • 1. 4. Изменения в аппарате транскрипции и трансляции при ТШ
    • 1. 5. Функции БТШ в апоптозе
    • 1. 6. Структура и эволюция генов ТШ
    • 1. 7. БТШ в адаптации организмов к неблагоприятным условиям среды обитания
    • 1. 8. БТШ в медицине и экологии
  • 2. Материалы и методы
    • 2. 1. Материалы 51 2.1.1 Линии и виды ЭгоБорИИа
      • 2. 1. 2. Штаммы Е. соИ
      • 2. 1. 3. Клоны /75р70 В. melanogaster
      • 2. 1. 4. Ферменты рестрикции
      • 2. 1. 5. Олигонуклеотиды для анализа связывания факторов транскрипции с элементами ТШ
      • 2. 1. 7. Антитела
    • 2. 2. Методы
      • 2. 2. 1. Условия содержания дрозофил
      • 2. 2. 2. Условия теплового шока
      • 2. 2. 3. Определение базальной и индуцибельной термоустойчивости
      • 2. 2. 4. Включение метионина -358 в белки
      • 2. 2. 5. Подсчёт общего включения метионина- 8 в белки
      • 2. 2. 6. Диск-электрофорез белков с ДЦС-Иа (по Лэммли)
      • 2. 2. 7. Двумерный электрофорез белков по О’Фарреллу
      • 2. 2. 8. Иммуноблоттинг
      • 2. 2. 9. Иммунопреципитация
      • 2. 2. 10. Очистка белков методом препаративного электрофореза
      • 2. 2. 11. Обработка белка модифицированным трипсином для построения пептидных карт
      • 2. 2. 12. Анализ связывания факторов транскрипции с элементами ТШ
      • 2. 2. 13. Включение радиоактивной метки в ДНК
      • 2. 2. 14. Выделение геномной ДНК
      • 2. 2. 15. Расщепление ДНК рестрицирующими эндонуклеазами
      • 2. 2. 16. Электрофорез ДНК
      • 2. 2. 17. Перенос и гибридизация по Саузерну
      • 2. 2. 18. Определение числа копий гена по Саузерну
      • 2. 2. 19. Выделение тотальной РНК
      • 2. 2. 20. Электрофорез РНК
      • 2. 2. 21. Нозерн-гибридизация
      • 2. 2. 22. Получение геномных фаговых библиотек
      • 2. 2. 23. Скрининг фаговых геномных библиотек
      • 2. 2. 24. Выделение ДНК бактериофага X
      • 2. 2. 25. Построение рестриктных карт рекомбинантных фагов
      • 2. 2. 26. Выделение фрагментов ДНК
      • 2. 2. 27. Клонирование фрагментов ДНК
      • 2. 2. 28. Трансформация компетентных клеток
      • 2. 2. 29. Выделение плазмидной ДНК
      • 2. 2. 30. Секвенирование ДНК
  • 3. Результаты
    • 3. 1. Определение базальной термоустойчивости у видов и линий группы хтШ
    • 3. 2. Определение индуцированной термоустойчивости у видов и линий группы irilis
    • 3. 3. Определение термоустойчивости реципрокных гибридов
  • II. irilis и И. 1иттег
    • 3. 4. Изучение общего белкового синтеза при ТШ у ?). irilis и И. 1итте
    • 3. 5. Накопление БТШ70 при тепловом шоке
    • 3. 6. Определение кинетики индукции мРНК БТШ
    • 3. 7. Исследование ДНК-связывающей активности ИББ
    • 3. 8. Анализ паттерна БТШ70 и динамики синтеза отдельных групп БТШ методом двумерного электрофореза
    • 3. 9. Идентификация белков по молекулярным массам пептидов
    • 3. 10. Рестрикционный и Саузерн-анализ генов Ыр70 В. irilis
    • 3. 11. Определение числа копий гена 1гзр70 у разных линий Б. irilis и umme
    • 3. 12. Определение структуры кластера генов /ир70 ?>. irilis и О. 1итте1 на основе рекомбинантных фагов X
    • 3. 13. Определение нуклеотидной последовательности генов Ъзр70 и прилежащих участков 0.1итте1 и, А irilis
  • 4. Обсуждение результатов
  • 5. Выводы

Сравнительный анализ структуры и экспрессии генов hsp70 у видов Dropsophila с различной термальной адаптацией (реферат, курсовая, диплом, контрольная)

Для современной биологии значительный интерес представляют молекулярные механизмы адаптации организмов к неблагоприятным условиям среды обитания. Среди прочих факторов окружающей среды наибольшее воздействие на организм оказывают изменения температуры. Изменения температурного режима являются также наиболее удобным экспериментальным воздействием для изучения механизмов адаптации. Повышение температуры на 5 — 15 °C выше физиологической (тепловой шок, ТШ) вызывает у всех изученных организмов (от Е. coli до человека) активацию группы генов, названных генами теплового шока. Белки теплового шока (сокращённо БТШ или HSP — heat shock proteins) при воздействии различных стрессовых факторов выполняют в клетке защитные функции, препятствуя денатурации и агрегации белков. Считается, что основную защитную функцию выполняет семейство белков массой 70 кДа (БТШ70 или HSP70). Работы, позволившие сделать такой вывод, проводились в основном на клеточном уровне. Вопрос об участии БТШ70 в адаптации на уровне целого организма остаётся спорным. С этой точки зрения представляет интерес эволюция генов, кодирующих белки семейства БТШ70, их структура и характер экспрессии у близкородственных организмов, резко различающихся по климатическим условиям среды обитания и характеризующихся разным уровнем естественной термальной адаптации. Удобной модельной системой для изучения структуры и эволюции генов ТШ являются различные виды Drosophila. Ранее гены ТШ были подробно исследованы у D. melanogaster. Для настоящей работы были выбраны несколько видов Drosophila, относящихся к филаде virilis, с мало изученной системой ответа на ТШ. Данные виды обитают в различных климатических поясах и, соответственно, должны отличаться по приспособляемости к воздействию высоких температур. Сравнивали пары видов, контрастных по уровню термальной адаптации: D. virilis — D. lummei и D. novamexicana — D. texana. Данные пары видов способны скрещиваться в лабораторных условиях с получением частично фертильного потомства. D. virilis является предковым видом всей группы видов virilis, у которых хорошо изучены кариотип и филогенетические отношения. Время дивергенции видов D. virilis — D. lummei составляет ~ 4 — 5 млн. лет. Это позволяет с высокой уверенностью утверждать, что изменения в структуре и характере экспрессии генов ТШ у данных видов связаны с формированием термальной адаптации, а не обусловлены случайными изменениями в ходе эволюционной дивергенции. Группа virilis является одной из наиболее древних групп подрода Drosophila, что позволяет изучить возможные этапы эволюции генов hsp70 путём изучения их структуры и сравнения со структурой генов других видов (D. melanogaster). Целью данной работы являлось изучение структуры генов hsp70, характера их экспрессии и значимости в формировании естественной термальной адаптации у близкородственных организмов на примере видов филады virilis и некоторых других представителей рода Drosophila. В связи с этим были поставлены следующие задачи:

1. Сравнить термоустойчивость видов D. virilis, D. lummei, D. iexana и D. novamexicana, а также реципрокных гибридов D. virilis x D. lummei.

2. Изучить динамику экспрессии генов hsp70, особенности её регуляции на разных уровнях реализации генетической информации и уровень накопления БТШ70 у видов группы virilis, контрастных по температурным условиям среды обитания.

3. Клонировать гены hsp70 D. virilis и D. lummei, определить их нуклеотидную последовательность, определить общую структуру кластера и число копий генов hsp70 D. virilis и D. lummei.

4. На основании сравнения структуры генов hsp70 и паттерна БТШ70 D. virilis и D. lummei с данными, полученными для других видов Diptera, определить общее направление эволюции генов hsp70 в данной группе и их участие в термальной адаптации.

1. Обзор литературы.

5. Выводы.

1. Показано, что южные виды D. virilis и D. novamexicana характеризуются более высокой базовой и индуцибельной термотолерантностью по сравнению с D. lummei и D. texana, обитающих в условиях умеренного климата. Обнаружено практически полное отсутствие индуцируемой термоустойчивости у D. lummei.

2. Показано, что все термоадаптированные виды Drosophila характеризуются повышенным синтезом БТШ70 и низкомолекулярных БТШ при значениях ТШ, близких к критическим. Напротив, у D. lummei наблюдается подавление синтеза БТШ70 при температуре 40,0°С. Установлено, что подавление синтеза БТШ70 у D. lummei вызвано низкой термоустойчивостью аппарата транскрипции и трансляции.

3. Изучен паттерн БТШ70 видов Drosophila группы virilis. Показано наличие двух групп БТШ70 с молекулярной массой 70 и 72 кДа и различными значениями изоэлектрической точкибелок 70 кДа гомологичен БТШ70, а белок с массой 72 кДа гомологичен БТШ68 D. melanogaster.

4. Изучена структура кластера генов hsp70 D. virilis и D. lummei. Показано наличие в кластере генов hsp70 D. virilis и D. lummei двух копий в виде инвертированного повтора, как структуры, эволюционно консервативной у отряда Diptera, и различного числа тандемно ориентированных копий у разных линий.

5. Клонированы гены hsp70 D. virilis и D. lummei. Определена их нуклеотидная последовательность, включая кодирующий участок, 5'- и 3 '-фланкирующую последовательность, в составе 3'-фланкирующей последовательности обнаружен повтор, возможно, являющийся древним мобильным элементом. Высказана гипотеза о его участии в тандемных дупликациях и/или делециях генов hsp70 D. virilis и D. lummei.

Показать весь текст

Список литературы

  1. Ritossa F. A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia, 1962,18: 571−573
  2. . А., Гужова И. В. Белки стресса в эукариотической клетке. Цитология, 2000,42 (4): 323 342
  3. D. М., Mehta A. D., Zhu J., Shoham S., Chen X., Wells Q. R, Palter К. B. Genomic structure and sequence analysis of Drosophila melanogaster HSC70 genes. Gene, 1993, 128(2): 155−1634. http://flvbase.bio.indiana.edu/
  4. X. А., Каррыева Б. Ч., Караев К. Стрессовые белки и адаптация. Ашхабад, «Ылым», 1993: 212
  5. Е. Р., Евгеньев М. Б. Тепловой шок у дрозофилы и регуляция активности генома. Молекулярная биология, 1984,20: 142 185
  6. Bonner J. J., Berninger M., Pardue M. L. Transcription of polytene chromosomes and of the mitochondrial genome in Drosophila melanogaster. Cold Spring Harb. Symp. Quant. Biol., 1978,42 (2): 803 814
  7. Rubin G. M., Hogness D. S. Effect of heat shock on the synthesis of low molecular weight RNAs in drosophilia: accumulation of a novel form of 5S RNA. Cell, 1975, 6 (2): 207−213
  8. Bonner J. J., Pardue M. L. Polytene chromosome puffing and in situ hybridization measure different aspects of RNA metabolism. Cell, 1977,12 (1): 227−234
  9. Belikov S. V., Karpov V. L. Mapping Protein-DNA Interaction with CIS-DDP: Chromatine Structure of Promoter Region of D. melanogaster HSP70 Gene. Biochem. Mol. Biol. Int., 1996,38 (5): 997 1002
  10. O’Brien Т., Lis J. T. RNA polymerase II pauses at the 5' end of the transcriptionally induced Drosophila hsp70 gene. Mol. Cell. Biol., 1991, 11 (10): 5285−5290
  11. Lee H., Kraus K. W., Wolfner M. F., Lis J. T. DNA sequence requirements for generating paused polymerase at the start of hsp70. Genes. Dev. 1992,6 (2): 284 295
  12. Shopland L. S., Hirayoshi K., Fernandes M., Lis J. T. HSF Access to Heat Shock Elements In Vivo Depends Critically on Promoter Architecture Defined by GAGA-factor, TFIID, and RNA-polymerase II Binding Sites. Genes Dev., 1995,9 (22): 2756 2769
  13. Wilkins R. C., Lis J. T. Dynamics of potentiation and activation: GAGA factor and its role in heat shock gene regulation. Nucleic Acids Res. 1997,25 (20): 3963 3968
  14. Kruger C., Benecke B. J. In vitro translation of Drosophila heat-shock and non-heat-shock mRNAs in heterologous and homologous cell-free systems. Cell, 1981, 23 (2): 595−603
  15. Lindquist S. Translational efficiency of heat-induced messages in Drosophila meJanogaster cells. J. Mol. Biol., 1980,137 (2): 151 158
  16. Venetianer A., Dubois Marie-Francoise, Nguyen Van Trung, Bellier S., Seo S. J., • Bensaud Oliver. Phosphorilation State of the RNA Polymerase II C-terminal Domen
  17. CTD) in Heat Shocked Cells. Possible Involvement of the Stress-Activated Mitogen-Activated Protein (MAP) Kinases. The European Journal of Biochemistry, 1995, 233 (1): 83−92
  18. Patriarka E. J., Maresca B. Acquired thermotolerance following hsp synthesis prevents impairment of mitochondria ATP-ase activity at elevated temperatures in Saccharomyces cerevisiae. Exp. Cell. Res., 1990,190: 57−64
  19. Johnson R. N., Kucey B. L. Competitive inhibition of hsp70 expression causes thermosensitivity. Science, 1988,242: 1551 1554
  20. Craig E. A., Jacobsen K. Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell, 1984, 38 (3): 841 849
  21. Lewis M. J., Pelham H. R. Involvement of ATP in the nuclear and nucleolar functions of the 70 kd heat shock protein. EMBO J., 1985,4 (12): 3137−3143
  22. Pelham H. R. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell, 1986,46 (7): 959 961
  23. Н. Б. Гусев, Н. В. Богачева, С. Б. Мартсон. Структура и функции малых белков теплового шока (sHsp) и их взаимодействие с белками цитоскелета. Биохимия, 2002, 67 (5): 613−623
  24. Martin Haslbeck, Stefan Walke, Thusnelda Stornier, Monika Ernsperger, Helen E. White, Shaoxia Chen, Helen R. Saibil and Johannes Buchner. HSP27: a Temperature-regulated Chaperone. EMBO Journal, 1999, 18 (23): 6744 6751
  25. Kelley W. L. The J-domain family and the recruitment of chaperone power. Trends Biochem. Sei., 1998,23:222 22 728. http://www.ncbi.nlm.nih.gov/genome/iguide/human/
  26. Cheetham M. E., Jackson A. P., Anderton В. H. Regulation of 70-kDa heat-shock-protein ATPase activity and substrate binding by human DnaJ-like proteins, HSJla and HSJlb. Eur. J. Biochem., 1994,226 (1): 99 107
  27. Flaherty К. M., DeLuca-Flaherty С., McKay D. В. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature, 1990,346 (6285): 623 -628
  28. Flajnik M. F., Canel C., Kramer J., Kasahara M. Which came first, MHC class I or class II? Immunogenetics, 1991, 33 (5 6): 295 — 300
  29. Welch W. J., Feramisco J. R. Rapid purification of mammalian 70,000-dalton stress proteins: affinity of the proteins for nucleotides. Mol. Cell. Biol., 1985,5 (6): 1229 1237
  30. Welch W. J., Feramisco J. R. Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. J. Biol. Chem., 1984, 259 (7): 4501−4513
  31. Knowlton AA, Grenier M, Kirchhoff SR, Salfity M. Phosphorylation at tyrosine-524 influences nuclear accumulation of HSP72 with heat stress. Am. J. Physiol. Heart. Circ. Physiol., 2000,278 (6): H2143 2149
  32. Houry W. A. Chaperone-assisted protein folding in the cell cytoplasm. Curr. Protein Pept. Sei., 2001,2 (3): 227 244
  33. Mathias Gebauer, Matthias Zeiner and Ulrich Gehring. Interference between proteins ap46 and Hop/p60, which bind to different domains of the molecular chaperone hsp70/hsc70. Mol. Cell. Biol., 1998,18(11): 6238 6244
  34. Craig E., Ziegelhoffer T., Nelson J., Laloraya S., Halladay J. Complex multigene family of functionally distinct Hsp70s of yeast. Cold Spring Harb. Symp. Quant. Biol., 1995,60:441−449
  35. Lars Ditzel, Jan Lowe, Daniela Stock, Karl-Otto Stetter, Harald Huber, Robert Huber and Stefan Steinbacher. Crystall Structure of the thermosome, the Archaeal chaperonin and homolog of CCT. Cell, 1998,93: 125 138
  36. Gupta R. S. Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol. Biol. Evol., 1995,12 (6):1063−73
  37. Lees-Miller S. P, Anderson C. W. Two human 90-kDa heat shock proteins are phosphorylated in vivo at conserved serines that are phosphorylated in vitro by casein kinase II. J. Biol. Chem., 1989,264 (5): 2431 -2437
  38. Obermann W. M., Sondermann H., Russo A. A., Pavletich N. P., Hartl F. U. In vivo • function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J. Cell. Biol., 1998,143(4): 901−910
  39. Yolanda Sanchez, John Taulien, Katherine A. Borkovich and Susan Lindquist. Hspl04 is required for tolerance to many forms of stress. The EMBO Journal, 1992,11 (6): 2357−2364
  40. Susan Lindquist and Gina Kim. Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc. Natl. Acad. Sci. USA, 1996,93: 5301 5306
  41. Vogel J. L., Parsell D. A., Lindquist S. Heat-shock proteins Hspl04 and Hsp70 reactivate mRNA splicing after heat inactivation. Curr Biol., 1995,5 (3): 306 317
  42. Eric C. Schirmer, John R. Glover, Mike A. Singer and Susan Lindquist. HSPlOO/Clp proteins: a common mechanism explains diverse functions. TIBS, 1996, 21: 289−296
  43. Prodromou C., Roe S. M., O’Brien R., Ladbury J. E., Piper P. W., Pearl L. H. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell, 1997, 90 (1): 65 75
  44. Craig E. A., Jacobsen K. Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell, 1984,38 (3): 841 849
  45. Washburne, and Elizabeth A. Craig. The Translation Machinery and 70kd Heat Shock Protein Cooperate in Protein Synthesis. Cell, 1992,71: 97 105
  46. Ku Z., Yang J., Menon V., Thomason D. B. Decreased Polysomal HSP70 May Slow Polypeptide Elongation During Skeletal Muscle Atrophy. American Journal of Physiology, 1995,268(6): 1369−1374
  47. Walter Neupert, Franz-Ulrich Hartl, Elizabeth A. Craig, and Nikolaus Pfanner. How Do Polypeptides Cross the Mitochondrial Membranes? Cell, 1990,63: 447 450
  48. Minet E., Mottet D., Michel G., Roland I., Raes M., Remade J., Michiels C. Hypoxia-inducible Activation of HIF-1: Role of HIF-l/HSP90-alpha Interaction. FEBS Letters, 1999,460 (2): 251 256
  49. Guillermo Garcia-Gardena, Roger Fan, Vijay Shah, Raffaella Sorrentino, Giuseppe Cirino, Andreas Papapetropoulos, William C. Sessa. Dinamic Activation of Endotelial Nitric Oxide Sinthase by HSP90. Nature, 1998,392: 821 824
  50. Kang J., Kim T., Ko Y. G., Rho S. B., Park S. G., Kim M. J., Kwon H. J., Kim S. Heat shock protein 90 mediates protein-protein interactions between human aminoacyl-tRNA synthetases. J. Biol. Chem., 2000,275 (41): 31 682 31 688
  51. Xu Y., Singer M. A., Lindquist S. Maturation of the tyrosine kinase c-src as a kinase and as a substrate depends on the molecular chaperone Hsp90. Proc. Natl. Acad. Sci. USA, 1999,96(1): 109−114
  52. Xu Y, Lindquist S. Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc. Natl. Acad. Sci. US, 1993, 90 (15): 7074 7078
  53. Pratt W. B., Scherrer L. C., Hutchison K. A., Dalman F. C. A model of glucocorticoid receptor unfolding and stabilization by a heat shock protein complex. J. Steroid. Biochem. Mol. Biol., 1992,41 (3 8): 223 — 229
  54. Nagata Y. et al. The Stabilization Mechanism of Mutant-type p53 by Impaired Ubiquitination: the Loss of Wild-type p53 Function and the HSP90 Assotiation. Oncogene,• 1999,18 (44): 6037−6049
  55. Railson J. E, Lawrence K., Buddie J. C., Pennica D., Latchman D. S. Heat shock protein-56 is induced by cardiotrophin-1 and mediates its hypertrophic effect. J. Mol. Cell. Cardiol. 2001, 33 (6): 1209- 1221
  56. Hamman B. D., Hendershot L. M., Johnson A. E. BiP Maintains the Permeability Barrier of the 3P Membrane by Sealing the Lumenal End of the Translocon Pore Befor and Early in Translocation. Cell, 1998,92 (6): 747 758
  57. Ferreira L. R., Norris K" Smith T" Hebert C., Sauk J. J. HSP47 and Other 3P-resident Molecular Chaperones Form Heterocomplexes with Each Other and with Collagen Type IV Chains. Connect Tissue Research, 1996,33 (4): 256 273
  58. Jeffrey Melnick and Yair Argon. Molecular Chaperones and the Biosintesis of Antigen Receptors. Immunology Today, 1995,16 (5): 243 250
  59. Bercovich B., Stancovski I., Mayer A., Blumenfeld N., Laszlo A., Schwartz A. L., Ciechanover A. Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J Biol Chem., 1997,272 (14): 9002 9010
  60. Hohfeld J. Regulation of the heat shock conjugate Hsc70 in the mammalian cell: the characterization of the anti-apoptotic protein BAG-1 provides novel insights. Biol. Chem., 1998,379 (3): 269−274
  61. Jiang J., Ballinger C. A., Wu Y., Dai Q., Cyr D. M., Hohfeld J., Patterson C. CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for• ubiquitylation. J. Biol. Chem., 2001,276 (46): 42 938−42 944
  62. Raynes D. A., Guerriero V. Jr. Inhibition of Hsp70 ATPase activity and protein renaturation by a novel Hsp70-binding protein. J. Biol. Chem., 1998, 273 (49): 32 883 -32 888
  63. Bond U., Schlesinger M. J. The chicken ubiquitin gene contains a heat shock promoter and expresses an unstable mRNA in heat-shocked cells. Mol. Cell. Biol., 1986, 6 (12): 4602−4610
  64. Segal G., Ron E. Z. Regulation of heat-shock response in bacteria. Ann. N. Y. Acad. Sci., 1998,851: 147−151
  65. Jachansan Amin, Jayakumar Ananthan, Richard Voellmy. Key Features of Heat Shock Regulatory Elements. Molecular and Cellular Biology, 1988, 8 (9): 3761 3769
  66. Jachansan Amin, Ruben Nestril, Paul Schiller, Michel Dreano and Richard Voellmy. Organization of the Drosophila melanogaster hsp70 heat shock regulation unit. Mol. Cell. Biol., 1987,7 (3): 1055 1062
  67. Mariann Bienz and Hugh R. B. Pelham. Heat shock regulatory elements function as an inducible enhancer in the Xenopus hsp70 gene and when linked to a heterologous promoter. Cell, 1986,45:753 760
  68. R. I. Morimoto. Regulation of the Heat Shock Transcription Response: Cross Talk Between a Family of HSFs, Molecular chaperones, and negative regulators. Genes and Development, 1998,12: 3788 3796
  69. C. Wu. Heat Shock Transcription Factors: Structure and Regulation. Annual Review of the Cellular and Development Biology, 1995,11: 441 469
  70. Loones M. T., Rallu M., Mezger V. Morange M. HSP Gene Expression and HSF2 in Mouse Development. Cell. Mol. Life Science, 1997,53 (2): 179−190
  71. Vincenzo Zimarino, Charles Tsai and Carl Wu. Complex modes of heat shock factor activation. Mol. Cell. Biol., 1990,10 (2): 752 759
  72. J. Timothy Westwood and Carl Wu. Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol. Cell. Biol., 1993,13 (6): 3481 -3486
  73. Gallo G. J., Schuetz T. J., Kingston R. E. Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae. Mol. Cell. Biol., 1991,11 (1): 281 288
  74. Yanhong Shi, Paul E. Kroeger, Richard Morimoto. The Carboxyl-Terminal Transcription Domen of Heat Shock Factor 1 Is Negatively Regulated and Stress Responsive. Molecular and Cellular Biology, 1995,15 (8): 4309−4318
  75. Jiangying Zou, Yongle Guo, Toumy Guettouche, David F. Smith, and Richard Voellmy. Repression of Heat Shock Transcription Factor HSF1 Activation by HSP90 (HSP90 Complex) that Forms a Stress-Sensitive Complex with HSF1. Cell, 1998, 94: 471 -480
  76. Sridhar K. Rabindran, Raymond I. Haroun, Joachim Clos, Jan Wisniewski, Carl Wu. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science, 1993,259:230−234
  77. Andras Orosz, Jan Wisniewski and Carl Wu. Regulation of Drosophila heat shock factor trimerisation: global sequence requirements and independence of nuclear localization. Mol. Cell. Biol., 1996, 16 (12): 7018 7030
  78. Yanhong Shi, Dick D. Mosser, and Richard I. Morimoto. Molecular Chaperones as HSF1 -specific Transcriptional Repressors. Genes and Development, 1998,12: 654 — 666
  79. И. JI. Степаненко. Интерференция генных сетей апоптоза и ответа на тепловой шок. Молекулярная биология, 2001,35 (6): 1063 1071
  80. Carina I. Holmberg et al. Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. The EMBO Journal, 2001, 20 (14): 3800 -3810
  81. Kiang J. G., Gist I. D., Tsokos G. C. Cytoprotection and Regulation of Heat Shock Proteins Induced by Heat Shock in Human Breast cancer T47-D Cells: Role of Ca2+.i and Protein Kinases. FASEB Journal, 1998,12 (14): 1571 1579
  82. Donald A. Jurivich, Christine Pachetti, Lin Qiu and Joseph F. Welk. Salicilate triggers heat shock factor differently than heat. J. Biol. Chem., 1995, 270 (41): 24 489 -24 495
  83. Dooha Kim et al. A Constitutive Heat Shock Element-binding Factor Is Immunologically Identical to the Ku Autoantigen. The Journal of Biological Chemistry, 1995,270(25): 15 277−15 284
  84. Nussenzweig A., Chen C., da Costa Soares V., Sanchez M., Sokol K., Nussenzweig M. C., Li G. C. Requirement for Ku80 in growth and immunoglobulin V (D)J recombination. Nature. 1996,382 (6591): 551−555
  85. Scott R. Peterson, Carl Wu et al. Stimulation of the DNA-dependent Protein Kinase by RNA Polymarase II Transcriptional Activators Proteins. The Journal of Biological Chemistry, 1995,270 (3): 1449 1454
  86. Douglas B. Jacoby and Pieter C. Wensink. Yolk Protein Factor 1 Is a Drosophila Homolog of Ku, the DNA-binding Subunit of a DNA-dependent Protein Kinase from Humans. The Journal of Biological Chemistry, 1994,269 (15): 11 484 11 491
  87. Richard Y. Liu, Peter M. Corry, Yong J. Lee. Potential Involvement of a Constitutive Heat Shock Element Binding Factor in the Regulation of Chemical Stress-induced HSP70 Gene Expression. Molecular and Cellular Biochemistry, 1995, 144: 27 -34
  88. Shao-Hua Yang, Dooha Kim et al. Modulation of Thermal Induction of HSP70 Expression by Ku Autoantigen or Its Individual Subunits. Molecular and Cellular Biology, 1996, 16(7): 3799−3806
  89. Dan Tang, Yue Xie, Meijuan Zhao, Mary Ann Stevenson, Stuart K. Calderwood. Repression of the HSP70B promoter by NFIL6, Ku70 and MAPK involves three Complementary mechanisms. Biochem. Biophys. Res. Commun. 2000,208:280 285
  90. Transcription Factor 1 Binds Selectively in Vitro to Ku Protein and the Catalytic Subunit of the DNA-dependent Protein Kinase. J. Biol. Chem., 1997,272 (41): 26 009 26 016
  91. Cotto J. J., Morimoto R. I. Stress-induced activation of the heat-shock response: cell and molecular biology of heat-shock factors. Biochem Soc Symp. 1999,64: 105 118
  92. Bevilacqua A., Fiorenza M. T., Mangia F. Developmental Activation of an Episomic HSP70 Gene Promoter in Two-cells Mouse Embryos by Transcription Factor Spl. Nucleic Acids Res., 1997,25 (7): 1333- 1338
  93. William D. Morgan et al. Two Transcriptional Activators, CCAAT-Box-Binding Transcription Factor and Heat Shock Factor, Interact with a Human HSP70 Gene Promoter. Molecular and Cellular Biology, 1987,7 (3): 1129 1138
  94. Agoff S. N., Hou G., Linzer D. I., Wu B. Regulation of the Human HSP70 Promoter by p53. Science, 1993,259 (5091): 84−87
  95. Masako Tanabe et al. The Mammalian HSF4 Gene Generates Both an Activator and a Repressor of Heat Shock Genes by Alternative Splicing. The Journal of Biological Chemistry, 1999,274 (39): 27 845 27 856
  96. J. Timothy Westwood, Joachim Clos, Carl Wu. Stress-induced Oligomerization and Chromosomal Relocalization of Heat-shock Factor. Nature, 1991,353: 822 827
  97. Jin Huang and Lex H. T. Van der Ploeg. Maturation of polycistronic pre-mRNA in Trypanosoma brucei: analysis of /ram-splicing and Poly (A) addition at nascent RNA transcripts from the hsp70 locus. Mol. Cell. Biol., 1991, 11 (6): 3180 3190
  98. M. Saeed Sheikh and Albert J. Fornace Jr. Regulation of Translation Following Stress. Oncogene, 1999,18: 6421 6128
  99. Menon V., Thomason D, B. Heat-down Tilt Increases Rat Cardiac Muscle eIF2a Phosphorilation. American Journal of Physiology, 1995,269 (3): 802−804
  100. Duncan R. F., Cavener D. R., Qu S. Heat Shock Effects on Phosphorilation of Protein Sintesis Initiation Factor Proteins eIF4E and eIF2-alpha in Drosophila. Biochemistry, 1995,34 (9): 2985 2997
  101. Vries R. G. et al. Heat Shock Increases the Assotiation of Binding Protein-1 with Initiation Factor 4E. The Journal of Biological Chemistry, 1997,272 (52): 32 779 32 784
  102. Cuesta R, Laroia G, Schneider RJ. Chaperone hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Genes Dev. 2000,14 (12): 1460 1470
  103. Nicola К. Gray and Marvin Wickens. Control of translation initiation in animals. Annu. Rev. Cell Dev. Biol., 1998, 14: 399 458
  104. Andrew Yueh and Robert J. Schneider. Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18S rRNA. Genes Dev., 2000,14:414−421
  105. McMullin T. W., Hallberg R. L. Effect of heat shock on ribosome structure: appearance of new ribosome associated protein. Mol. Cell. Biol. 1986, 109:2527−2535
  106. Hallberg R. L and Hallberg E. M. Heat shock in Tetrahymena induces the accumulation of a small RNA homologous to eukaryotic 7SL RNA and E. coli 4,5S RNA. In: Stress induced proteins. Alan Liss Inc., New York. 1989: 107 116
  107. П. M. Чумаков. Функция гена p53: выбор между жизнью и смертью. Биохимия, 2000,65 (1): 34−47
  108. Li S., Chien S., Branemark P. I. Heat Shock-induced Necrosis and Apoptosis in Osteoblasts. J. Orthop. Res., 1999, 17 (6): 891 899
  109. E. B. Lasunskaia, 1.1. Fridlianskaia, I. V. Guzhova, V. M. Bozhkov, B. A. Margulis. Accumulation of Major Stress Protein 70kDa Protects Myeloid and Lymphoid Cells from Death by Apoptosis. Apoptosis, 1997,2: 156 163
  110. Ahn J. H., Ко Y. G., Park W. Y., Kang Y. S., Chung H. Y., Seo J. S. Suppression of Ceramide-mediated Apoptosis by HSP70. Mol. Cells, 1999, 9 (2): 200 206
  111. Brar В. K. et al. Heat Shock Proteins Delivered with a Virus Vector Can Protect Cardiac Cells Against Apoptotic as Well as Against Thermal or Hypoxic Stress. The Journal of Molecular and Cellular Cardiology, 1999,31 (1): 135 46
  112. Wagstaff M. J. et al. Protection of Neuronal Cells from apoptosis by HSP27 Delivered with a Herpes Simplex Virus-based vector. The Journal of Biological Chemistry, 1999,274(8): 5061−5069
  113. Schett G. et al. Activation of Fas Inhibits Heat-induced Activation ofHSFl and Up-regulation ofHSP70. FASEB Journal, 1999, 13 (8): 833−42
  114. Dick D. Mosser, Antoine W. Caron, Lucie Bourged, Claude Denis-Larose, Bernard Massie. Role of the Human Heat Shock Protein HSP70 in Protection Against Stress-Induced Apoptosis. Molecular and Cellular Biology, 1997, 17 (9): 5317 5327
  115. Kumar Y, Tatu U. Stress protein flux during recovery from simulated ischemia: Induced heat shock protein 70 confers cytoprotection by suppressing JNK activation and inhibiting apoptotic cell death. Proteomics. 2003,3 (4): 513 526
  116. V. L., Meriin А. В., Yaglom J. A., Volloch V., Sherman M. Y. Role of HSP70 in Regulation of Stress-kinase JNK: Implications in Apoptosis and Aging. FEBS Letters, 1998,438 (1−2): 1−4
  117. D. D., Caron A. W., Bourget L., Meriin А. В., Sherman M. Y., Morimoto R. I., Massie B. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol. Cell. Biol. 2000,20 (19): 7146 7159
  118. Maria Jaattela, Dorte Wissing, Klaus Kokholm, Tuula Kallunki and Mikala Egeblad. HSP70 Exerts its Anti-apoptosic Function Downstream of Caspase-3-like Proteases. The EMBO Journal, 1998,17 (21): 6124 6134
  119. Chen Y. C., Lin-Shiau S. Y., Lin J. K. Involvement of Heat-shock Protein 70 and p53 Proteins in Attenuation of UVC-induced Apoptosis by Thermal Stress in Hepatocellular Carcinoma Cells. Photochem. Photobiology, 1999,70 (1): 78 86
  120. И. В. Гужова, Б. А. Маргулис. Индукция и накопление БТШ70 приводят к формированию его комплексов с другими клеточным белками. Цитология, 2000, 42 (7): 647−652
  121. И. В. Гужова, Е. Б. Ласунская, К. Нильссон, 3. А. Дариева, Б. А. Маргулис. Влияние теплового шока на процессы дифференцировки и апоптоза в клетках U-937. Цитология, 2000,42 (7): 653 657
  122. Patrick Mehlen, Klaus Schulze-Osthoff, and Andre-Patrick Arrigo. Small Stress Proteins as Novel Regulators of Apoptosis. The Journal of Biological Chemistry, 1996,271 (28): 16 510−16 514
  123. Andre-Patrick Arrigo, Patrick Mehlen et al. Small Stress Proteins as Novel Negative Regulators of Programmed Cell Death. In: Molecular chaperones and heat shock response. Cold Spring Harbor, New York, 1998:21
  124. Gonin Sandeline, Vincenzo Zimarino and Andre-Patrick Arrigo. Decreased oxidative stress mediated nuclear insolubilization of p53 and HSF by hsp27 expression. In: Molecular chaperones and heat shock response, 1998, Cold Spring Harbor, New York: 84
  125. Jaattela M. Escaping Cell Death: Survival Proteins in Cancer. Exp. Cell Res., 1999, 248(1): 30−43
  126. Hunt C., Morimoto R. I. Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc. Natl. Acad. Sci. USA, 1985, 82 (19): 6455−6459
  127. Lindquist S., Craige E. A. A heat shock proteins. Ann. Rev. Genet., 1988, 22: 631 667
  128. Southgate R., Mirault M., Ayme A., Tissieres A. Organization, sequences and induction of heat shock genes. In: Changes in eukaryotic gene expression in response to environmental stress, Academic Press, New-York, 1985: 3−30
  129. Southgate R, Mirault M., Ayme A., Tissieres A. Organization, sequences and induction of heat shock genes. In: Changes in eukaiyotic gene expression in response to environmental stress, Academic Press, New-York, 1985: 3−30
  130. Heschl M. F., Baillie D. L. Characterization of the hsp70 multigene family of Caenorhabditis elegans. DNA, 1989, 8 (4): 233 243
  131. Maside X., Bartolome C., Charlesworth B. S-element insertions are associated with the evolution of the Hsp70 genes in Drosophila melanogaster. Curr. Biol., 2002, 12 (19): 1686−1691
  132. Leigh Brown A. J., Ish-Horowicz D. Evolution of the 87A and 87C heat-shock loci in Drosophila. Nature, 1981,290 (5808): 677 682
  133. Holmgren R., Livak K., Morimoto R. I., Frend R., Meselson M. Studies of cloned sequences from four Drosophila heat shock loci. Cell, 1979, 18: 1359 1370
  134. Konstantopoulou I., Nikolaidis N., Scouras Z. G. The hsp70 locus of Drosophila auraria (montium subgroup) is single and contains copies in a conserved arrangement. Chromosoma, 1998, 107 (8): 577 586
  135. Bettencourt B. R., Feder M. E. Hsp70 duplication in the Drosophila melanogaster species group: how and when did two become five? Mol. Biol. Evol., 2001,18 (7): 1272 -1282
  136. Benedict M. Q., Cockburn A. F., Seawright J. A. The Hsp70 heat-shock gene family of the mosquito Anopheles albimanus. Insect. Mol. Biol., 1993,2 (2): 93−102 162. http://www.ncbi.nih.gov/PMGifs/Genomes/6239.html
  137. Hart C., Zhao K., Laemmli U. The scs' boundaiy element: characterization of boundary element-associated factors. Mol. Cell. Biol., 1997, 17: 999 1009
  138. David J. Glass, Ramona I. Polvere and Lex H. T. Van der Ploeg. Conserved sequences and Transcription of the hsp70 gene family in Trypanosoma brucei. Mol. Cell. Biol., 1986,6 (12): 4657 4666
  139. Michael L. Muhich and John C. Boothroyd. Synthesis of Trypanosome hsp70 mRNA is resistant to disruption of trans-splicing by heat shock. J. Biol. Chem., 1989, 264 (13): 7107−7110
  140. Russnak R. H, Candido E. P. Locus encoding a family of small heat shock genes in Caenorhabditis elegans: two genes duplicated to form a 3.8-kilobase inverted repeat. Mol. Cell. Biol., 1985, 5 (6): 1268 1278
  141. Ingolia T. D., Craig E. A. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc. Natl. Acad. Sci. USA, 1982, 79 (7): 2360−2364
  142. Shapira M. and Pinelli E. Heat-shock protein 83 of Leishmania mexicana amazonensis is an abundant cytoplasmic protein with a tandemly repeated genomic arrangement. Eur. J. Biochem., 1989, 185:231 236
  143. Benedict M. Q., Levine B. J., Ke Z. X., Cockburn A. F., Seawright J. A. Precise limitation of concerted evolution to ORFs in mosquito Hsp82 genes. Insect. Mol. Biol., 1996,5(1): 73−79
  144. Milner С. M., Campbell R. D. Structure and expression of the three MHC-linked HSP70 genes. Immunogenetics, 1990,32 (4): 242 251
  145. Milner С. M., Campbell R. D. Polymorphic analysis of three MHC-linked HSP70 genes. Immunogenetics, 1992, 36 (6): 357 — 362
  146. Walter L., Rauh F., Gunther E. Comparative analysis of the three major histocompatibility complex-linked heat shock protein 70 (hsp70) genes of the rat. Immunogenetics, 1994,40:325−330
  147. Salter-Cid L.} Kasahara M., Flajnik M. F. Hsp70 genes are linked to the Xenopus major histocompatibility complex. Immunogenetics, 1994,39 (1): 1 7
  148. Busseau I., Pelisson A., Bucheton A. I elements of Drosophila melanogaster generate specific chromosomal rearrangements during transposition. Mol. Gen. Genet., 1989,218 (2): 222−228
  149. M. Б., Мнджоян E. И., Зеленцова E. С., Шостак H. Г., Лёзин Г. Т., Великодворская В. В., Полуэктова Е. В. Мобильные элементы и видообразование. Молекулярная биология, 1998,32 (1): 184 192
  150. D. N., Michalak P., Helin А. В., Bettencourt B. R., Feder M. E. Modification of Heat-Shock Gene Expression in Drosophila melanogaster Populations via Transposable Elements. Mol. Biol. Evol., 2003,20 (1): 135 144
  151. Baumann P., Moran N. A. Non-cultivable microorganisms from symbiotic associations of insects and other hosts. Antonie Van Leeuwenhoek, 1997,72 (1): 39 48
  152. Feder M. E., Hofmann G. E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol., 1999, 61: 243−282
  153. Evgen’ev M., Levin A., Lozovskaya E. The analysis of a temperature-sensitive (ts) mutation influencing the expression of heat shock-inducible genes in Drosophila melanogaster. Mol. Gen. Genet., 1979,176 (2): 275−280
  154. Walter J. Gehring and Rudiger Wehner. Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert. Proc. Natl. Acad. Sci. USA., 1995,92:2994−2998
  155. Ulmasov H. A., Karaev K. K., Lyashko V. N., Evgen’ev M. B. Heat-shock response in camel (Camelus dromedarius) blood cells and adaptation to hyperthermia. Comp. Biochem. Physiol. B., 1993,106 (4): 867 872
  156. Zatsepina O. G., Ulmasov K. A., Beresten S. F., Molodtsov V. B., Rybtsov S. A., Evgen’ev M. B. Thermotolerant desert lizards characteristically differ in terms of heat-shock system regulation. J. Exp. Biol., 2000,203 (6): 1017 1025
  157. Lei Huang, Nahid F. Mivechi, Demetrius Moskophidis. Regulation and function of the major stress-induced hsp70 molecular chaperone in vivo: analysis of mice with targeted gene disruption of hsp70.1 or hsp70.3. Mol. Cell. Biol., 2001,21: 8575 8591
  158. Heino R., Lumme J. Inheritance of cold shock tolerance in hybrids of Drosophila xirilis and Drosophila lummei. Genetica, 1989,79: 17 25
  159. Stratman R., Markow T. A. Resistance to thermal stress in desert Drosophila. Functional Ecology, 1998, 12: 965 970
  160. Martin E. Feder. Necrotic fruit: a novel model system for thermal ecologists. J. Therm. Biol., 1997,22 (1): 1 9
  161. Krebs R. A., Feder M. E. Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster larvae. Cell Stress Chaperones, 1997,2 (1): 60 71
  162. Krebs R. A. A comparison of Hsp70 expression and thermotolerance in adults and larvae of three Drosophila species. Cell Stress Chaperones, 1999,4 (4): 243−249
  163. Hottiger Т., Boiler Т., Wiemken A. Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett., 1987,220 (1): 113 115
  164. Chen Q., Ma E., Behar K. L., Xu Т., Haddad G. G. Role of trehalose phosphate synthase in anoxia tolerance and development in Drosophila melanogaster. J. Biol. Chem., 2002,277 (5): 3274−3279
  165. Diamant S., Eliahu N., Rosenthal D., Goloubinoff P. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem., 2001,276 (43): 39 586−39 591
  166. Sophia Ekengren and Dan Hultmark. A family of Turandot-volated genes in the • humoral stress response of Drosophila. Biochem. Biophys. Res. Commun., 2001,284: 998−1103
  167. Clark T. G., Abrahamsen M. S., White M. W. Developmental expression of heat shock protein 90 in Eimeria bovis. Mol. Biochem. Parasitol. 1996,78 (1 2): 259 — 263
  168. Michael L. Muhich and John C. Boothroyd. Synthesis of Trypanosome hsp70 mRNA is resistant to disruption of /гаш'-splicing by heat shock. J. Biol. Chem., 1989, 264 (13): 7107−7110
  169. Neumann S., Ziv E., Lantner F., Schechter I. Regulation of HSP70 gene expression during the life cycle of the parasitic helminthes Schistosoma mansoni. Eur. J. Biochem., 1993,212 (2): 589−596
  170. Salotra P., Chauhan D., Ralhan R., Bhatnagar R. Tumour necrosis factor-alpha induces preferential expression of stress proteins in virulent promastigotes of Leishmania donovani. Immunol. Lett., 1995,44 (1): 1 5
  171. Lyons R. E., Johnson A. M. Heat shock proteins of Toxoplasma gondii. Parasite Immunol., 1995, 17 (7): 353−359
  172. Biswas S., Sharma Y. D. Enhanced expression of Plasmodium falciparum heat shock protein PFHSP70-I at higher temperatures and parasite survival. FEMS Microbiol. Lett., 1994,124 (3): 425−429
  173. Martinez J., Perez Serrano J., Bernadina W. E., Rodriguez-Caabeiro F. Influence of parasitization by Trichinella spiralis on the levels of heat shock proteins in rat liver and muscle. Parasitology, 1999,118 (2): 201−209
  174. Wiesgigl M., Clos J. Heat shock protein 90 homeostasis controls stage differentiation in Leishmania donovani. Mol. Biol. Cell, 2001,12 (11): 3307 3316
  175. Morgan R. W., Christman M. F., Jacobson F. S., Storz G., Ames B. N. Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc. Natl. Acad. Sci. USA., 1986, 83 (21): 8059 8063
  176. Hanawa T., Fukuda M., Kawakami H., Hirano H., Kamiya S., Yamamoto T. The Listeria monocytogenes DnaK chaperone is required for stress tolerance and efficient phagocytosis with macrophages. Cell Stress Chaperones., 1999,4 (2): 118 128
  177. Han G. M., Lin H., Head M., Jin M., Blank M., Goodman R. Application of magnetic field-induced heat shock protein 70 for presurgical cytoprotection. J. Cell. Biochem. 1998,71:577−583
  178. Naveed N. Panjwani, Lana Popova, and Pramod K. Srivastava. Heat Shock Proteins gp96 and hsp70 Activate the Release of Nitric Oxide by APCs. The Journal of Immunology, 2002:2997 3003
  179. Thalia Becker, F.-Ulrich Hartl, and Felix Wieland. CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. The Journal of Cell Biology, 2002, 158 (7): 1277−1285
  180. O’Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem., 1975,250: 4007 4021
  181. Т. Маниатис, Э. Фрич, Дж. Сэмбрук. Методы генетической инженерии. Молекулярное клонирование. М., «Мир», 1984: 480
  182. R. М. and Storti R. V. One- and two-dimensional polyacrylamide gel analysis of the heat shock proteins of the virilis group of Drosophila. Biochem. Genet. 1982,20:791−807.
  183. Evgen’ev M. В., Kolchinski A., Levin A., Preobrazhenskaya A.L., Sarkisova E. Heat-shock DNA homology in distantly related species of Drosophila. Chromosoma, 1978,68 (4): 357−365
  184. Throckmorton L. H., The virilis species group. The genetics and biology of Drosophila. London, Academic Press, 1982, 3B: 227 297
Заполнить форму текущей работой