ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² ΡƒΡ‡Ρ‘Π±Π΅, ΠΎΡ‡Π΅Π½ΡŒ быстро...
Π Π°Π±ΠΎΡ‚Π°Π΅ΠΌ вмСстС Π΄ΠΎ ΠΏΠΎΠ±Π΅Π΄Ρ‹

Π Π•Π“Π£Π›Π―Π¦Π˜Π― ВРАНБКРИПЦИИ Π“Π•ΠΠžΠ’ Π’Π•ΠŸΠ›ΠžΠ’ΠžΠ“Πž ШОКА Π£ Π”Π ΠžΠ–Π–Π•Π™ Saccharomyces cerevisiae

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° модСль функционирования Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² Ρ‡Π΅Ρ€Π΅Π· Π΄Π΅ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΈΠΌΠΈ ΠΎΠΊΡ‚Π°ΠΌΠ΅Ρ€ΠΎΠ² гистонов нуклСосом, которая дополняСт ΠΊΠ»Π°ΡΡΠΈΡ‡Π΅ΠΊΡƒΡŽ модСль прямого рСкрутирования ΠΊΠΎΠ°ΠΊΡ‚ΠΈΠ²Π°Ρ‚ΠΎΡ€ΠΎΠ², ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ‚ Ρ€Π°Π·Ρ€Π΅ΡˆΠΈΡ‚ΡŒ парадокс эффСктивного взаимодСйствия высоко консСрвативных гистонов ΠΈ Π½ΠΈΠ·ΠΊΠΎ консСрвативных Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² HSF, приводящСго ΠΊ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ транскрипции. КомплСкс SWI/SNF Ρ€Π΅ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • 1. БПИБОК Π˜Π‘ΠŸΠžΠ›Π¬Π—ΠžΠ’ΠΠΠΠ«Π₯ ΠžΠ‘ΠžΠ—ΠΠΠ§Π•ΠΠ˜Π™ И Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™
  • 2. Π’Π’Π•Π”Π•ΠΠ˜Π•
  • 3. Π¦Π•Π›Π¬ И Π—ΠΠ”ΠΠ§Π˜ Π˜Π‘Π‘Π›Π•Π”ΠžΠ’ΠΠΠ˜Π―
  • 4. ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
    • 4. 1. Π₯Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½ ΠΈ Ρ€Π΅ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°
      • 4. 1. 1. ΠžΠ±Ρ‰Π°Ρ структура Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°
      • 4. 1. 2. НуклСосома
      • 4. 1. 3. Π”ΠΈΠ½Π°ΠΌΠΈΠΊΠ° Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°
      • 4. 1. 4. Активация транскрипции Π² ΠΊΠΎΠ½Ρ‚СкстС Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°
    • 4. 2. Роль гистонов Π² Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π΅
      • 4. 2. 1. ΠžΠ±Ρ‰Π°Ρ информация ΠΎ Π³ΠΈΡΡ‚ΠΎΠ½Π°Ρ…
      • 4. 2. 2. Π’Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ гистонов
      • 4. 2. 3. Π“ΠΈΠΏΠΎΡ‚Π΅Π·Π° «Π³ΠΈΡΡ‚ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠ΄Π°»
    • 4. 3. ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ гистонов
      • 4. 3. 1. Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ гистоны
      • 4. 3. 2. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ дСйствия гистоновых ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΉ
      • 4. 3. 3. Π€ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ послСдствия гистоновых ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΉ
    • 4. 4. Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ прСдставлСния ΠΎΠ± ΠΠ’Π€-зависимом Ρ€Π΅ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ
      • 4. 4. 1. АВЀ-зависимыС комплСксы, Ρ€Π΅ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½
      • 4. 4. 2. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ дСйствия АВЀ-зависимых комплСксов, Ρ€Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½
      • 4. 4. 3. ВрСбования ΠΊ ΡΡƒΠ±ΡΡ‚Ρ€Π°Ρ‚Ρƒ
      • 4. 4. 4. ВнутринуклСосомноС ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠ΅Ρ‚Π΅Π»ΡŒ
      • 4. 4. 5. Π“ΠΈΠΏΠΎΡ‚Π΅Π·Π° «ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ΄Π°»
    • 4. 5. АВЀ-зависимыС комплСксы, Ρ€Π΅ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½ ΠΎΡ‚ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Π΄ΠΎ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°
    • 4. 6. Π€ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ транскрипционных Π°ΠΊΡ‚ΠΈΠ²Π°Ρ‚ΠΎΡ€ΠΎΠ² Π² ΠΊΠΎΠ½Ρ‚СкстС Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°
      • 4. 6. 1. Π₯арактСристики ΠΈ ΠΏΠ°Ρ€Π°Π΄ΠΎΠΊΡΡ‹ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½ΠΎΠ²

Π Π•Π“Π£Π›Π―Π¦Π˜Π― ВРАНБКРИПЦИИ Π“Π•ΠΠžΠ’ Π’Π•ΠŸΠ›ΠžΠ’ΠžΠ“Πž ШОКА Π£ Π”Π ΠžΠ–Π–Π•Π™ Saccharomyces cerevisiae (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

6.2.2. ΠŸΡ€ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΌ стрСссС Π½Π° ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°Ρ… Π³Π΅Π½ΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока происходит ΡƒΠ΄Π°Π»Π΅Π½ΠΈΠ΅ гистонов.85.

6.2.3. ΠšΠΎΡ€ΠΎΡ‚ΠΊΠΈΠ΅ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½Ρ‹Π΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ Π·Π°ΠΌΠ΅Ρ‰Π°Ρ‚ΡŒ большой Π‘-ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Ρ€Π°ΠΉΠΎΠ½ HSF.86.

6.2.4. Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ ΠΈ Ρ…арактСристика Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ², ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏ Π‘-ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠΉ Π΄Π΅Π»Π΅Ρ†ΠΈΠΈ HSF.92.

6.2.5. АктивационныС ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Ρ‹ синтСтичСских Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² Π½Π΅ Π½ΠΎΡΡΡ‚ спСцифичСский Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ контСкста ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠ»ΠΈ транскрипционных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ².93.

6.2.6. ΠŸΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΡ€Ρ‹ GAL Π³Π΅Π½ΠΎΠ² ΠΏΡ€Π΅Ρ‚Π΅Ρ€ΠΏΠ΅Π²Π°ΡŽΡ‚ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°, зависящиС ΠΎΡ‚ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ синтСтичСских Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½ΠΎΠ².93.

6.2.7. Гистоны ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ мишСнями Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² (АД).96.

6.2.8. ΠžΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ².101.

6.2.8.1. ΠŸΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€-спСцифичСскиС транскрипционныС Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈΠ½ΠΈΡ†ΠΈΠΈΡ€ΡƒΡŽΡ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π½Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°Ρ….101.

6.2.8.2. Π‘-Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ Π΄ΠΎΠΌΠ΅Π½ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока, Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ Π² 340 аминокислот, ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ Π·Π°ΠΌΠ΅Π½Π΅Π½ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°ΠΌΠΈ, Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ всСго 11 аминокислот.102.

6.2.8.3 Гистоны ΡΠ²Π»ΡΡŽΡ‚ΡΡ мишСнями Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½ΠΎΠ².103.

6.2.8.4. Π Π΅ΠΊΡ€ΡƒΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ комплСксов рСмодСлирования Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΉ гистонов с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½ΠΎΠ².104.

6.2.8.5. МодСли прямого рСкрутирования.105.

6.2.8.6. МодСли нСпрямого рСкрутирования.107.

6.2.8.7. МодСль нСпрямого рСкрутирования, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π°Ρ взаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΠ” ΠΈ Π³ΠΈΡΡ‚ΠΎΠ½Π°ΠΌΠΈ.108.

6.2.8.8. БосущСствованиС ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ прямого ΠΈ Π½Π΅ΠΏΡ€ΡΠΌΠΎΠ³ΠΎ рСкрутирования. 110.

6.2.8.9. Π’Ρ‹Π²ΠΎΠ΄Ρ‹ ΠΈ ΠΎΡΠΎΠ±Ρ‹Π΅ вопросы.111.

6.3. ЭнзиматичСскиС активности, ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‰ΠΈΠ΅ участиС Π² Ρ€Π΅ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π½Π° ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°Ρ… Π³Π΅Π½ΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока.113.

6.3.1. Π’Ρ€ΠΈ Π²Ρ‹ΡΠΎΠΊΠΎΠΈΠ½Π΄ΡƒΡ†ΠΈΠ±Π΅Π»ΡŒΠ½Ρ‹Ρ… Π³Π΅Π½Π° Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΠΏΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Ρƒ удалСния ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹Ρ… нуклСосом.113.

6.3.2. ΠΡ†Π΅Ρ‚ΡˆΡˆΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ гистона ΠΠ— ΠΊΠΎΡ€Ρ€Π΅Π»ΠΈΡ€ΡƒΠ΅Ρ‚ со ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ удалСния ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹Ρ… нуклСосом.115.

6.3.3. ΠŸΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΠΈΠ΅ HSF Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎ для Ρ€Π°Π·Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ² HSP Π΄ΠΎ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока ΠΈ Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°Π΅Ρ‚ Π² Ρ€Π°Π²Π½ΠΎΠΉ стСпСни Π²ΠΎ Π²Ρ€Π΅ΠΌΡ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока.117.

6.3.4. БвязываниС Π ΠΎΡ— И Ρ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°ΠΌΠΈ HSP совпадаСт с Π½Π°Ρ‡Π°Π»ΠΎΠΌ рСмодСлирования Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°.118.

6.3.5. Π€Π°ΠΊΡ‚ΠΎΡ€ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока являСтся Π½Π΅ Π΅Π΄ΠΈΠ½ΡΡ‚Π²Π΅Π½Π½Ρ‹ΠΌ транскрипционным Π°ΠΊΡ‚ΠΈΠ²Π°Ρ‚ΠΎΡ€ΠΎΠΌ, ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌ Ρ€Π΅ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π½Π° Π³Π΅Π½Π°Ρ… Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока.122.

6.3.6. Msn2/4 Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌ для обСспСчСния связывания HSF ΠΈ Ρ€Π΅ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π½Π° ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π΅ HSP12.125.

6.3.7. Π˜Π½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡ SWI/SNF Π΄Π°Π΅Ρ‚ Ρ€Π°Π·Π½Ρ‹ΠΉ эффСкт Π½Π° ΠΏΡ€ΠΎΡ†Π΅ΡΡ удалСния нуклСосом Π½Π° ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°Ρ… Π³Π΅Π½ΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока 126.

6.3.8. SWI/SNF комплСкс являСтся критичСски Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌ для рСмодСлирования Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π½Π° ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π΅ HSP12.127.

6.3.9. Π”Π΅Π»Π΅Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ SNF2 элиминируСт связываниС HSF ΠΈ Pol II Π½Π° ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π΅ HSP12 ΠΈ Π·Π°ΠΌΠ΅Π΄Π»ΡΠ΅Ρ‚ эти процСссы Π½Π° ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°Ρ….

HSP82 ΠΈ SSA4.127.

6.3.10. Π˜Π½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡ комплСкса RSC носит ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ удалСния нуклСосом.133.

6.3.11. ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΡ‹, Ρ€Π΅ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½, ΠΌΠΎΠ³ΡƒΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ.138.

6.3.12. ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΡ‹ SWI/SNF ΠΈ ISWI Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚.138.

6.3.13. ΠžΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ².143.

6.3.13.1. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ рСгуляция рСмодСлирования Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π½Π° ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°Ρ… Π³Π΅Π½ΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока.143.

6.3.13.2. ΠšΠΎΡ€Ρ€Π΅Π»ΡΡ†ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρƒ Π°Ρ†Π΅Π³ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ гистона ΠΠ— ΠΈ ΡƒΠ΄Π°Π»Π΅Π½ΠΈΠ΅ΠΌ гистонов ΠΏΡ€ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΌ стрСссС.146.

6.3.13.3. ΠΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ HSF рСгулируСтся двумя Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ путями.148 5.

6.3.13.4. РСгуляция активности HSF.148.

6.3.13.5. БвязываниС Pol II с ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°ΠΌΠΈ Π³Π΅Π½ΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΡƒΠ΅Ρ‚ основному Ρ€Π΅ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°.149.

6.3.13.6. Ѐункция комплСкса SWI/SNF.150.

6.3.13.7. РодствСнныС комплСксы SWI/SNFh RSC ΠΈΠΌΠ΅ΡŽΡ‚ частично ΠΏΠ΅Ρ€Π΅ΠΊΡ€Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ, Π½ΠΎ Π½Π΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄ΠΎΠΏΠΎΠ»Π½ΡΠ΅ΠΌΡ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°Ρ… Π³Π΅Π½ΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ стрСсса.151.

6.3.13.8. ΠšΠΎΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ взаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ SWI/SNF ΠΈ 1SW1 комплСксами.152.

7. ΠžΠ‘ΠΠžΠ’ΠΠ«Π• Π’Π«Π’ΠžΠ”Π«.155.

8. БПИБОК Π ΠΠ‘ΠžΠ’, ΠžΠŸΠ£Π‘Π›Π˜ΠšΠžΠ’ΠΠΠΠ«Π₯ ΠŸΠž Π’Π•ΠœΠ• Π”Π˜Π‘Π‘Π•Π Π’ΠΠ¦Π˜Π˜.156.

9. БПИБОК Π˜Π‘ΠŸΠžΠ›Π¬Π—ΠžΠ’ΠΠΠΠžΠ™ Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«.159.

7. Π’Π«Π’ΠžΠ”Π«.

1. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ конститутивной экспрСссии Π³Π΅Π½Π° HSC82 обусловлСн стабилизациСй взаимодСйствия HSF с ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠΌ этого Π³Π΅Π½Π° благодаря постоянному ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΠΈΡŽ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° GRF2 Π½Π° ΡΡ‚ΠΎΠΌ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π΅.

2. Высокий ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΈΠ½Π΄ΡƒΡ†ΠΈΠ±Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π° Π³Π΅Π½Π° HSP82 опрСдСляСтся ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΌ количСством сайтов связывания HSF Π½Π° ΡΡ‚ΠΎΠΌ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π΅ ΠΈ ΠΊΠΎΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌ взаимодСйствиСм ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» HSF ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΠΏΡ€ΠΈ сязывании с ΡΡ‚ΠΈΠΌ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠΌ.

3. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠΌ пСрСстройки Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π½Π° ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°Ρ… Π³Π΅Π½ΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока, являСтся HSF, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π΄Π΅Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² этого Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° сущСствСнно сниТаСт ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ удалСния гистоновых ΠΎΠΊΡ‚Π°ΠΌΠ΅Ρ€ΠΎΠ² ΠΏΡ€ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ транскрипции.

4. ΠŸΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ удалСния нуклСосом с ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ² Π³Π΅Π½ΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π² ΡΠ΅Π±Ρ нСпосрСдствСнноС взаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ гистонами ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ Π΄ΠΎΠΌΠ΅Π½ΠΎΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока, приводящСС ΠΊ Π΄Π΅ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹Ρ… нуклСосом.

5. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° модСль функционирования Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² Ρ‡Π΅Ρ€Π΅Π· Π΄Π΅ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΈΠΌΠΈ ΠΎΠΊΡ‚Π°ΠΌΠ΅Ρ€ΠΎΠ² гистонов нуклСосом, которая дополняСт ΠΊΠ»Π°ΡΡΠΈΡ‡Π΅ΠΊΡƒΡŽ модСль прямого рСкрутирования ΠΊΠΎΠ°ΠΊΡ‚ΠΈΠ²Π°Ρ‚ΠΎΡ€ΠΎΠ², ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ‚ Ρ€Π°Π·Ρ€Π΅ΡˆΠΈΡ‚ΡŒ парадокс эффСктивного взаимодСйствия высоко консСрвативных гистонов ΠΈ Π½ΠΈΠ·ΠΊΠΎ консСрвативных Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² HSF, приводящСго ΠΊ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ транскрипции.

6. КомплСкс SWI/SNF Ρ€Π΅ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½, ΠΏΠΎ-Ρ€Π°Π·Π½ΠΎΠΌΡƒ Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½ Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΡ‹ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Π³Π΅Π½ΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ инактивация энзиматичСской активности комплСкса SWI/SNF ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠΎΠ»Π½ΠΎΠΌΡƒ ΠΏΡ€Π΅ΠΊΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ пСрСстройки Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π½Π° ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π΅ HSP12, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ ΡƒΠ΄Π°Π»Π΅Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ² нуклСосом с ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ² Π³Π΅Π½ΠΎΠ² HSP82 ΠΈ SSA4 Π½Π΅ ΠΏΡ€Π΅ΠΊΡ€Π°Ρ‰Π°Π΅Ρ‚ся ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ, Π° Ρ‚ΠΎΠ»ΡŒΠΊΠΎ замСдляСтся.

7. Π‘Π΅Π»ΠΊΠΎΠ²Ρ‹ΠΉ комплСкс RSC Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌ для пСрСстройки Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π½Π° ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°Ρ… Π³Π΅Π½ΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока ΠΈ Π΄Π»Ρ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ транскрипции. Π˜Π½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡ этого комплСкса ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΡ€Π΅ΠΊΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ пСрСстроСк Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ΠΈ ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ ΠΏΡ€ΠΈΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ РНК ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ II, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ Ρ‚Ρ€Π°Π½ΡΠΊΡ€ΠΈΠΏΡ†ΠΈΡŽ этих Π³Π΅Π½ΠΎΠ².

8. БПИБОК Π ΠΠ‘ΠžΠ’, ΠžΠŸΠ£Π‘Π›Π˜ΠšΠžΠ’ΠΠΠΠ«Π₯ ΠŸΠž Π’Π•ΠœΠ• Π”Π˜Π‘Π‘Π•Π Π’ΠΠ¦Π˜Π˜.

1. T.Y. Erkina, Y. Zou, S. Freeling, V.I. Vorobyev, A. M. Erkine. Functional interplay between chromatin remodeling complexes SWI/SNF, ISWI, and RSC in regulation of yeast heat shock genes. Nucleic Acids Res. 2010, 38:1441−9.

2. T Y. Liu, S. Ye and A. M. Erkine. Analysis of Saccharomyces cerevisiae genome for the distributions of stress-response elements potentially affecting gene expression by transcriptional interference. In Silico Biology, 2009, 9, 0030.

3. T. Y. Erkina, M. V. Lavrova, A. M. Erkine. Alternative ways of stress regulation in cells of S. cerevisiae: transcription activators Msn2 and Msn4. Cell and Tissue Biology, 2009,51:121−129.

4. T. Y. Erkina, P. A. Tschetter, A. M. Erkine. Different requirement of SWI/SNF complex for the robust nucleosome displacement at promoters of HSF and Msn2/4 regulated heat shock genes. Mol. Cell. Biol., 2008, 28:1207−1217.

5. A. M. Erkina, A. M. Erkine. Displacement of histones at promoters of yeast heat shock genes is differentially associated with histone H3 acetylation. Mol. Cell. Biol., 2006,26:7587−600. Summary figure used as a cover art for MCB v.26(20).

6. H. Singh, A. M. Erkine. S. B. Kremer. H. M. Duttweiler, D. A. Davis. J. Iqbal, R. R. Gross, D. S. Gross. A functional module of yeast mediator that governs the dynamic range of heat-shock gene expression. Genetics, 2006,172:2169−84.

7. A. M. Erkine. Activation domains of gene-specific transcription factors: are histones among their targets? Biocheni. Cell Biol., 2004, 82: 453−459. Summary figure used as a cover art for the issue 4 of the journal.

8. A. M. Erkine and D. S. Gross. Dynamic chromatin remodeling triggered by natural and synthetic activation domains. J. Biol. Chem., 2003,278: 7755−64.

9. C. B. Bourgeois-Venturi, A. M. Erkine and D. S. Gross. Cell Cycle-Dependent Binding of Yeast Heat Shock Factor to Nucleosomes. Mol. Cell. Biol., 2000, 20: 64 356 448.

10. Raitt, A. L. Johnson, A. M. Erkine, K. Makino, B. Morgan, D. S. Gross, L. H. Johnston. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsfl in vivo and is required for the induction of heat shock genes by oxidative stress. Mol. Biol. Cell, 2000,11: 2335−2347.

11. A.M. Erkine, S. F. Magrogan, E. A. Sekinger, D. S. Gross. Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro. Mol. Cell. Biol., 1999, 19: 1627−1639.

12. Y. Lee, W. M. Wong, D. Gayer, A. M. Erkine, R. N. Nazar. In vivo analyses of upstream promoter sequence elements in the 5S rRNA gene from Saccharomyces cerevisiae. J. Mol. Biol., 1997,269: 676−683.

13. A. M. Erkine, Π‘. C. Adams, T. Diken, D. S. Gross. Heat shock factor gains access to the yeast HSC82 promoter independently of other sequence-specific factors and antagonizes nucleosomal repression of basal and induced transcription. Mol. Cell. Biol., 1996, 16: 7004−7017.

14. A. M. Erkine, Π‘. C. Adams, M. Gao, D. S. Gross. Multiple protein-DNA interactions over the yeast HSC82 heat shock gene promoter. Nucleic Acids Res, 1995, 23:1822−1829.

15. A. M. Erkine, C. Szent-Gyorgyi, S. F. Simmons, D. S. Gross. The upstream sequences of the HSP82 and HSC82 genes of Saccharomyces cerevisiae: regulatory elements and nucleosome positioning motifs. Yeast, 1995,11: 573−580.

16. Y. Lee, A. M. Erkine, D. I. Van Ryk, R. N. Nazar. In vivo analyses of the internal control region in the 5S rRNA gene from Saccharomyces cerevisiae. Nucleic Acids Res, 1995, 23: 634−640.

17. M. A. Karymov, A. A. Kruchinin, Yu. A. Tarantov, 1. A. Balova, L. A. Remisova, N. G. Sukhodolov, A. I. Yanklovich, A. M. Erkine *(Yorkin). Legmuir-Blodgett film based membrane for a DNA-probe biosensor. Sensors and Actuators Π’., 1992, 6: 208−210.

18. A.M. Π•Ρ€ΠΊΠΈΠ½. Π₯арактСристика Ρ„ΠΈΠ±Ρ€ΠΈΠ»Π» Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°, ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½Π° ΠΏΠΎΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ½Π½ΠΎΠΉ повСрхности. Биохимия, 1992, 57: 312−316.

19. А. М. Π•Ρ€ΠΊΠΈΠ½. Π­ΠΊΡ€Π°Π½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒ гистонов HI, Н5 ΠΈ Π”ΠΠš Π² Π½Π°Π΄Π½ΡƒΠΊΠ»Π΅ΠΎΡΠΎΠΌΠ½ΠΎΠΉ структурС эритроцитарного Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°. ЛСнинградский ГосударствСнный УнивСрситСт. ДиссСртация Π½Π° ΡΠΎΠΈΡΠΊΠ°Π½ΠΈΠ΅ ΡƒΡ‡Π΅Π½ΠΎΠΉ стСпСни ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚Π° биологичСских Π½Π°ΡƒΠΊ. 1987.

20. А. М. Π•Ρ€ΠΊΠΈΠ½. Π₯Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½ Π½Π° ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π΅: исслСдованиС доступности гистона Н5 для Π°Π½Ρ‚ΠΈΡ‚Π΅Π» Π² Π½Π°Π΄Π½ΡƒΠΊΠ»Π΅ΠΎΡΠΎΠΌΠ½ΠΎΠΉ структурС Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ биология. 1987. 21: 688−695.

21. А. М. Π•Ρ€ΠΊΠΈΠ½, JI. Π“. Π’ΠΎΠ΄ΠΎΠ²ΡŒΡΠ½ΠΎΠ²Π°, А. А. Липская, А. Π’. Козлов. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ трипсинолиза гистона Н5 Π² Ρ€Π°ΡΡ‚Π²ΠΎΡ€Π΅ ΠΈ ΡΠΎΡΡ‚Π°Π²Π΅ с Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ. Биохимия, 1987, 52: 396−404.

22. А. М. Π•Ρ€ΠΊΠΈΠ½. Π­ΠΊΡ€Π°Π½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒ Π”ΠΠš ΠΎΡ‚ Π΄Π΅ΠΉΡΡ‚вия Π”ΠΠšΠ°Π·Ρ‹ I Π² Π½Π°Π΄Π½ΡƒΠΊΠ»Π΅ΠΎΡΠΎΠΌΠ½ΠΎΠΉ структурС Ρ…Ρ€ΠΎΠΌΠΎΡ‚ΠΈΠ½Π°. ВСстник ЛСнинградского ГосударствСнного УнивСрситСта, 1986, 3: 78−83.

23. М. И. ΠœΠΎΡΠ΅Π²ΠΈΡ‚ΡΠΊΠΈΠΉ, А. М. Π•Ρ€ΠΊΠΈΠ½. О ΡΠΏΠ΅Ρ†Π΅Ρ„ΠΈΡ‡Π½ΠΎΡΡ‚ΠΈ разпрСдСлСния ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ ΠΈ ΠΏΠΎΠ΄Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ гистонов Π² Ρ…Ρ€ΠΎΠΌΠΎΡ‚ΠΈΠ½Π΅. Π”ΠΎΠΊΠ»Π°Π΄Ρ‹ АН Π‘Π‘Π‘Π , 1982,262:1510−1513.

24. V. A. Pospelov, А. М. Erkine *(Erkin), А. Π’. Khachatrian. HI and Н5 histone arrangement in chromatin of pigeon erythrocytes. FEBS Lett., 1981,128: 315−317.

4.7.

Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅

.

Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ критичСским Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ Π² ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ транскрипции Π³Π΅Π½ΠΎΠ² являСтся ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ структуры Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π² ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹Ρ… областях Π³Π΅Π½ΠΎΠ². ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌΠΈ рСгуляторами этих процСссов ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€-спСцифичСскиС Π°ΠΊΡ‚ΠΈΠ²Π°Ρ‚ΠΎΡ€Ρ‹. ВранскрипционныС Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚, ΠΏΠΎ ΠΊΡ€Π°ΠΉΠ½Π΅ΠΉ ΠΌΠ΅Ρ€Π΅, Π΄Π²Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½Π°, ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… отвСтствСнСн Π·Π° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΠ΅ с ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€-спСцифичной ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ Π”ΠΠš, Π² Ρ‚ΠΎ Π²Ρ€ΠΌΡ ΠΊΠ°ΠΊ Π΄Ρ€ΡƒΠ³ΠΎΠΉ опрСдСляСт процСссы, связанныС с ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠ΅ΠΉ транскрипции. Основной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ ΠΠ” являСтся Ρ€Π΅ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ структуры Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°. ВыяснСниС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² этой рСгуляции являСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ соврСмСнной молСкулярной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ.

Как описано Π²Ρ‹ΡˆΠ΅, измСнСния Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π²Π°Ρ€ΡŒΠΈΡ€ΡƒΡŽΡ‚ ΠΎΡ‚ ΠΏΠΎΡΡ‚трансляционных ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΉ гистонов Π΄ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ элиминирования нуклСосом Π² ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹Ρ… областях. Одним ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π³Π»ΡƒΠ±ΠΎΠΊΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… пострансляционных ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΉ гистонов являСтся Π°Ρ†Π΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π»ΠΈΠ·ΠΈΠ½ΠΎΠ²Ρ‹Ρ… остатков Π² ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°Ρ… гистонов. Π’Π°ΠΊΠΆΠ΅ Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, фосфорилированиС, ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, сумоилированиС ΠΈ ΠΠžΠ -Ρ€ΠΈΠ±ΠΎΠ·ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ гистонов. Π­Ρ‚ΠΈ посттрансляционныС ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ гистонов ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊ ΠΎΡΠ»Π°Π±Π»Π΅Π½ΠΈΡŽ связСй ΠΌΠ΅ΠΆΠ΄Ρƒ гистонами ΠΈ Π”ΠΠšΠΊ измСнСнию мСТгистоновых ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΎΠ² Π²Π½ΡƒΡ‚Ρ€ΠΈ нуклСосом, приводящСму ΠΊ ΠΏΠ΅Ρ€Π΅ΡΡ‚Ρ€ΠΎΠΉΠΊΠ΅ нуклСосомной структурык созданию Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½ΠΎΠ²ΠΎΠΉ повСрхности, ΡƒΠ·Π½Π°Π²Π°Π΅ΠΌΠΎΠΉ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Π±Π΅Π»ΠΊΠΎΠ²Ρ‹ΠΌΠΈ комплСксами, Ρ€Π΅ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½. НСсмотря Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Π² Ρ€ΡΠ΄Π΅ случаСв ΠΏΡ€ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ транскрипции Π±Ρ‹Π»ΠΎ продСмонстрировано ΠΏΠΎΠ»Π½ΠΎΠ΅ ΡƒΠ΄Π°Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹Ρ… нуклСосом, ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ удалСния нуклСсом, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ характСристику Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½Π½Ρ‹Ρ… энзиматичСских активностСй, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Π΅ Ρ„Π°Π·Ρ‹ ΠΎΡΡ‚ΡŽΡ‚ΡΡ ΠΌΠ°Π»ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ.

Π’ Π½Π°ΡΡ‚оящСС врСмя Π½Π΅ Π²ΠΏΠΎΠ»Π½Π΅ ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, всС Π»ΠΈ комплСксы Ρ‚ΠΈΠΏΠ° 8Π«Π 2, Π² Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ ΠΏΠΎ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡƒ, Π½ΠΎ ΠΏΠΎ ΠΊΡ€Π°ΠΉΠ½Π΅ΠΉ ΠΌΠ΅Ρ€Π΅ Ρ‡Π°ΡΡ‚ΡŒ ΠΈΠ· Π½ΠΈΡ… ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ±Ρ‰ΠΈΠΉ каталитичСский Ρ†ΠΈΠΊΠ» (Кого1Π΅Ρƒ Π΅1 Π°1., 1997; ВЬоша Π΅1 Π°1., 2005). Π”Π°ΠΆΠ΅ Ссли ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ пСрСдвиТСния нуклСосом ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ² для всСх АВЀ-зависимых Ρ€Π΅ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… комплСксов, ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ пСрСстройки Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ. ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π° этих ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠΉ, вСроятно, обусловлСна Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ составом Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†, связанных с ΠΠ’Π€-Π°Π·Π°ΠΌΠΈ (НС Π°1., 2006). Π’Π°ΠΊ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹Π΅ 18\/1Π° ΠΈ 18МУ1Π¬ комплСксы ΠΈΠΌΠ΅ΡŽΡ‚ Π² ΡΠ²ΠΎΠ΅ΠΌ составС ΠΎΠ΄Π½Ρƒ ΠΈ Ρ‚Ρƒ ΠΆΠ΅ АВЀ-Π°Π·Π½ΡƒΡŽ ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΏΠ΅Ρ€Π΅Π΄Π²ΠΈΠ³Π°ΡŽΡ‚ ΠΎΠΊΡ‚Π°ΠΌΠ΅Ρ€Ρ‹ Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Ρ… направлСниях (БШсксЫС Π΅! Π°1., 2006).

Π Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ²Ρ‹Π΅ эффСкты Π±Ρ‹Π»ΠΈ выявлСны Π² ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Ρ… с ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ΠΌ гистонового ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½Π° Napl. Π’ ΠΏΡ€ΠΈΡΡƒΡ‚ствии 1000-ΠΊΡ€Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΈΠ·Π±Ρ‹Ρ‚ΠΊΠ° Napl Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²ΠΎΠΉ комплСкс RSC Ρ€Π°Π·Ρ€ΡƒΡˆΠ°Π» нукпСосомы начиная с Π΄ΠΈΡΡΠΎΡ†ΠΈΠ°Ρ†ΠΈΠΈ Π΄ΠΈΠΌΠ΅Ρ€ΠΎΠ² гистонов Н2А/Н2 Π’ (Lorch et al., 2006). Однако Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ эквимолярного количСства Napl ΠΈ RSC ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ Ρ€Π΅ΠΊΠΎΠ½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΠΈ нуклСосом ΠΏΠ° ΡΠ²ΠΎΠ΄Π½ΠΎΠΉ Π”ΠΠš (Lorch et al., 2006). Π‘Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ€Π°Π±ΠΎΡ‚Π° CHD1 Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии Napl ΠΈ ΠΠ’Π€ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»Π° ΠΊ Ρ€Π΅ΠΊΠΎΠ½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΠΈ нуклСосом (Lusser et al., 2005).

Π’ΠΏΠΎΠ»Π½Π΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Ρ‡Ρ‚ΠΎ всС эти Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ различия ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… условий. Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅ комплСкса ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ участиС Π² Ρ€Π°Π·Π½Ρ‹Ρ… процСссах, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ влияниС Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… структурных контСкстов Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ этих ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠΉ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ экспСримСнты ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‰ΠΈΠ΅ ΠΎΠ±ΠΌΠ΅Π½ Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² ΠΌΠ΅ΠΆΠ΄Ρƒ АВЀ-Π°Π·Π½Ρ‹ΠΌΠΈ ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π°ΠΌΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… комплСксов (Fan et al., 2005).

5. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹.

5.1. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹.

5.1.1. Π”Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹Π΅ ΡˆΡ‚Π°ΠΌΠΌΡ‹, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Aasland, R., A. F. Stewart and T. Gibson. The SANT domain: a putative DNA-bindingdomain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFII1B. Trends Biochem Sci. 1996. 21(3): 87−88.
  2. Agalioti, T., S. Lomvardas, B. Parekh, J. Yie, T. Maniatis and D. Thanos. Orderedrecruitment of chromatin modifying and general transcription’factors to the IFN-beta promoter. Cell. 2000. 103(4): 667−678:
  3. Ahmad, K. and S. Henikoff. Histone H3 variants specify modes of chromatin assembly.
  4. Proc Natl Acad Sci USA. 2002. 99 Suppl 4: 16 477−16 484.
  5. Ahn, S. H., W. L. Cheung, J. Y. Hsu, R. L. Diaz, M. M. Smith and C. D. Allis. Sterile 20kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Cell. 2005.120(1): 25−36.
  6. Aki, T., H. E. Choy and S. Adhya. Histone-like protein HU as a specific transcriptionalregulator: co- factor role in repression of gal transcription by GAL repressor. Genes Cells. 1996. 1(2): 179−188.
  7. Alevizopoulos, A., Y. Dusserre, M. Tsai-Pflugfelder, T. von der Weid, W. Wahli and N.
  8. Mermod. A proline-rich TGF-beta-responsive transcriptional activator interacts with histone H3. Genes Dev. 1995. 9(24): 3051−3066.
  9. Aimer, A., H. Rudolph, A. Hinnen and W. Horz. Removal of positioned nucleosomesfrom the yeast PH05 promoter upon PH05 induction releases additional upstream activating DNA elements. Embo J. 1986. 5(10): 2689−2696.
  10. Altmann, H., W. Wendler and E. L. Winnacker. Transcriptional activation by CTFproteins is mediated by a bipartite low-proline domain. Proc Natl Acad Sci USA. 1994. 91(9): 3901−3905.
  11. Amin, J., J. Ananthan and R. Voellmy. Key features of heat shock regulatory elements.
  12. Mol Cell Biol. 1988. 8(9): 3761−3769.
  13. Amoros, M. and F. Estruch. Hsflp and Msn2/4p cooperate in the expression of
  14. Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner. Mol Microbiol. 2001.39(6): 1523−1532.
  15. Apone, L. M., C. A. Virbasius, F. C. Holstege, J. Wang, R. A. Young and M. R. Green.
  16. Broad, but not universal, transcriptional requirement for yTAFI117, a histone H3-like TAFII present in TFIID and SAGA. Mol Cell. 1998. 2(5): 653−661.
  17. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith and
  18. K. Struhl. Current Protocols in Molecular Biology. 1995.
  19. Azuara, V., P. Perry, S. Sauer, M. Spivakov, H. F. Jorgensen, R. M. John, M. Gouti, M.
  20. Casanova, G. Warnes, M. Merkenschlager and A. G. Fisher. Chromatin signatures of pluripotent cell lines. Nat Cell Biol. 2006. 8(5): 532−538.
  21. Badis, G., E. T. Chan, H. van Bakel, L. Pena-Castillo, D. Tillo, K. Tsui, C. D. Carlson,
  22. Bakshi, R., T. Prakash, D. Dash and V. Brahmachari. In silico characterization of the1080 subfamily of SWI2/SNF2 chromatin remodeling proteins. Biochem Biophys Res Commun. 2004. 320(1): 197−204.
  23. Bali, P., M. Pranpat, J. Bradner, M. Balasis, W. Fiskus, F. Guo, K. Rocha, S.
  24. Bannister, A. J., P. Zegerman, J. F. Partridge, E. A. Miska, J. O. Thomas, R'. C. Allshireand T. Kouzarides. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Natuie. 2001.410(6824): 120−124.
  25. Baiak, O., M. A. Lazzaro, W. S. Lane, D. W. Speicher, D. J. Picketts and R. Shiekhattar.1.olation of human NURF: a legulator of Engrailed gene expression. EMBO J. 2003. 22(22): 6089−6100.
  26. Barbaric, S., J. Walker, A. Schmid, J. Q. Svejstrup and W. Horz. Increasing the rate ofchromatin remodeling and gene activation—a novel role for the histone acetyltransferase Gcn5. Embo J. 2001. 20(17): 4944−4951.
  27. Barlev, N. A., R. Candau, L. Wang, P. Darpino, N. Silverman and S. L. Berger.
  28. Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA- binding protein. J Biol Chem. 1995. 270(33): 19 337−19 344.
  29. Baxter, B. K. and E. A. Craig. Suppression of an Hsp70 mutant phenotype in
  30. Saccharomyces cerevisiae through loss of function of the chromatin component Sinlp/Spt2p. J Bacteriol. 1998. 180(24): 6484−6492.
  31. Bazett-Jones, D. P., J. Cote, C. C. Landel, C. L. Peterson and J. L. Workman. The
  32. SWI/SNF complex creates loop domains in DNA and polynucleosome arrays and can disrupt DNA-histone contacts within these domains. Mol Cell Biol. 1999. 19(2): 14 701 478.
  33. Becker, P. B. and W. Horz. ATP-dependent nucleosome remodeling. Annu Rev1. Biochem. 2002.71:247−273.
  34. Bernstein, B. E., M. Kamal, K. Lindblad-Toh, S. Bekiranov, D. K. Bailey, D. J. Huebert,
  35. S. McMahon, E. K. Karlsson, E. J. Kulbokas, 3rd, T. R. Gingeras, S. L. Schreiber and E. S. Lander. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell. 2005.120(2): 169−181.
  36. Bhaumik, S. R. and M. R. Green. SAGA is an essential in vivo target of the yeast acidicactivator Gal4p. Genes Dev. 2001. 15(15): 1935−1945.
  37. Birck, C., O. Poch, C. Romier, M. Ruff, G. Mengus, A. C. Lavigne, I. Davidson and D.
  38. Moras. Human TAF (II)28 and TAF (II)18 interact through a histone fold encoded by atypical evolutionary conserved motifs also found in the SPT3 family. Cell. 1998. 94(2): 239−249.
  39. Blank, T. A. and P. B. Becker. The effect of nucleosome phasing sequences and DNAtopology on nucleosome spacing. J Mol Biol. 1996. 260(1): 1−8.
  40. Boeger, PI., J. Griesenbeck, J. S. Strattan and R. D. Kornberg. Removal of promoternucleosomes by disassembly rather than sliding in vivo. Mol Cell. 2004. 14(5): 667 673.
  41. Borkovich, K. A., F. W. Farrelly, D. B. Finkelstein, J. Taulien and S. Lindquist. hsp82 isan essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol. 1989. 9(9): 3919−3930.
  42. Boy-Marcotte, E., G. Lagniel, M. Perrot, F. Bussereau, A. Boudsocq, M. Jacquet and J.1.barre. The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsfl p regulons. Mol Microbiol. 1999. 33(2): 274−283.
  43. Boyer, L. A., X. Shao, R. H. Ebright and C. L. Peterson. Roles of the histone H2A-H2Bdimers and the (H3-H4)(2) tetramer in nucleosome remodeling by the SWI-SNF complex. J Biol Chem. 2000. 275(16): 11 545−11 552.
  44. Brown, C. E., L. Howe, K. Sousa, S. C. Alley, M. J. Carrozza, S. Tan and J. L.
  45. J Workman. Recruitment of HAT complexes by direct activator interactions with the
  46. ATM-related Tral subunit. Science. 2001. 292(5525): 2333−2337.
  47. Brown, C. E., T. Lechner, L. Howe and J. L. Workman. The many HATs of transcriptioncoactivators. Trends Biochetn Sci. 2000. 25(1): 15−19.) 38. Brown, D. T. Histone HI and the dynamic regulation of chromatin function. Biochem
  48. Cell Biol. 2003. 81(3): 221−227.
  49. Brzeski, J. and A. Jerzmanowski. Deficient in DNA methylation 1 (DDM1) defines anovel family of chromatin-remodeling factors. J Biol Chem. 2003. 278(2): 823−828.
  50. Buschmann, T" S. Y. Fuchs, C. G. Lee, Z. Q. Pan and Z. Ronai. SUMO-1 modificationof Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell. 2000. 101(7): 753−762.
  51. Tempst, J. Du, B. Laurent and R. D. Kornberg. RSC, an essential, abundant chromatinremodeling complex. Cell. 1996. 87(7): 1249−1260.
  52. Calderwood, S. K., M. A. Khaleque, D. B. Sawyer and D. R. Ciocca. Heat shock proteinsin cancer: chaperones of tumorigenesis. Trends Biochem Sci. 2006. 31(3): 164−172.
  53. Carrozza, M. J., B. Li, L. Florens, T. Suganuma, S. K. Swanson, K. K. Lee, W. J. Shia, S.
  54. Anderson, J. Yates, M. P. Washburn and J. L. Workman. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell. 2005. 123(4): 581−592.
  55. Chen, J. and D. S. Pederson. A distal heat shock element promotes the rapid response toheat shock of the HSP26 gene in the yeast Saccharomyces cerevisiae. J Biol Chem. 1993. 268(10): 7442−7448.
  56. Chen, Z., J. Zang, J. Whetstine, X. Hong, F. Davrazou, T. G. Kutateladze, M. Simpson,
  57. Q. Mao, C. H. Pan, S. Dai, J. Hagman, K. Hansen, Y. Shi and G. Zhang. Structural insights into histone demethylation by JMJD2 family members. Cell. 2006.125(4): 691−702.
  58. Cho, H., G. Orphanides, X. Sun, X. J. Yang, V. Ogryzko, E. Lees, Y. Nakatani and D.
  59. Reinberg. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol Cell Biol. 1998.18(9): 5355−5363.
  60. Cho, H. S., C. W. Liu, F. F. Damberger, J. G. Pelton, H. C. Nelson and D. E. Wemmer. i Yeast heat shock transcription factor N-terminal activation domains are unstructured asf probed by heteronuclear NMR spectroscopy. Protein Sci. 1996. 5(2): 262−269.
  61. Chou, S., S. Chatterjee, M. Lee and K. Struhl. Transcriptional activation in yeast cellslacking transcription factor 11 A. Genetics. 1999.153(4): 1573−1581.
  62. Cirillo, L. A., F. R. Lin, I. Cuesta, D. Friedman, M. Jarnik and K. S. Zaret. Opening ofcompacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell. 2002. 9(2): 279−289.i. t X
  63. Clapier, C. R., G. Langst, D. F. Corona, P. B. Becker and K. P. Nightingale. Critical rolefor the histone H4 N terminus in nucleosome leinodeling by ISWI. Mol Cell Biol. 2001.21(3): 875−883.
  64. Clark-Adams, C. D., D. Norris, M. A. Osley, J. S. Fassler and F. Winston. Changes inhistone gene dosage alter transcription in yeast. Genes Dev. 1988. 2(2): 150−159.
  65. Corona, D. F., A. Eberharter, A. Budde, R. Deuring, S. Ferrari, P. Varga-Weisz, M.
  66. Wilm, J. Tamkun and P. B. Becker. Two histone fold proteins, CHRAC-14 and CHRAC-16, are developmentally regulated subunits of chromatin accessibility complex (CHRAC). Embo J. 2000. 19(12): 3049−3059.
  67. Cosma, M. P., T. Tanaka and K. Nasmyth. Ordered recruitment of transcription andchromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell. 1999. 97(3): 299−311.
  68. Cote, J., J. Quinn, J. L. Workman and C. L. Peterson. Stimulation of GAL4 derivativebinding to nucleosomal DNA by the yeast SWI/SNF complex. Science. 1994. 265(5168): 53−60.
  69. Cuthbert, G. L., S. Daujat, A. W. Snowden, H. Erdjument-Bromage, T. Hagiwara, M.
  70. Yamada, R. Schneider, P. D. Gregory, P. Tempst, A. J. Bannister and T. Kouzarides. Histone deimination antagonizes arginine methylation. Cell. 2004.118(5): 545−553.
  71. Dai, C., L. Whitesell, A. B. Rogers and S. Lindquist. Heat shock factor 1 is a powerfulmultifaceted modifier of carcinogenesis. Cell. 2007. 130(6): 1005−1018.
  72. Damelin, M., I. Simon, T. I. Moy, B. Wilson, S. Komili, P. Tempst, F. P. Roth, R. A.
  73. Young, B. R. Cairns and P. A. Silver. The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. Mol Cell. 2002. 9(3): 563−573.
  74. Davey, C. A., D. F. Sargent, K. Luger, A. W. Maeder and T. J. Richmond. Solventmediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J Mol Biol. 2002. 319(5): 1097−1113.
  75. Deckert, J. and K. Struhl. Histone acetylation at promoters is differentially affected byspecific activators and repressors. Mol Cell Biol. 2001. 21(8): 2726−2735.
  76. Delmas, V., D. G. Stokes and R. P. Perry. A mammalian DNA-binding protein thatcontains a chromodomain and an SNF2/SWI2-like helicase domain. Proc Natl Acad Sci USA. 1993. 90(6): 2414−2418.
  77. Dennis, K., T. Fan, T. Geiman, Q. Yan and K. Muegge. Lsh, a member of the SNF2family, is required for genome-wide methylation. Genes Dev. 2001. 15(22): 29 402 944.
  78. Dhalluin, C., J. E. Carlson, L. Zeng, C. He, A. K. Aggarwal and M. M. Zhou. Structureand ligand of a histone acetyltransferase bromodomain. Nature. 1999. 399(6735): 491 496.
  79. Di Mauro, E., S. G. Kendrew and M. Caserta. Two distinct nucleosome alterationscharacterize chromatin iemodeling at the Saccharomyces cerevisiae ADH2 promoter. J Biol Chem. 2000. 275(11): 7612−7618.
  80. Drysdale, C. M., E. Duenas, B. M. Jackson, U. Reusser, G. H. Braus and A. G.
  81. Hinnebusch. The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Mol Cell Biol. 1995.15(3): 1220−1233.
  82. Edmondson, D. G., M. M. Smith and S. Y. Roth. Repression domain of the yeast globalrepressor Tupl interacts directly with histones H3 and H4. Genes Dev. 1996. 10(10): 1247−1259.
  83. Emre, N. C" K. Ingvarsdottir, A. Wyce, A. Wood, N. J. Krogan, K. W. Henry, K. Li, R.
  84. Marmorstein, J. F. Greenblatt, A. Shilatifard and S. L. Berger. Maintenance of low histone ubiquitylation by Ubp 10 correlates with telomere-proximal Sir2 association and gene silencing. Mol Cell. 2005. 17(4): 585−594.
  85. Erkina, T. Y. and A. M. Erkine. Displacement of histones at promoters of Saccharomycescerevisiae heat shock genes is differentially associated with histone H3 acetylation. Mol Cell Biol. 2006.26(20): 7587−7600.
  86. Erkina, T. Y., P. A. Tschetter and A. M. Erkine. Different requirements of the SWI/SNFcomplex for robust nucleosome displacement at promoters of heat shock factor and Msn2- and Msn4-regulated heat shock genes. Mol Cell Biol. 2008.28(4): 1207−1217.
  87. Erkina, T. Y., Y. Zou, S. Freeling, V. I. Vorobyev and A. M. Erkine. Functional interplaybetween chromatin remodeling complexes RSC, SWI/SNF and ISWI in regulation of yeast heat shock genes. Nucleic Acids Res. 2010.38(5): 1441−1449.
  88. Erkine, A. M., C. C. Adams, M. Gao and D. S. Gross. Multiple protein-DNA interactionsover the yeast HSC82 heat shock gene promoter. Nucleic Acids Res. 1995. 23(10): 1822−1829.
  89. Erkine, A. M. and D. S. Gross. Dynamic chromatin alterations triggered by natural andsynthetic activation domains. J Biol Chem. 2003. 278(10): 7755−7764.
  90. Erkine, A. M., S. F. Magrogan, E. A. Sekinger and D. S. Gross. Cooperative binding ofheat shock factor to the yeast HSP82 promoter in vivo and in vitio. Mol Cell Biol.1999. 19(3): 1627−1639.
  91. Erkine, A. M., C. Szent-Gyorgyi, S. F. Simmons and D. S. Gross. The upstreamsequences of the HSP82 and HSC82 genes of Saccharomyces cerevisiae: regulatory elements and nucleosome positioning motifs. Yeast. 1995. 11(6): 573−580.
  92. Escher, D., M. Bodmer-Glavas, A. Barberis and W. Schaffner. Conservation ofglutamine-rich transactivation function between yeast and humans. Mol Cell Biol.2000. 20(8): 2774−2782.
  93. Estruch, F. Stress-controlled transcription factors, stress-induced genes and stresstolerance in budding yeast. FEMS Microbiol Rev. 2000. 24(4): 469−486.
  94. Fan, H. Y., K. W. Trotter, T. K. Archer and R. E. Kingston. Swapping function of twochromatin remodeling complexes. Mol Cell. 2005. 17(6): 805−815.
  95. Feng, Q. and Y. Zhang. The NuRD complex: linking histone modification to nucleosomeremodeling. Curr Top Microbiol Immunol. 2003. 274: 269−290.
  96. Ferguson, S. B., E. S. Anderson, R. B. Harshaw, T. Thate, N. L. Craig and H. C. Nelson.
  97. Protein kinase A regulates constitutive expression of small heat-shock genes in an Msn2/4p-independent and Hsflp-dependent manner in Saccharomyces cerevisiae. Genetics. 2005. 169(3): 1203−1214.
  98. Fischle, W., B. S. Tseng, H. L. Dormann, B. M. Ueberheide, B. A. Garcia, J.
  99. Shabanowitz, D. F. Hunt, H. Funabiki and C. D. Allis. Regulation of HP 1-chromatin binding by histone H3 methylation and phosphorylation. Nature. 2005. 438(7071): 1116−1122.
  100. Gangaraju, V. K. and B. Bartholomew. Dependency of ISWI a chromatin remodeling onextranucleosomal DNA. Mol Cell Biol. 2007. 27(8): 3217−3225.
  101. Gardner, R. G., Z. W. Nelson and D. E. Gottschling. Ubpl0/Dot4p regulates thepersistence of ubiquitinated histone H2B: distinct roles in telomeric silencing and general chromatin. Mol Cell Biol. 2005. 25(14): 6123−6139.
  102. Garreau, H., R. N. Hasan, G. Renault, F. Estruch, E. Boy-Marcotte and M. Jacquet.
  103. Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology. 2000.146 (Pt 9): 2113−2120.
  104. Gasch, A. P., P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz, D.
  105. Botstein and P. O. Brown. Genomic expression-programs in the response of yeast cells to environmental changes. Mol Biol Cell. 2000. 11(12): 4241−4257.
  106. Gasser, S. M. and M. M. Cockell. The molecular biology of the SIR proteins. Gene.2001.279(1): 1−16-
  107. Gaudreau, L., A. Schmid, D. Blaschke, M. Ptashne and W. Horz. RNA polymerase IIholoenzyme recruitment is sufficient to remodel chromatin at the yeast PH05 promoter. Cell. 1997. 89(1): 55−62.
  108. Gerber, H. P., K. Seipel, O. Georgiev, M. Hofferer, M. Hug, S. Rusconi and W.
  109. Schaffner. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science. 1994. 263(5148): 808−811.
  110. Giardina, C. and J. T. Lis. Dynamic protein-DNA architecture of a yeast heat shockpromoter. Mol Cell Biol. 1995.15(5): 2737−2744.
  111. Gorner, W., E. Durchschlag, M. T. Martinez-Pastor, F. Estruch, G. Ammerer, B.
  112. Hamilton, H. Ruis and C. Schuller. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein, kinase A activity. Genes Dev. 1998: 12(4): 586−597.
  113. Green, G. R., P. Collas, A. Burrell and D. L. Poccia. Histone phosphorylation during seaurchin development. Semin Cell Biol. 1995. 6(4): 219−227.
  114. Gross, D. S., C. C. Adams, S. Lee and B. Stentz. A critical role for heat shocktranscription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene. EMBO J. 1993. 12(10): 3931−3945.
  115. Gross, D. S., K. E. English, K. W. Collins and S. W. Lee. Genomic footprinting of theyeast HSP82 promoter reveals marked distortion of the DNA helix and constitutive occupancy of heat shock and TATA elements. J Mol Biol. 1990.216(3): 611−631.
  116. Grune, T., J. Brzeski, A. Eberharter, C. R. Clapier, D. F. Corona, P. B. Becker and C. W.
  117. Muller. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol Cell. 2003.12(2): 449−460.
  118. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature. 1997.389(6649): 349−352.
  119. Gutierrez, J. L., M. Chandy, M. J. Carrozza and J. L. Workman- Activation domainsdrive nucleosome eviction by SWI/SNF. Embo J. 2007.26(3): 730−740.
  120. Ha, N., K. Hellauer and B. Turcotte. Fusions with histone H3 result in highly specificalteration of gene expression. Nucleic Acids Res. 2000. 28(4): 1026−1035.
  121. Hahn, J. S., Z. Hu, D. J. Thiele and V. R. Iyer. Genome-wide analysis of the biology ofstress responses through heat shock transcription factor. Mol Cell Biol. 2004. 24(12): 5249−5256.
  122. Hannum, G., R. Srivas, A. Guenole, H. van Attikum, N. J. Krogan, R. M. Karp and T. Ideker. Genome-wide association data reveal a global map of genetic interactions among protein complexes. PLoS Genet. 2009. 5(12): el000782.
  123. Hashikawa, N. and H. Sakurai. Phosphorylation of the yeast heat shock transcriptionfactor is implicated in gene-specific activation dependent on the architecture of the heat shock element. Mol Cell Biol. 2004. 24(9): 3648−3659.
  124. Hassa, P. O., S. S. Haenni, M. Elscr and M. O. Hottiger. Nuclear ADP-ribosylationleactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev. 2006. 70(3): 789−829.
  125. Hassan, A. H., K. E. Neely, M. Vignali, J. C. Reese and J. L. Workman. Promotertargeting of chromatin-modifying complexes. Front Biosci. 2001. 6: D1054−1064.
  126. Hassan, A. H., K. E. Neely and J. L. Workman. Histone Acetyltransferase Complexes
  127. Stabilize SWI/SNF Binding to Promoter Nucleosomes. Cell. 2001.104(6): 817−827.
  128. Hassan, A. H., P. Prochasson, K. E. Neely, S. C. Galasinski, M. Chandy, M. J. Carrozzaand J. L. Workman. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell. 2002.111(3): 369−379.
  129. Havas, K., A. Flaus, M. Phelan, R. Kingston, P. A. Wade, D. M. Lilley and T. Owen
  130. Hughes. Generation of superhelical torsion by ATP-dependent chromatin remodeling activities. Cell. 2000.103(7): 1133−1142.
  131. Haynes, S. R., C. Dollard, F. Winston, S. Beck, J. Trowsdale and I. B. Dawid. Thebromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res. 1992. 20(10): 2603.
  132. He, X., H. Y. Fan, G. J. Narlikar and R. E. Kingston. Human ACF1 alters the remodelingstrategy of SNF2h. J Biol Chem. 2006. 281(39): 28 636−28 647.
  133. Hecht, A., S. Strahl-Bolsinger and M. Grunstein. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature. 1996. 383(6595): 92−96.
  134. Henriksson, A., T. Almlof, J. Ford, I. J. McEwan, J. A. Gustafsson and A. P. Wiight.
  135. Role of the Ada adaptor complex in gene activation by the glucocorticoid receptor. Mol Cell Biol. 1997.17(6): 3065−3073.
  136. Hoeck, W. and B. Groner. Hormone-dependent phosphorylation of the glucocorticoidreceptor occurs mainly in the amino-terminal transactivation domain. J Biol Chem. 1990. 265(10): 5403−5408.
  137. Hoj, A. and B. K. Jakobsen. A short element required for turning off heat shock transcription factor: evidence that phosphorylation enhances deactivation. Ernbo J. 1994.13(11): 2617−2624.
  138. Jacquet, M., G. Renault, S. Lallet, J. De Mey and A. Goldbeter. Oscillatory nucleocytoplasmic shuttling of the general stress lesponse transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae. J Cell Biol. 2003.161(3): 497−505.
  139. Jakobsen, B. K. and H. R. Pelham. Constitutive binding of yeast heat shock factor to
  140. DNA in vivo. Mol Cell Biol. 1988. 8(11): 5040−5042.
  141. James, P., J. Halladay and E. A. Craig. Genomic libraries and a host strain designed forhighly efficient two- hybrid selection in yeast. Genetics. 1996. 144(4): 1425−1436.
  142. Jenuwein, T. The epigenetic magic of histone lysine methylation. FEBS J. 2006. 273(14): 3121−3135.
  143. Jenuwein, T. and C. D. Allis. Translating the histone code. Science. 2001. 293(5532):1074−1080.
  144. Jin, J., Y. Cai, T. Yao, A. J. Gottschalk, L. Florens, S. K. Swanson, J. L. Gutierrez, M. K.
  145. Coleman, J. L. Workman, A. Mushegian, M. P. Washburn, R. C. Conaway and J. W. Conaway. A mammalian chromatin remodeling complex with similarities to the yeast IN080 complex. J Biol Chem. 2005. 280(50): 41 207−41 212.
  146. Joshi, A. A. and K. Struhl. Eaf3 chromodomain interaction with methylated H3-K36links histone deacetylation to Pol II elongation. Mol Cell. 2005. 20(6): 971−978.
  147. Ju, B. G., V. V. Lunyak, V. Perissi, I. Garcia-Bassets, D. W. Rose, C. K. Glass and M. G.
  148. Rosenfeld. A topoisomerase Ilbeta-mediated dsDNA break required for regulated transcription. Science. 2006.312(5781): 1798−1802.
  149. Kadonaga, J. T. Eukaryotic transcription: an interlaced network of transcription factorsand chromatin-modifying machines. Cell. 1998. 92(3): 307−313.
  150. Kadosh, D. and K. Struhl. Repression by Ume6 involves recruitment of a complexcontaining Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell. 1997. 89(3): 365−371.
  151. Kamakaka, R. T. and S. Biggins. Histone variants: deviants? Genes Dev. 2005.19(3): 295−310.
  152. Kassabov, S. R., B. Zhang, J. Persinger and B. Bartholomew. SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol Cell. 2003.11(2): 391−403.
  153. Katan-Khaykovich, Y. and K. Struhl. Dynamics of global histone acetylation and deacetylation in vivo: rapid restoration of normal’histone acetylation status upon removal of activators and repressors. Genes Dev. 2002. 16(6): 743−752.
  154. Kaufmann, J., C. P. Verrijzer, J. Shao and S. T. Smale. CIF, an essential cofactor for TFIID-dependent initiator function. Genes Dev. 1996.10(7): 873−886.
  155. Keener, J., J. A. Dodd, D. Lalo and M. Nomura. Histones H3 and H4 are components ofupstream activation factor required for the high-level transcription of yeast rDNA by RNA polymerase I. ProcNatl Acad Sci USA. 1997. 94(25): 13 458−13 462.
  156. Kelbauskas, L., J. Yodh, N. Woodbury and D. Lohr. Intrinsic promoter nucleosomestability/dynamics variations support a novel targeting mechanism. Biochemistry. 2009. 48(20): 4217−4219.
  157. Keogh, M. C., S. K. Kurdistani, S. A. Morris, S. H. Ahn, V. Podolny, S. R. Collins, M.
  158. Kim, Y., N. McLaughlin, K. Lindstrom, T. Tsukiyama and D. J. Clark. Activation of
  159. Saccharomyces cerevisiae HIS3 results in Gcn4p-dependent, SWI/SNF-dependent mobilization of nucleosomes over the entire gene. Mol Cell Biol. 2006. 26(22): 86 078 622.
  160. Kingston, R. E. and G. J. Narlikar. ATP-dependent remodeling and acetylation asregulators of chromatin fluidity. Genes Dev. 1999.13(18): 2339−2352.
  161. Klemm, R. D., J. A. Goodrich, S. Zhou and R. Tjian. Molecular cloning and expression of the 32-kDa subunit of human TFIID reveals interactions with VP16 and TFIIB that mediate transcriptional activation. Proc Natl Acad Sci USA. 1995. 92(13): 57 885 792.
  162. Koh, S. S., A. Z. Ansari, M. Ptashne and R. A. Young. An activator target in the RNA polymerase II holoenzyme. Mol Cell. 1998. 1(6): 895−904.
  163. Korber, P., T. Luckenbach, D. Blaschke and W. Horz. Evidence for histone eviction in trans upon induction of the yeast PH05 promoter. Mol Cell Biol. 2004. 24(24): 1 096 510 974.
  164. Kornberg, R. D. and J. O. Thomas. Chromatin structure- oligomers of the histones. Science. 1974.184(139): 865−868.
  165. Korolev, S., J. Hsieh, G. H. Gauss, T. M. Lohman and G. Waksman. Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell. 1997. 90(4): 635−647.
  166. Kouzarides, T. Chromatin modifications and their function. Cell. 2007.128(4): 693−705.
  167. Krebs, J. E., C. J. Fry, M. L. Samuels and C. L. Peterson. Global role for chromatinremodeling enzymes in mitotic gene expression. Cell. 2000.102(5): 587−598.
  168. Krishnamoorthy, T" X. Chen, J. Govin, W. L. Cheung, J. Dorsey, K. Schindler, E.
  169. Winter, C. D. Allis, V. Guacci, S. Khochbin, M. T. Fuller and S. L. Berger. Phosphorylation of histone H4 Serl regulates sporulation in yeast and is conserved in fly and mouse spermatogenesis. Genes Dev. 2006. 20(18): 2580−2592.
  170. Kristjuhan, A. and J. Q. Svejstrup. Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo. Embo J. 2004.23(21): 4243−4252.
  171. Kundu, S., P. J. I lorn and C. L. Peterson. SWI/SNF is required for transcriptionalmemoiy at the yeast GAL gene cluster. Genes Dev. 2007. 21(8): 997−1004.
  172. Kwon, H., A. N. Imbalzano, P. A. Khavari, R. E. Kingston and M. R. Green. Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex see comments. Nature. 1994. 370(6489): 477−481.
  173. Lallet, S., H. Garreau, C. Poisier, E. Boy-Marcotte and M. Jacquet. Heat shock-induced degradation of Msn2p, a Saccharomyces cerevisiae transcription factor, occurs in the nucleus. Mol Genet Genomics. 2004. 272(3): 353−362.
  174. Larschan, E. and F. Winston. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev. 2001.15(15): 19 461 956.
  175. Lee, C. K., Y. Shibata, B. Rao, B. D. Strahl and J. D. Lieb. Evidence for nucleosomedepletion at active regulatory regions genome-wide. Nat Genet. 2004. 36(8): 900−905.
  176. Lee, D. and J. T. Lis. Transcriptional activation independent ofTFIIH kinase and the
  177. RNA polymerase II mediator in vivo. Nature. 1998. 393(6683): 389−392.
  178. Lee, D. K., S. Kim and J. T. Lis. Different upstream transcriptional activators havedistinct coactivator requirements. Genes Dev. 1999.13(22): 2934−2939.
  179. Lee, D. Y., C. Teyssier, B. D. Strahl and M. R. Stallcup. Role of protein methylation inregulation of transcription. Endocr Rev. 2005.26(2): 147−170.
  180. Lee, K. K., P. Prochasson, L. Florens, S. K. Swanson, M. P. Washburn and J. L.
  181. Workman. Proteomic analysis of chromatin-modifying complexes in Saccharomyces cerevisiae identifies novel subunits. Biochem Soc Trans. 2004.32(Pt 6): 899−903.
  182. Lee, S. and D. S. Gross. Conditional silencing: the HMRE mating-type silencer exerts arapidly reversible position effect on the yeast HSP82 heat shock gene. Mol Cell Biol. 1993.13(2): 727−738.
  183. Lenfant, F., R. K. Mann, B. Thomsen, X. Ling and M. Grunstein. All four core histone N-termini contain sequences required for the repression of basal transcription in yeast. EmboJ. 1996. 15(15): 3974−3985.
  184. Li, G., M. Levitus, C. Bustamante and J. Widom. Rapid spontaneous accessibility ofnucleosomal DNA. Nat Struct Mol Biol. 2005. 12(1): 46−53.
  185. Lia, G., E. Praly, H. Ferreira, C. Stockdale, Y. C. Tse-Dinh, D. Dunlap, V. Croquette, D. Bensimon and T. Owen-Hughes. Direct observation of DNA distortion by the RSC complex. Mol Cell. 2006. 21(3): 417−425.
  186. Liaw, P. C. and C. J. Brandl. Defining the sequence specificity of the Saccharomyces cerevisiae DNA binding protein REBlp by selecting binding sites from random-sequence oligonucleotides. Yeast. 1994. 10(6): 771−787.
  187. Lindquist, S. and E. A. Craig. The heat-shock proteins. Annu Rev Genet. 1988. 22: 631 677.
  188. Lindstrom, K. C., J. C. Vary, Jr., M. R. Parthun, J. Deliovv and T. Tsukiyama. Iswlfunctions. in parallel with the NuA4 and Swrl complexes in stress-induced gene repression. Mol Cell Biol. 2006:26(16): 6117−6129.
  189. Liu, C. L., T. Kaplan, M. Kim, S. Buratowski, S. L. Schreiber, N. Friedman and O. J.
  190. Rando: Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol. 2005. 3(10): e328.
  191. Liu, X. D. and D. J. Thiele. Oxidative stress induced heat shock factor phosphorylationand HSF- dependent activation of yeast metallothionein gene transcription. Genes Dev. 1996. 10(5): 592−603.
  192. Logie, C. and C. L. Peterson. Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays. Embo J. 1997. 16(22): 6772−6782.
  193. Lorch, Y., B. Maier-Davis and R. D. Kornberg. Chromatin remodeling by nucleosomedisassembly in vitro. Proc Natl Acad Sci USA. 2006. 103(9): 3090−3093.
  194. Lorch, Y., M. Zhang and R. D. Kornberg. Histone octamer transfer by a chromatinremodeling complex. Cell. 1999. 96(3): 389−392.
  195. Lu, X., A. Z. Ansari and M. Ptashne. An artificial transcriptional activating region withunusual properties. Proc Natl Acad Sci USA. 2000. 97(5): 1988−1992.
  196. Luger, K., A. W. Mader, R. K. Richmond, D. F. Sargent and T. J. Richmond. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997. 389(6648): 251−260.
  197. Lusser, A., D. L. Unvin and J. T. Kadonaga. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat Struct Mol Biol. 2005.12(2): 160−166.
  198. Ma, J. and M. Ptashne. A new class of yeast transcriptional activators. Cell. 1987. 51(1):113.119.
  199. Macdonald, N., J. P. Welburn, M. E. Noble, A. Nguyen, M. B. Yaffe, D. Clynes, J. G.
  200. Moggs, G. Orphanides, S. Thomson, J. W. Edmunds, A. L. Clayton, J. A. Endicott and L. C. Mahadevan. Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14−3-3. Mol Cell. 2005. 20(2): 199−211.
  201. Margueron, R., P. Trojer and D. Reinberg. The key to development: interpreting thehistone code? Curr Opin Genet Dev. 2005. 15(2): 163−176.
  202. Martens, J. A. and F. Winston. Recent advances in understanding chromatin remodelingby Swi/Snf complexes. Curr Opin Genet Dev. 2003.13(2): 136−142.
  203. Martens, J. A., P. Y. Wu and F. Winston. Regulation of an intergenic transcript controlsadjacent gene transcription in Saccharomyces cerevisiae. Genes Dev. 2005.19(22): 2695−2704.
  204. Martinez-Pastor, M. T., G. Marchler, C. Schuller, A. Marchler-Bauer, H. Ruis and F.
  205. Estruch. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). Embo J. 1996.15(9): 2227−2235.
  206. McNeil, J. B., H. Agah and D. Bentley. Activated transcription independent of the RNApolymerase II holoenzyme in budding yeast. Genes Dev. 1998.12(16): 2510−2521.
  207. MeIlor, J. and A. Morillon. ISWI complexes in Saccharomyces cerevisiae. Biochim BiophysActa. 2004.1677(1−3): 100−112.
  208. Metivier, R., G. Penot, M. R. Hubner, G. Reid, H. Brand, M. Kos and F. Gannon. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell. 2003. 115(6): 751−763.
  209. Metzger, E., M. Wissmann, N. Yin, J. M. Muller, R. Schneider, A. H. Peters, T. Gunther, R. Buettner and R. Schule. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature. 2005. 437(7057): 436−439.
  210. Mizuguchi, G., X. Shen, J. Landry, W. H. Wu, S. Sen and C. Wu. ATP-driven exchangeof histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science. 2004. 303(5656): 343−348.
  211. Mohrmann, L. and C. P. Verrijzer. Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim Biophys Acta. 2005. 1681(2−3): 59−73.
  212. Moqtaderi, Z., M. Keaveney and K. Struhl. The histone H3-like TAF is broadly requiredfor transcription in yeast. Mol Cell. 1998. 2(5): 675−682.
  213. Morano, K. A., N. Santoro, K. A. Koch and D. J. Thiele. A trans-activation domain in yeast heat-shock transcription factor is essential for cell cycle progression during stress. Mol Cell Biol. 1999.19(1): 402−411.
  214. Morillon, A., N. Karabetsou, J. O’Sullivan, N. Kent, N. Proudfoot and J. Mellor. Iswl chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II. Cell. 2003. 115(4): 425−435.
  215. Morillon, A., J. O’Sullivan, A. Azad, N. Proudfoot and J. Mellor. Regulation of elongating RNA polymerase II by forkhead transcription factors in yeast. Science. 2003. 300(5618): 492−495.
  216. Morimoto, R. I. Regulation of the heat shock transcriptional response: cross talk betweena family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 1998. 12(24): 3788−3796.
  217. Moskvina, E., C. Schuller, C. T. Maurer, W. H. Mager and H. Ruis. A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast. 1998. 14(11): 1041−1050.
  218. Muller, J. M., B. Krauss, C. Kaltschmidt, P. A. Baeuerle and R. A. Rupee. Hypoxiainduces c-fos transcription via a mitogen-activated protein kinase-dependent pathway. J Biol Chem. 1997. 272(37): 23 435−23 439.
  219. Naar, A. M., B. D. Lemon and R. Tjian. Transcriptional coactivator complexes. Annu RevBiochem. 2001.70:475−501.
  220. Nakamura, T. and S. A. Lipton. Cell death: protein misfolding and neurodegenerative diseases. Apoptosis. 2009. 14(4): 455−468.
  221. Natarajan, K., B. M. Jackson, H. Zhou, F. Winston and A. G. Hinnebusch. Transcriptional activation by Gcn4p involves independent interactions with the SWI/SNF complex and the SRB/mediator. Mol Cell. 1999.4(4): 657−664.
  222. Neef, D. W., M. L. Turski and D. J. Thiele. Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biol. 2010. 8(1): el000291.
  223. Neely, K. E., A. H. Hassan, C. E. Brown, L. Howe and J. L. Workman. Transcription activator interactions with multiple SWI/SNF subunits. Mol Cell Biol. 2002. 22(6): 1615−1625.
  224. Nelson, C. J., H. Santos-Rosa and T. Kouzarides. Pioline isomerization of histone H3 regulates lysine methylation and gene expression. Cell. 2006.126(5): 905−916.
  225. Nieto-SoteIo, J., G. Wiederrecht, A. Okuda and C. S. Parker. The yeast heat shock transcription factor contains a transcriptional activation’domain whose activity is repiessed under nonshock conditions. Cell. 1990. 62(4): 807−817.
  226. Nowak, S. J. and V. G. Corces. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 2004. 20(4): 214−220.
  227. Nyanguile, O., M. Uesugi, D. J. Austin and G. L. Verdine. A nonnatural transcriptional coactivator. Proc Natl Acad Sci USA. 1997. 94(25): 13 402−13 406.
  228. Ogryzko, V. V., T. Kotani, X. Zhang, R. L. Schlitz, T. Howard, X. J. Yang, B. H.
  229. Howard, J. Qin and Y. Nakatani. Histone-like TAFs within the PCAF histone acetylase complex. Cell. 1998. 94(1): 35−44.
  230. Owen-Hughes, T. and J. L. Workman. Remodeling the chromatin structure of anucleosome array by transcription factor-targeted trans-displacement of histones. Embo J. 1996.15(17): 4702−4712.
  231. Papamichos-Chronakis, M., J. E. Krebs and C. L. Peterson. Interplay between lno80 and Swrl chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev. 2006. 20(17): 2437−2449.
  232. Parnell, T. J., J. T. Huff and B. R. Cairns. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 2008. 27(1): 100−110.
  233. Parthun, M. R. and J. A. Jaehning. A tianscriptionally active form of GAL4 isphosphorylated and associated with GAL80. Mol Cell Biol. 1992. 12(11): 4981−4987.
  234. Pavri, R., B. Zhu, G. Li, P. Trojer, S. Mandal, A. Shilatifard and D. Reinberg. Histone
  235. H2B monoubiquitination functions cooperatively with FACT to iegulate elongation by RNA polymerase II. Cell. 2006. 125(4): 703−717. 206 Peterson, C. L. and M. A. Laniel. Histones and histone modifications. Curr Biol. 2004. 14(14): R546−551.
  236. Poot, R. A., G. Dellaire, B. B. Hulsmann, M. A. Grimaldi, D. F. Corona, P. B. Becker,
  237. W. A. Bickmore and P. D. Varga-Weisz. HuCHRAC, a human ISWI chromatin remodelling complex contains hACFl and two novel histone-fold proteins. Embo J. 2000.19(13): 3377−3387.
  238. Piochasson, P., K. E. Neely, A. H. Hassan, B. Li and J. L. Workman. Targeting activity is required for SWI/SNF function in vivo and is accomplished through two partially redundant activator-interaction domains. Mol Cell. 2003.12(4): 983−990.
  239. Regier, J. L., F. Shen and S. J. Triezenberg. Pattern of aromatic and hydrophobic amino acids critical for one of two subdomains of the VP Π† Π± transcriptional activator. Proc Natl Acad Sci USA. 1993. 90(3): 883−887.
  240. Reid, J. L., V. R. Iyer, P. O. Brown and K. Struhl. Coordinate Regulation of Yeast
  241. Ribosomal Protein Genes Is Associated with Targeted Recruitment of Esal Histone Acetylase. ΠœΠΎΡ— Cell. 2000. 6(6): 1297−1307.
  242. Reinke, PI., P. D. Gregory and W. Horz. A transient histone hyperacetilation-signal marks nucleosonies for remodeling at the PH08 promoter in vivo. ΠœΠΎΡ—. Cell. 2001. 7: 529 538.
  243. Reinke, H. and W. Horz. Histones are first hyperacetylated and then lose contact with the activated PH05 promoter. ΠœΠΎΡ— Cell. 2003.11(6): 1599−1607.
  244. Ruden, D. M., J. Ma, Y. Li, K. Wood and M. Ptashne. Generating yeast transcriptional activators containing no yeast protein sequences. Nature. 1991. 350(6315): 250−252.
  245. Rutherford, S. L. and S. Lindquist. Hsp90 as a capacitor for morphological evolution.
  246. Saha, A., J. Wittmeyer and B. R. Cairns. Chromatin remodelling: the industrialrevolution of DNA around histones. Nat Rev ΠœΠΎΡ— Cell Biol. 2006. 7(6): 437−447.
  247. Saha, S., A. Z. Ansari, K. A. Jarrell, M. Ptashne and K. A. Jarell. RNA sequences thatwork as transcriptional activating regions. Nucleic Acids Res. 2003. 31(5): 1565−1570.
  248. Sauer, F., J. D. Fondell, Y. Ohkuma, R. G. Roeder and H*. Jackie. Control of transcriptionby Kruppel through interactions with TFIIB and TFIIE beta see comments. Nature. 1995.375(6527): 162−164.
  249. Schwanbeck, R., H. Xiao and C. Wu. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J Biol Chem. 2004. 279(38): 39 933−39 941.
  250. Segal, E., Y. Fondufe-Mittendorf, L. Chen, A. Thastrom, Y. Field, I. K. Moore, J. P.
  251. Wang and J. Widom. A genomic code for nucleosome positioning. Nature. 2006. 442(7104): 772−778.
  252. Sekinger, E. A. and D. S. Gross. Silenced chromatin is permissive to activator bindingand PIC recruitment. Cell. 2001.105: 403−414.
  253. Sengupta, S. M., M. VanKanegan, J. Persinger, C. Logie, B. R. Cairns, C. L. Petersonand B. Bartholomew. The interactions of yeast SWI/SNF and RSC with the nucleosome before and after chromatin remodeling. J Biol Chem. 2001. 276(16): 12 636−12 644.
  254. Shahbazian, M. D. and M. Grunstein. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem. 2007. 76: 75−100.
  255. Shen, X., G. Mizuguchi, A. Hamiche and C. Wu. A chromatin remodelling complexinvolved in transcription and DNA processing. Nature. 2000. 406(6795): 541−544.
  256. Shi, Y., F. Lan, C. Matson, P. Mulligan, J. R. Whetstine, P. A. Cole and R. A. Casero.
  257. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004. 119(7): 941−953.
  258. Shilatifard, A. Chromatin modifications by methylation and ubiquitination: implicationsin the regulation of gene expression. Annu Rev Biochem. 2006. 75: 243−269.
  259. Shivaswamy, S. and V. R. Iyer. Stress-dependent dynamics of global chromatinremodeling in yeast: dual role for SWI/SNF in the heat shock stress response. Mol Cell Biol. 2008. 28(7): 2221−2234.
  260. Shogren-Knaak, M., H. Ishii, J. M. Sun, M. J. Pazin, J. R. Davie and C. L. Peterson.
  261. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science. 2006. 311(5762): 844−847.
  262. Singh, H., A. M. Erkine, S. B. Kremer, H. M. Duttweiler, D. A. Davis, J. Iqbal, R. R.
  263. Gross and D. S. Gross. A functional module of yeast mediator that governs the dynamic range of heat-shock gene expression. Genetics. 2006.172(4): 2169−2184.
  264. Singleton, M. R. and D. B. Wigley. Modularity and specialization in superfamily 1 and 2helicases. J Bacterid. 2002.184(7): 1819−1826.
  265. Smith, C. L., R. Horowitz-Scherer, J. F. Flanagan, C. L. Woodcock and C. L. Peterson.
  266. Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nat Struct Biol. 2003. 10(2): 141−145.
  267. Smith, C. L. and C. L. Peterson. ATP-dependent chiomatin remodeling. Curr Top Dev1. Biol. 2005.65: 115−148.
  268. Sorger, P. K. Yeast heat shock factor contains separable transient and sustained responsetranscriptional activators. Cell. 1990. 62(4): 793−805.
  269. Sorger, P. K., M. J. Lewis and H. R. Pelham. Heat shock factor is regulated differently inyeast and HeLa cells. Nature. 1987. 329(6134): 81 -84.
  270. Sorger, P. K. and H. R. Pelham. Yeast heat shock factor is an essential DNA-bindingprotein that exhibits temperature-dependent phosphorylation. Cell. 1988. 54(6): 855 864.
  271. Stafford, G. A. and R. H. Morse. Chromatin remodeling by transcriptional activationdomains in a yeast episome. J Biol Chem. 1997. 272(17): 11 526−11 534.
  272. Sterner, D. E. and S. L. Berger. Acetylation of histones and transcription-related factors.
  273. Microbiol Mol Biol Rev. 2000. 64(2): 435−459.
  274. Steward, M. M., J. S. Lee, A. O’Donovan, M. Wyatt, B. E. Bernstein and A. Shilatifard.
  275. Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat Struct Mol Biol. 2006.13(9): 852−854.
  276. Stockdale, C., M. Bruno, H. Ferreira, E. Gaicia-Wilson, N. Wiechens, M. Engeholm, A.
  277. Flaus and T. Owen-Hughes. Nucleosome dynamics. Biochem Soc Symp. 2006. (73): 109−119.
  278. Strahl, B. D. and C. D. Allis. The language of covalent histone modifications. Nature.2000. 403(6765): 41−45.
  279. Strohner, R" A. Nemeth, P. Jansa, U Hofmann-Rohrer, R. Santoro, G. Langst and I.
  280. Grummt. NoRC~a novel member of mammalian ISWI-containing chiomatin remodeling machines. EMBO J. 2001. 20(17): 4892−4900.
  281. Szent-Gyorgyi, C., D. B. Finkelstein and W. T. Garrard. Sharp boundaries demarcate thechromatin structure of a yeast heat- shock gene. J Mol Biol. 1987. 193(1): 71−80.
  282. Taylor, I. C., J. L. Workman, T. J. Schuetz and R. E. Kingston. Facilitated binding of
  283. GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. Genes Dev. 1991. 5(7): 1285−1298.
  284. Thoma, N. H., B. K. Czyzewski, A. A. Alexeev, A. V. Mazin, S. C. Kowalczykowski and N. P. Pavletich. Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54. Nat Struct Mol Biol. 2005. 12(4): 350−356.
  285. Thut, C. J., J. L. Chen, R. Klemm and R. Tjian. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science. 1995. 267(5194): 100−104.
  286. Tran, H. G., D. J. Steger, V. R. Iyer and A. D. Johnson. The chromo domain protein chdlp from budding yeast is an ATP-dependent chromatin-modifying factor. EMBO J. 2000.19(10): 2323−2331.
  287. Triezenberg, S. J. Structure and function of transcriptional activation domains. Curr Opin Genet Dev. 1995. 5(2): 190−196.
  288. Tsukiyama, T. and C. Wu. Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell. 1995. 83(6): 1011−1020.
  289. Uesugi, M., O. Nyanguile, H. Lu, A. J. Levine and G. L. Verdine. Induced alpha helix in the VP16 activation domain upon binding to a human TAF. Science. 1997. 277(5330): 1310−1313.
  290. Utley, R. T., J. Cote, T. Owen-Hughes and J. L. Workman. SWI/SNF stimulates theformation of disparate activator-nucleosome complexes but is partially redundant with cooperative binding. J Biol Chem. 1997.272(19): 12 642−12 649.
  291. Utley, R. T., K. Ikeda, P. A. Grant, J. Cote, D. J. Steger, A. Eberharter, S. John and J. L.
  292. Vaquero, A., M. B. Scher, D. H. Lee, A. Sutton, H. L. Cheng, F. W. Alt, L. Serrano, R.
  293. Sternglanz and D. Reinberg. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 2006. 20(10): 1256−1261.
  294. Varga-Weisz, P. D., T. A. Blank and P. B. Becker. Energy-dependent chromatinaccessibility and nucleosome mobility in a cell-free system. EMBO J. 1995.14(10): 2209−2216.
  295. Vary, J. C., Jr., V. K. Gangaraju, J. Qin, C. C. Landel, C. Kooperberg, B. Bartholomewand T. Tsukiyama. Yeast Iswlp forms two separable complexes in vivo. Mol Cell Biol. 2003.23(1): 80−91.
  296. Vignali, M., A. H. Hassan, K. E. Neely and J. L. Workman. ATP-dependent chromatinremodeling complexes. Mol Cell Biol. 2000.20(6): 1899−1910.
  297. Voelliny, R. On mechanisms that control heat shock transcription factor activity inmetazoan cells. Cell Stress Chaperones. 2004. 9(2): 122−133.
  298. Wade, P. A., P. L. Jones, D. Vermaak, G. J<. Veenstra, A. Imhofj T. Sera, C. Tse, H. Ge,
  299. Y: B. Shi, J. C. Hansen and A. P. Wolffe. Histone deacetylase directs the dominant. β€’ silencing of transcription in chromatin: association with MeCP2 and the Mi-2 chromodomain. SWI/SNF ATPase. Cold Spring Harb Symp Quant Biol: 1998. 63: 435 445.
  300. Wang, W. The SWI/SNF family of ATP-dependent chromatin remodelers: similarmechanisms for diverse functions. Curr Top Microbiol Immunol. 2003. 274: 143−169.
  301. Wang, Y., J. Wysocka, J. R. Perlin, L. Leonelli, C. D. Allis and S. A. Coonrod. Linkingcovalent histone modifications to epigenetics: the rigidity and plasticity of the marks. Cold Spring Harb Symp Quant Biol. 2004. 69: 161−169.
  302. Wenzelides, S., H. Altmann, W. Wendler and E. L. Winnacker. CTF5-a newtranscriptional activator of the NFI/CTF family. Nucleic Acids Res. 1996. 24(12): 2416−2421.
  303. White, C. L., R. K. Suto and K. Luger. Structure of the yeast nucleosome core particlereveals fundamental changes in internucleosome interactions. EMBO J. 2001. 20(18): 5207−5218.
  304. Whitehouse, I., C. Stockdale, A. Flaus, M. D. Szczelkun and T. Owen-Hughes. Evidencefor DNA translocation by the ISWI chromatin-remodeling enzyme. Mol Cell Biol. 2003.23(6): 1935−1945.
  305. Whitehouse, I. and T. Tsukiyama. Antagonistic forces that position nucleosomes in vivo.
  306. Nat Struct Mol Biol. 2006. 13(7): 633−640.
  307. Wilson, C. J., D. M. Chao, A. N. Imbalzano, G. R. Schnitzler, R. E. Kingston and R. A.
  308. Young. RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell. 1996. 84(2): 235−244. 281. Winston, F. and C. D. Allis. The bromodomain: a chromatin-targeting module? Nat Struct Biol. 1999. 6(7): 601−604.
  309. Woodcock, C. L. Chromatin architecture. Curr Opin Struct Biol. 2006. 16(2): 213−220.
  310. Workman, J. L. Nucleosome displacement in transcription. Genes Dev. 2006. 20(15):2009−2017.
  311. Wu, C. Heat shock transcription factors: structure and regulation. Ann Rev Cell Dev1. Biol. 1995.11:441−469:
  312. Xella, B., C. Goding, E. Agricola, E. Di Mauro and M. Caseria. The ISWI and CHD1 chromatin remodelling activities influence ADH2 expression and chromatin organization. Mol Microbiol. 2006.59(5): 1531−1541.
  313. Xiao, L., X. Lu and D. M. Ruden. Effectiveness of hsp90 inhibitors as anti-cancer drugs.
  314. Mini Rev Med Chem. 2006. 6(10): 1137−1143.
  315. Xu, F., K. Zhang and M. Grunstein. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell. 2005. 121(3): 375−385.
  316. Yamamoto, A., Y. Mizukami and H. Sakurai. Identification of a novel class of targetgenes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J Biol Chem. 2005. 280(12): 11 911−11 919.
  317. Yanagisawa, S. The transcriptional activation domain of the plant-specific Dofl factorfunctions in plant, animal, and yeast cells. Plant Cell Physiol. 2001. 42(8): 813−822.
  318. Young, M. R. and E. A. Craig. Saccharomyces cerevisiae HSP70 heat shock elements arefunctionally distinct. Mol Cell Biol. 1993. 13(9): 5637−5646.
  319. Yudkovsky, N., C. Logie, S. Hahn and C. L. Peterson. Recruitment of the SWI/SNFchromatin remodeling complex by transcriptional activators. Genes Dev. 1999. 13(18): 2369−2374.
  320. Zhang, L., S. Schroeder, N. Fong and D. L. Bentley. Altered nucleosome occupancy and histone H3K4 methylation in response to 'transcriptional stress'. EMBO J. 2005. 24(13): 2379−2390.
  321. Zhang, Y. and D. Reinberg. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 2001. 15(18): 2343−2360.
  322. Zhang, Y., C. L. Smith, A. Saha, S. W. Grill, S. Mihardja, S. B. Smith, B. R. Cairns, C. L. Peterson and C. Bustamante. DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol Cell. 2006. 24(4): 559−568.
  323. Zhao, J., J. Herrera-Diaz and D. S. Gross. Domain-Wide Displacement of Histones by Activated Heat Shock Factor Occurs Independently of Swi/Snf and Is Not Correlated with RNA Polymerase II Density. Mol Cell Biol. 2005. 25(20): 8985−8999.
  324. Zhao, R. and W. A. Houry. Hsp90: a chaperone for protein folding and gene regulation.
  325. Biochem Cell Biol. 2005. 83(6): 703−710.
  326. ZofalI, M., J. Persinger, S. R. Kassabov and B. Bartholomew. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat Struct Mol Biol. 2006. 13(4): 339−346.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ