Помощь в учёбе, очень быстро...
Работаем вместе до победы

Влияние белков вируса гепатита C на регуляцию окислительного стресса и метаболизм биогенных полиаминов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Белки NS5A, NS4B, El, Е2, а также белок капсида вируса гепатита С вызывают окислительный стресс в клетках в клетках гепатомы человека Huh7- наиболее активным регулятором которого является белок капсида. N-концевой домен белка капсида активирует экспрессию NADPH-оксидаз 1 и 4, что приводит к усилению продукции супероксид-радикала, тогда как его С-концевой домен вызывает активацию экспрессии… Читать ещё >

Содержание

  • СПИСОК ИСПОЛЬЗУЕМЫХ СОКРАЩЕНИЙ
  • ОБЗОР ЛИТЕРАТУРЫ
  • Вирус гепатита С
  • Геном и протеом вируса гепатита С
  • Белок капсида
  • Гликопротеины оболочки Е1 и Е
  • Белок р
  • Белок N
  • Белки N83 и ^4А
  • Белок Ш4В
  • Белок N85 А
  • Белок Ш5В
  • Клеточные и животные модели репликации ВГС
  • Окислительный стресс
  • Система защиты от окислительного стресса
  • Цис- элементы, регулирующие клеточный ответ на окислительный стресс
  • Факторы транскрипции, регулирующие экспрессию АЯЕ-зависимых генов
  • Структура фактора транскрипции №
  • Взаимодействие фактора транскрипции № 12 с белком Кеарі в отсутствие окислительного стресса
  • Регуляция активности фактора транскрипции Nrf
  • Влияние вируса гепатита С на системы защиты клетки от окислительного стресса
  • Биогенные полиамины и регуляция их метаболизма
  • Функции орнитиндекарбоксилазы и регуляция ее активности
  • Регуляция и функции спермидин/спермин-N 1 -ацетилтрансферазы
  • Функции полиаминоксидазы (АРАО) и регуляция ее активности
  • Функции сперминоксидазы и регуляция ее активности
  • Связь нарушений метаболизма полиаминов с различными заболеваниями

Влияние белков вируса гепатита C на регуляцию окислительного стресса и метаболизм биогенных полиаминов (реферат, курсовая, диплом, контрольная)

выводы.

1. Белки NS5A, NS4B, El, Е2, а также белок капсида вируса гепатита С вызывают окислительный стресс в клетках в клетках гепатомы человека Huh7- наиболее активным регулятором которого является белок капсида. N-концевой домен белка капсида активирует экспрессию NADPH-оксидаз 1 и 4, что приводит к усилению продукции супероксид-радикала, тогда как его С-концевой домен вызывает активацию экспрессии цитохрома Р450 2Е1 (CYP 2Е1) и оксидоредуктина (Erola) — источников супероксид-радикала и пероксида водорода, соответственно.

2. Белки El, Е2, NS4B, NS5A и белок капсида активируют систему защиты клетки (Nrf2/AREKacKa/<) от активных форм кислорода (АФК) в клетках Huh7 по нескольким независимым механизмам. Все эти белки вызывают усиленную экспрессию «ферментов Пфазы защиты» путем фосфорилирования фактора транскрипции №Опротеинкиназой С (РКС) по АФК-зависимому механизму. Белок капсида и белок NS5A способны также активировать фактор Nrf2 по механизму, не зависящему от концентрации АФК, при участии фосфоинозитид-3-киназы (PI3K) и казеинкиназы 2 (СК2). В случае белков El, Е2 и NS4B активация Nrf2 по АФК-независимому механизму предположительно опосредовано протеинкиназой PERK. Наиболее активным регулятором № 12/А11Екаскада является белок капсида, N-концевой домен которого отвечает за индукцию АФК-независимого, а С-концевой — АФК-зависимого механизмов защиты.

3. В клетках гепатомы человека Huh7 окислительный стресс, вызванный химическими агентами, приводит к повышению уровней биогенных полиаминов спермина и спермидина вследствие усиления экспрессии орнитиндекарбоксилазы (ODC) и спермидин/спермин-Nацетилтрансферазы (SSAT), опосредованного факторами транскрипции Nrf2 и NF-kB. Окислительный стресс, вызванный белком капсида и белком NSSABHpyca гепатита С, также вызывает активацию транскрипции генов ОБСи SSAT, что, однако, сопровождается снижением активности кодируемых ими ферментов и падением уровня полиаминов в клетке.

4. Клетки Huh7, несущие полноразмерный репликон ВГС, обладают сниженным уровнем биогенных полиаминов и активностей ферментов их метаболизма, а повышение концентрации спермина и спермидина приводит к ингибированию репликации ВГС и снижению уровня геномной РНК вируса.

1. Shepard C.W., Findli L. Alter M.J. Global epidemiology of hepatitis C virus infection. // Lancet 1.fect. Dis. 2005. V. 5, P. 558−567.

2. Nordenstedt H, White D.L.El-Serag H.B. The changing pattern of epidemiology in hepatocellular carcinoma. /?Dig. Liver Dis. 2010. V. 42 Suppl 3, P. S206−214.

3. Nocente R., Ceccanti M., Bertazzoni G., Cammarota G., Silveri N.G.Gasbarrini G. HCV infection and extrahepatic manifestations. // Hepatogastroenterology 2003. V. 50, P. 1149−1154.

4. Manns M.P., Wedemeyer H. Cornberg M. Treating viral hepatitis C: efficacy, side effects, and complications. // Gut 2006. V. 55, P. 1350−1359.

5. Forestier N. Reesink H.W., Weegink C.J., McNair L., Kieffer T.L., Chu H.M., Purely S., Jansen P.L.Zeuzem S. Antiviral activity of telaprevir (VX-950) and peginterferon alfa-2a in patients with hepatitis C. // Hepatology 2007. V. 46, P. 640−648.

6. Thomas D.L. Advances in the treatment of hepatitis C virus infection. // Top. Antivir. Med. 2012. V. 20, P. 5−10.

7. Njoroge F.G., Chen K.X., Shih N.Y.Piwinski J.J. Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection. HAcc. Client. Res. 2008. V. 41, P. 50−59.

8. Gaboriau F., Vaultier M., Moulinoux J.P.Delcros J.G. Antioxidative properties of natural polyamines and dimethylsilane analogues. II Redox. Rep. 2005. V. 10, P. 9−18.

9. Casero R.A.Pegg A.E. Polyamine catabolism and disease. // Biochem. J. 2009. V. 421, P. 323−338.

10. Lindenbach B.D., Evans M.J., Syder A.J., Wolk B., Tellinghuisen T.L., Liu C.C., Maruyama T., Hynes R.O., Burton D.R., McKeating J.A.Rice C.M. Complete replication of hepatitis C virus in cell culture. II Science 2005. V. 309, P. 623−626.

11. Lohmann V., Korner F., Koch J., Herian U., Theilmann L. Barlenschlager R. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. II Science 1999. V. 285, P. 110−113.

12. Smirnova O.A., Ivanov A.V., Ivanova O.N., Valuev-Ellison V.T.Kochelkov S.N. Cellular defense systems against oxidative and ER stresses: mechanisms of regulation and influence of hepatitis C virus., // Mol. Biol. (Mosk) 2011. V. 45, P. 127−141.

13. Lohmann V., Hoffmann S., Herian U., Penin F. Bartenschlager R. Viral and cellular determinants of hepatitis C virus RNA replication in cell culture. // J. Virol. 2003. V. 77, P. 3007−3019.

14. Dubuisson J. Hepatitis C virus proteins. // World J. Gastroenterol. 2007. V. 13, P. 24 062 415.

15. Bartenschlager R., Frese M. Pietschmann T. Novel insights into hepatitis C virus replication and persistence. II Adv. Virus Res. 2004. V. 63, P. 71−180.

16. Simmonds P. Genetic diversity and evolution of hepatitis C virus—15 years on. // J. Gen. Virol. 2004. V. 85, P. 3173−3188.

17. Alter M.J. Prevention of spread of hepatitis C. // Hepatology 2002. V. 36, P. S93−98.

18. Global surveillance and control of hepatitis C. Report of a WHO Consultation organized in collaboration with the Viral Hepatitis Prevention Board, Antwerp, Belgium. // J. Viral Hepat. 1999. V. 6, P. 35−47.

19. Bartenschlager R. Lohmann V. Replication of hepatitis C virus. // J. Gen. Virol. 2000. V. 81, P.1631−1648.

20. Hope R.G., Murphy D.J.McLauchlan J. The domains required to direct core proteins of hepatitis C virus and GB virus-B to lipid droplets share common features with plant oleosin proteins. II J. Biol. Client. 2002. V. 277, P. 4261−4270.

21. Irshad M. Dhar I. Hepatitis C virus core protein: an update on its molecular biology, cellular functions and clinical implications. // Med. Princ. Pract. 2006. V. 15, P. 405−416.

22. Santolini E., Migliaccio G. La Monica N. Biosynthesis and biochemical properties of the hepatitis C virus core protein. II J. Virol. 1994. V. 68, P. 3631−3641.

23. Kunkel M., Lorinczi M., Rijnbrand R., Lemon S.M.Watowich S.J. Self-assembly of nucleocapsid-like particles from recombinant hepatitis C virus core protein. // J. Virol. 2001. V. 75, P. 2119−2129.

24. McLauchlan J., Lemberg M.K., Hope G. Martoglio B. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. // EMBO J. 2002. V. 21, P. 39 803 988.

25. Suzuki R., Matsuura Y, Suzuki T., Ando A., Chiba J., Harada S., Saito I. Miyamura T. Nuclear localization of the truncated hepatitis C virus core protein with its hydrophobic C terminus deleted. II J. Gen. Virol. 1995. V. 76 (Pt 1), P. 53−61.

26. Schwer B., Ren S., Pietschmann T., Kartenbeck J., Kaehlcke K., Barlenschlager R., Yen T.S.Ott M. Targeting of hepatitis C virus core protein to mitochondria through a novel C-terminal localization motif. II J. Virol. 2004. V. 78, P. 7958−7968.

27. Cerutti A., Maillard P., Minisini R., Vidalain P.O., Roohvand F., Pecheur E.I., Pirisi M. Budkowska A. Identification of a functional, CRM-l-dependent nuclear export signal in hepatitis C virus core protein. // PLoS One 2011. V. 6, P. e25854.

28. Kao C.F., Chen S.Y., Chen J.Y.Wu Lee Y.H. Modulation of p53 transcription regulatory activity and post-translational modification by hepatitis C virus core protein. // Oncogene 2004. V. 23, P. 2472−2483.

29. Mamiya N. Worman H.J. Hepatitis C virus core protein binds to a DEAD box RNA helicase. II J. Biol. Chem. 1999. V. 274, P. 15 751−15 756.

30. Ray R.B., Meyer K. Ray R. Suppression of apoptotic cell death by hepatitis C virus core protein. // Virology 1996. V. 226, P. 176−182.

31. Soguero C., Joo M., Chianese-Bullock K.A., Nguyen D.T., Tung K. Hahn Y.S. Hepatitis C virus core protein leads to immune suppression and liver damage in a transgenic murine model. // /. Virol. 2002. V. 76, P. 9345−9354.

32. Shoukry N.H., Sidney J., Sette A. Walker C.M. Conserved hierarchy of helper T cell responses in a chimpanzee during primary and secondary hepatitis C virus infections. // J. Immunol. 2004. V. 172, P. 483−492.

33. Kittlesen D.J., Chianese-Bullock K.A., Yao Z.Q., Braciale T.J.Hahn Y.S. Interaction between complement receptor gClqR and hepatitis C virus core protein inhibits T-lymphocyte proliferation. H J. Clin. Invest. 2000. V. 106, P. 1239−1249.

34. Okuda M., Li K., Beard M.R., Show alter L.A., Scholle F., Lemon S.M.Weinman S.A. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. // Gastroenterology 2002. V. 122, P. 366−375.

35. Shi S.T., Polyak S.J., Tu IL, Taylor D.R., Gretch D.R.Lai M.M. Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. // Virology 2002. V. 292, P. 198−210.

36. Tanaka N., Moriya K., Kiyosawa K., Koike K., Gonzalez F.J.Aoyama T. PPARalpha activation is essential for HCV core protein-induced hepatic steatosis and hepatocellular carcinoma in mice. // J. Clin. Invest. 2008. V. 118, P. 683−694.

37. Boulant S., Vanbelle C., Ebel C., Penin F. Lavergne J.P. Hepatitis C virus core protein is a dimeric alpha-helical protein exhibiting membrane protein features. // J. Virol. 2005. V. 79, P. 11 353−11 365.

38. Kushima Y., Wakita T. Hijikata M. A disulfide-bonded dimer of the core protein of hepatitis C virus is important for virus-like particle production. II J. Virol. 2010. V. 84, P. 9118−9127.

39. Almrud J.J., Oliveira M.A., Kern A.D., Grishin N.V., Phillips M.A.Hackert M.L. Crystal structure of human ornithine decarboxylase at 2.1 A resolution: structural insights to antizyme binding. 11 J. Mol. Biol. 2000. V. 295, P. 7−16.

40. Op De Beeck A. Dubuisson J. Topology of hepatitis C virus envelope glycoproteins. // Rev. Med. Virol. 2003. V. 13, P. 233−241.

41. Dubuisson J. Rice C.M. Hepatitis C virus glycoprotein folding: disulfide bond formation and association with calnexin. // J. Virol. 1996. V. 70, P. 778−786.

42. Cocquerel L., Voisset C. Dubuisson J. Hepatitis C virus entry: potential receptors and their biological functions. II J. Gen. Virol. 2006. V. 87, P. 1075−1084.

43. Budkowska A. Mechanism of cell infection with hepatitis C virus (HCV)—a new paradigm in virus-cell interaction. II Pol. J. Microbiol. 2009. V. 58, P. 93−98.

44. Helle F. Dubuisson J. Hepatitis C virus entry into host cells. 11 Cell Mol. Life ScL 2008. V. 65, P. 100−112.

45. Ciccaglione A.R., Marcantonio C., Tritarelli E., Equestre M., Magurano F., Costantino A., Nicoletti L. Rapicetta M. The transmembrane domain of hepatitis C virus El glycoprotein induces cell death. // Virus Res. 2004. V. 104, P. 1−9.

46. Liberman E., Fong Y.L., Selby M.J., Choo Q.L., Cousens L., Houghton M. Yen T.S. Activation of the grp78 and grp94 promoters by hepatitis C virus E2 envelope protein. // J. Virol. 1999. V. 73, P. 3718−3722.

47. Chan S. W. Egan P. A. Hepatitis C virus envelope proteins regulate CHOP via induction of the unfolded protein response. // FASEB J. 2005. V. 19, P. 1510−1512.

48. ShenX., Zhang K. Kaufman R.J. The unfolded protein response-a stress signaling pathway of the endoplasmic reticulum. // /. Chem. Neuroanat. 2004. V. 28, P. 79−92.

49. Ji C. Kaplowitz N. ER stress: can the liver cope? // J. Hepatol. 2006. V. 45, P. 321−333.

50. Wu J. Kaufman R.J. From acute ER stress to physiological roles of the Unfolded Protein Response. // Cell Death Diffe. r 2006. V. 13, P. 374−384.

51. TardifK.D., IVaris G. Siddiqui A. Hepatitis C virus, ER stress, and oxidative stress. // Trends Microbiol. 2005. V. 13, P. 159−163.

52. Jones C.T., Murray C.L., Eastman D.K., Tassello J. Rice C.M. Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. // J Virol 2007. V. 81, P. 8374−8383.

53. Steinmann E., Renin F., Kallis S., Patel A.H., Bartenschlager R. Pietschmann T. Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. // PLoS Pathog. 2007. V. 3, P. el03.

54. Griffin S.D., Beales L.P., Clarke D.S., Worsfold O., Evans S.D., Jaeger J., Harris M.P.Rowlands D.J. The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. // FEBS Lett. 2003. V. 535, P. 34−38.

55. Clarke D., Griffin S., Beales L., Gelais C.S., Burgess S., Harris M. Rowlands D. Evidence for the formation of a heptameric ion channel complex by the hepatitis C virus p7 protein in vitro. // J. Biol. Chem. 2006. V. 281, P. 37 057−37 068.

56. Tscheme D.M., Jones C.T., Evans M.J., Lindenbach B.D., McKeating J.A.Rice C.M. Time-and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. // J. Virol. 2006. V. 80, P. 1734−1741.

57. Grakoui A., McCourt D.W., Wychowski C., Feinstone S.M.Rice C.M. Characterization of the hepatitis C virus-encoded serine proteinase: determination of proteinase-dependent polyprotein cleavage sites. // J. Virol. 1993. V. 67, P. 2832−2843.

58. Welbourn S. Pause A. The hepatitis C virus NS2/3 protease. // Curr. Issues Mol. Biol. 2007. V. 9, P. 63−69.

59. Lorenz I.C., Marcotrigiano J., Dentzer T.G.Rice C.M. Structure of the catalytic domain of the hepatitis C virus NS2−3 protease. II Nature 2006. V. 442, P. 831−835.

60. Yamaga A.K.Ou J.H. Membrane topology of the hepatitis C virus NS2 protein. // J. Biol. Client. 2002. V. 277, P. 33 228−33 234.

61. She Y" Liao Q., ChenX., Ye L. Wu Z. Hepatitis C virus (HCV) NS2 protein up-regulates HCV IRES-dependent translation and down-regulates NS5B RdRp activity. // Arch. Virol. 2008. V. 153, P. 1991;1997.

62. Stapleford K.A.Lindenbach B.D. Hepatitis C virus NS2 coordinates virus particle assembly through physical interactions with the E1-E2 glycoprotein and NS3-NS4A enzyme complexes. // J. Virol. 2011. V. 85, P. 1706−1717.

63. Morikawa K., Lange C.M., Gouttenoire J., Meylan E., Brass V., Penin F. Moradpour D. Nonstructural protein 3−4A: the Swiss army knife of hepatitis C virus. // J. Viral. Hepat. 2011. V. 18, P. 305−315.

64. Walk B., Sansonno D., Krausslich H.G., Dammacco F., Rice C.M., Blum H.E.Moradpour D. Subcellular localization, stability, and trans-cleavage competence of the hepatitis C virus NS3.

65. NS4A complex expressed in tetracycline-regulated cell lines. // J. Virol. 2000. V. 74, P. 22 932 304.

66. Ma K, Yates J., Liang Y., Lemon S.M.Yi M. NS3 helicase domains involved in infectious intracellular hepatitis C virus particle assembly. // J. Virol. 2008. V. 82, P. 7624−7639.

67. Borowski P., Oehlmann K., Heiland M. Laufs R. Nonstructural protein 3 of hepatitis C virus blocks the distribution of the free catalytic subunit of cyclic AMP-dependent protein kinase. // J. Virol. 1997. V. 71, P. 2838−2843.

68. Lundin M., Monne M., Widell A., Von Heijne G. Persson MA. Topology of the membrane-associated hepatitis C virus protein NS4B. 11 J. Virol. 2003. V. 77, P. 5428−5438.

69. Gorbalenya A.E., Blinov V.M., Donchenko A.P.Koonin E.V. An NTP-binding motif is the most conserved sequence in a highly diverged monophyletic group of proteins involved in positive strand RNA viral replication. // J. Mol. Evol. 1989. V. 28, P. 256−268.

70. Einav S., Elazar M., Danieli T. Glenn J.S. A nucleotide binding motif in hepatitis C virus (HCV) NS4B mediates HCV RNA replication. I I J. Virol. 2004. V. 78, P. 11 288−11 295.

71. Konan K.V., Giddings T.H., Jr., Ikeda M., Li K., Lemon S.M.Kirkegaard K. Nonstructural protein precursor NS4A/B from hepatitis C virus alters function and ultrastructure of host secretory apparatus. II J. Virol. 2003. V. 77, P. 7843−7855.

72. Jones DM., Patel A.H., Targett-Adams PMcLauchlan J. The hepatitis C virus NS4B protein can trans-complement viral RNA replication and modulates production of infectious virus. // J. Virol. 2009. V. 83, P. 2163−2177.

73. Tong W.Y., Nagano-Fujii M., Hidajat R., Deng L., Takigawa Y. Hotta H. Physical interaction between hepatitis C virus NS4B protein and CREB-RP/ATF6beta. // Biochem. Biophys. Res. Commun. 2002. V. 299, P. 366−372.

74. Tellinghuisen T.L., Marcotrigiano J., Gorbalenya A.E.Rice C.M. The NS5A protein of hepatitis C virus is a zinc metalloprotein. // J. Biol. Chem. 2004. V. 279, P. 48 576−48 587.

75. Hirota M., Satoh $., Asabe S., Kohara M, Tsukiyama-Kohara K., Kato N., Hijikata M. Shimotohno K. Phosphorylation of nonstructural 5A protein of hepatitis C virus: HCV group-specific hyperphosphorylation. // Virology 1999. V. 257, P. 130−137.

76. Tanji Y., Kaneko T., Satoh S. Shimotohno K. Phosphorylation of hepatitis C virus-encoded nonstructural protein NS5A // Virol. 1995. V. 69, P. 3980−3986.

77. Reed K.E., Xu J. Rice CM. Phosphorylation of the hepatitis C virus NS5A protein in vitro and in vivo: properties of the NS5A-associated kinase. II J. Virol. 1997. V. 71, P. 7187−7197.

78. Evans M.J., Rice C.M.Goff S.P. Phosphorylation of hepatitis C virus nonstructural protein 5A modulates its protein interactions and viral RNA replication. // Proc. Natl. Acad. Sci. USA 2004. V. 101, P. 13 038−13 043.

79. Rosen H.R.Gretch D.R. Hepatitis C virus: current understanding and prospects for future therapies. // Mol. Med. Today 1999. V. 5, P. 393−399.

80. Gong G., Waris G., Tanveer R. Siddiqui A. Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B. // Proc. Natl. Acad. Sci. USA 2001. V. 98, P. 9599−9604.

81. Miyanari Y., Atsuzawa K., Usuda N., Watashi K., Hishiki T., Zayas M., Bartenschlager R., Wakita T., Hijikata M. Shimotohno K. The lipid droplet is an important organelle for hepatitis C virus production. II Nat. Cell Biol. 2007. V. 9, P. 1089−1097.

82. Arima N., Kao C.Y., Licht T., Padmanabhan R. Sasaguri Y. Modulation of cell growth by the hepatitis C virus nonstructural protein NS5A II J. Biol. Client. 2001. V. 276, P. 12 675−12 684.

83. Levegue V.J., Johnson R.B., Parsons S., Ren J., Xie C., Zhang F. Wang Q.M. Identification of a C-terminal regulatory motif in hepatitis С virus RNA-dependent RNA polymerase: structural and biochemical analysis. II J. Virol. 2003. V. 77, P. 9020−9028.

84. Oh J. W., Sheu G.T.Lai M.M. Template requirement and initiation site selection by hepatitis С virus polymerase on a minimal viral RNA template. // J. Biol. Chem. 2000. V. 275, P. 1 771 017 717.

85. Egger D., WolkB., Gosert R., Bianchi L., Blum H.E., Moradpour D. Bienz K. Expression of hepatitis С virus proteins induces distinct membrane alterations including a candidate viral replication complex. // J. Virol. 2002. V. 76, P. 5974−5984.

86. Ilan E., Eren R., Lubin /., Nussbaum O., Zauberman A. Dagan S. The Trimera mouse: a system for generating human monoclonal antibodies and modeling human diseases. // Curr. Opin. Mol. Ther. 2002. V. 4, P. 102−109.

87. Choo Q.L., Kuo G., Weiner A.J., Overby L.R., Bradley D.W.Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. // Science 1989. V. 244, P. 359−362.

88. Lohmann V. HCV replicons: overview and basic protocols. // Methods Mol. Biol. 2009. V. 510, P. 145−163.

89. Blight K.J., McKealing J.A., Marcolrigiano J. Rice C.M. Efficient replication of hepatitis C virus genotype la RNAs in cell culture. II J. Virol. 2003. V. 77, P. 3181−3190.

90. Kato T., Date T., Miyamoto M., Furusaka A., Tokushige K, Mizokami M. Wakita T. Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. // Gastroenterology 2003. V. 125, P. 1808−1817.

91. Takahashi M. Oxidative stress and redox regulation on in vitro development of mammalian embryos. // J. Reprod. Dev. 2012. V. 58, P. 1−9.

92. RyterS.W., Kim H.P., Hoetzel A., ParkJ.W., Nakahira K, Wang X. Choi A.M. Mechanisms of cell death in oxidative stress. // Antioxid. Redox Signal. 2007. V. 9, P. 49−89.

93. Miller A. F. Superoxide dismutases: ancient enzymes and new insights. // FEBS Lett. 2012. V. 586, P. 585−595.

94. Dinkova-Kostova A.T.Talalay P. NAD (P)H:quinone acceptor oxidoreductase 1 (NQOl), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. II Arch. Biochem. Biophys. 2010. V. 501, P. 116−123.

95. Asher G., Lotem J., Kama R., Sachs L. Shaul Y. NQOl stabilizes p53 through a distinct pathway. // Proc. Natl. Acad. Sci. USA 2002. V. 99, P. 3099−3104.

96. Griffith O. W. Biologic and pharmacologic regulation of mammalian glutathione synthesis. // Free Radix Biol. Med. 1999. V. 27, P. 922−935.

97. Kang K.W., Lee S.J.Kim S.G. Molecular mechanism of nrf2 activation by oxidative stress. // Antioxid. Redox Signal. 2005. V. 7, P. 1664−1673.

98. Maines M.D. The heme oxygenase system: update 2005. I I Antioxid. Redox Signal. 2005. V. 7, P. 1761−1766.

99. Tsiftsoglou A.S., Tsamadou A.I.Papadopoulou L.C. Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects. // Pharmacol. Titer. 2006. V. Ill, P. 327−345.

100. Nguyen T., Huang H.C.Pickett C.B. Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. // J. Biol. Chem. 2000. V. 275, P. 1 546 615 473.

101. Zhang Y. Gordon G.B. A strategy for cancer prevention: stimulation of the Nrf2-ARE signaling pathway. // Mol. Cancer Titer. 2004. V. 3, P. 885−893.

102. Venugopal R. Jaiswal A.K. Nrfl and Nrf2 positively and c-Fos and Fral negatively regulate the human antioxidant response element-mediated expression of NAD (P)H:quinone oxidoreductasel gene. // Proc. Natl. Acad. Sci. USA 1996. V. 93, P. 14 960−14 965.

103. Biswas M. Chan J.Y. Role of Nrfl in antioxidant response element-mediated gene expression and beyond. // Toxicol. Appl. Pharmacol. 2010. V. 244, P. 16−20.

104. Lee O.H., Jain A.K., Papusha V. Jaiswal A.K. An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance. // J. Biol. Chem. 2007. V. 282, P. 36 412−36 420.

105. Wang W. Chan J.Y. Nrfl is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function. // J. Biol. Chem. 2006. V. 281, P. 19 676−19 687.

106. Ohtsuji M., Katsuoka F., Kobayashi A., Aburatani H., Hayes J.D.Yamamoto M. Nrfl and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes. // J. Biol. Client. 2008. V. 283, P. 33 554−33 562.

107. Aleksunes L.M.Manautou J.E. Emerging role of Nrf2 in protecting against hepatic and gastrointestinal disease. // Toxicol. Pathol. 2007. V. 35, P. 459−473.

108. Motohashi H. Yamamoto M. Nrf2-Keapl defines a physiologically important stress response mechanism. // Trends Mol. Med. 2004. V. 10, P. 549−557.

109. Chan J.Y., Kwong M., Lu R" Chang J., Wang B., Yen T.S.Kan Y.W. Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia and embryonic lethality in mice. // Embo J. 1998. V. 17, P. 1779−1787.

110. Beyer T.A., Xu IV., Teupser D., auf dem Keller U., Bugnon P., Hildt E., Thiery J., Kan Y. W. Werner S. Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance. // Embo J. 2008. V. 27, P. 212−223.

111. Johnsen O., Murphy P., Prydz H. Kolsto A.B. Interaction of the CNC-bZIP factor TCFll/LCR-Fl/Nrfl with MafG: binding-site selection and regulation of transcription. // Nucleic Acids Res. 1998. V. 26, P. 512−520.

112. Motohashi H., Katsuoka F., Engel J.D.Yamamoto M. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keapl-Nrf2 regulatory pathway. // Proc. Natl. Acad. Sci. USA 2004. V. 101, P. 6379−6384.

113. Dhakshinamoorthy S. Jaiswal A.K. c-Maf negatively regulates ARE-mediated detoxifying enzyme genes expression and antioxidant induction. // Oncogene 2002. V. 21, P. 5301−5312.

114. Wang W., Kwok A.M.Chan J. Y. The p65 isoform of Nrfl is a dominant negative inhibitor of ARE-mediated transcription. // J. Biol. Client. 2007. V. 282, P. 24 670−24 678.

115. Iloh K, Ishii T., Wakabayashi N. Yamamoto M. Regulatory mechanisms of cellular response to oxidative stress. HFreeRadic. Res. 1999. V. 31, P. 319−324.

116. Itoh K, Wakabayashi N., Kaloh Y, Ishii T., Igarashi K., Engel J.D.Yamamoto M. Keapl represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. // Genes Dev. 1999. V. 13, P. 76−86.

117. Jain A.K., Bloom D.A.Jaiswal A.K. Nuclear import and export signals in control of Nrf2. // J. Biol. Chem. 2005. V. 280, P. 29 158−29 168.

118. Li W. Kong A.N. Molecular mechanisms of Nrf2-mediated antioxidant response. // Mol. Carcinog. 2009. V. 48, P. 91−104.

119. Nioi P., Nguyen T" Sherratt P.J.Pickett C.B. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. II Mol. Cell Biol. 2005. V. 25, P. 10 895−10 906.

120. Theodore M., Kawai Y., Yang J., Kleshchenko Y., Reddy S.P., Villalta F. Arinze I.J. Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2. // J. Biol. Chem. 2008. V. 283, P. 8984−8994.

121. Zhang D.D., Lo S.C., Cross J.V., Templeton D.J.Hannink M. Keapl is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. II Mol. Cell Biol. 2004. V. 24, P. 10 941−10 953.

122. Kang M.I., Kobayashi A., Wakabayashi N., Kim S.G.Yamamoto M. Scaffolding of Keapl to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. HProc. Natl. Acad. Sci. USA 2004. V. 101, P. 2046;2051.

123. Velichkova M. Hasson T. Keapl regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crml-dependent nuclear export mechanism. // Mol. Cell. Biol. 2005. V. 25, P. 4501−4513.

124. Sun Z, Chin Y.E.Zhang D.D. Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response. // Mol. Cell Biol. 2009. V. 29, P. 26 582 672.

125. Yamamoto T., Suzuki T., Kobayashi A., Wakabayashi J., Maher J., Motohashi H. Yamamoto M. Physiological significance of reactive cysteine residues of Keapl in determining Nrf2 activity. II Mol. Cell Biol 2008. V. 28, P. 2758−2770.

126. Numazawa S., Ishikawa M., Yoshida A., Tanaka S. Yoshida T. Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress. // Am. J. PhysioLCell Physiol. 2003. V. 285, P. C334−342.

127. Sun Z., Huang Z. Zhang D.D. Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. // PLoS One 2009. V. 4, P. e6588.

128. Cullinan S.B., Zhang D., Hannink M., Arvisais E., Kaufman RJ. Diehl J.A. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. // Mol. Cell Biol. 2003. V. 23, P. 7198−7209.

129. Zipper L.M.Mulcahy R.T. Erk activation is required for Nrf2 nuclear localization during pyrrolidine dithiocarbamate induction of glutamate cysteine ligase modulatory gene expression in HepG2 cells. // Toxicol. Sci. 2003. V. 73, P. 124−134.

130. Reichard J.F., Motz G.T.Puga A. Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. II Nucleic Acids Res. 2007. V. 35, P. 70 747 086.

131. Sun J., Brand M., Zenke Y., Tashiro S., Groudine M. Igarashi K. Heme regulates the dynamic exchange of Bachl and NF-E2-related factors in the Maf transcription factor network. // Proc. Natl. Acad. Sci. USA 2004. V. 101, P. 1461−1466.

132. Li W, Yu S.W.Kong A.N. Nrf2 possesses a redox-sensitive nuclear exporting signal in the Neh5 transactivation domain. II J. Biol. Chem. 2006. V. 281, P. 27 251−27 263.

133. War is G., Tardif K.D.Siddiqui A. Endoplasmic reticulum (ER) stress: hepatitis C virus induces an ER-nucleus signal transduction pathway and activates NF-kappaB and STAT-3. // Biochem. Pharmacol. 2002. V. 64, P. 1425−1430.

134. Koike K. Pathogenesis of HCV-associated HCC: Dual-pass carcinogenesis through activation of oxidative stress and intracellular signaling. // Hepatol Res. 2007. V. 37 Suppl 2, P. SI15−120.

135. Choi J. Oxidative stress, endogenous antioxidants, alcohol, and hepatitis C: pathogenic interactions and therapeutic considerations. // Free Radic. Biol. Med. 2012. V. 52, P. 1135−1150.

136. Waris G. Siddiqui A. Hepatitis С virus stimulates the expression of cyclooxygenase-2 via oxidative stress: role of prostaglandin E2 in RNA replication. // J. Virol. 2005. V. 79, P. 97 259 734.

137. Tsatsanis C., Androulidaki A., Venihaki M. Margioris A.N. Signalling networks regulating cyclooxygenase-2. II Int. J. Biochem. Cell Biol. 2006. V. 38, P. 1654−1661.

138. Bowman T., Garcia R" TurksonJ. Jove R. STATs in oncogenesis. // Oncogene 2000. V. 19, P. 2474−2488.

139. PeggA.E. Mammalian polyamine metabolism and function. // IUBMB Life 2009. V. 61, P. 880−894.

140. Wallace H.M., Fraser A.V.Hughes A. A perspective of polyamine metabolism. // Biochem. J- 2003. V. 376, P. 1−14.

141. Coleman C.S., Stanley B.A., Viswanath R. Pegg A.E. Rapid exchange of subunits of mammalian ornithine decarboxylase. H J. Biol. Client. 1994. V. 269, P. 3155−3158.

142. Seely J.E.Pegg A.E. Ornithine decarboxylase (mouse kidney). // Methods Enzymol. 1983. V. 94, P. 158−161.

143. Hayashi S. Murakami Y. Rapid and regulated degradation of ornithine decarboxylase. // Biochem. J. 1995. V. 306 (Pt 1), P. 1−10.

144. Kahana C., Asher G. Shaul Y. Mechanisms of protein degradation: an odyssey with ODC. 11 Cell Cycle 2005. V. 4, P. 1461−1464.

145. Zhang M., Pickart C.M.Coffino P. Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. // EMBO J. 2003. V. 22, P. 1488−1496.

146. Zhang M., MacDonald A.I., Hoyt M.A.Coffino P. Proteasomes begin ornithine decarboxylase digestion at the C terminus. II J. Biol. Client. 2004. V. 279, P. 20 959−20 965.

147. Asher G., Bercovich Z., Tsvetkov P., Shaal Y. Kahana C. 20S proteasomal degradation of ornithine decarboxylase is regulated by NQOl. // Mol. Cell 2005. V. 17, P. 645−655.

148. Zhao B. Butler A.P. Core promoter involvement in the induction of rat ornithine decarboxylase by phorbol esters. II Mol. Carcinog. 2001. V. 32, P. 92−99.

149. Qin С., Samudio /., Ngwenya S. Safe S. Estrogen-dependent regulation of ornithine decarboxylase in breast cancer cells through activation of nongenomic cAMP-dependent pathways. 11 Mol. Carcinog. 2004. V. 40, P. 160−170.

150. Packham G. Cleveland J.L. Induction of ornithine decarboxylase by IL-3 is mediated by sequential c-Myc-independent and c-Myc-dependent pathways. // Oncogene 1997. V. 15, P. 1219−1232.

151. Nils son J. A., Maclean K.H., Keller U.B., Pendeville H., Baudino T.A.Cleveland J.L. Mnt loss triggers Мус transcription targets, proliferation, apoptosis, and transformation. // Mol. Cell. Biol. 2004. V. 24, P. 1560−1569.

152. Origanti S. Shantz L.M. Ras transformation of RIE-1 cells activates cap-independent translation of ornithine decarboxylase: regulation by the Raf/MEK/ERK and phosphatidylinositol 3-kinase pathways. // Cancer Res. 2007. V. 67, P. 4834−4842.

153. Pyronnet S., Pradayrol L. Sonenberg N. Alternative splicing facilitates internal ribosome entry on the ornithine decarboxylase mRNA // Cell Mol. Life Sci. 2005. V. 62, P. 1267−1274.

154. Shantz L.M.Pegg A.E. Translational regulation of ornithine decarboxylase and other enzymes of the polyamine pathway. // Int. J. Biochem. Cell Biol. 1999. V. 31, P. 107−122.

155. Shantz L.M., Coleman C.S.Pegg A.E. Expression of an ornithine decarboxylase dominantnegative mutant reverses eukaryotic initiation factor 4E-induced cell transformation. // Cancer Res. 1996. V. 56, P. 5136−5140.

156. Lovkvist Wallslrom E., Takao K, Wendt A., Vargiu C., Yin H. Persson L. Importance of the 3' untranslated region of ornithine decarboxylase mRNA in the translational regulation of the enzyme. // Biochem. J. 2001. V. 356, P. 627−634.

157. Auvinen M., Paasinen-Sohns A., Hirai H., Andersson L.C.Holtta E. Ornithine decarboxylaseand ras-induced cell transformations: reversal by protein tyrosine kinase inhibitors and role of ppl30CAS. II Mol. Cell. Biol. 1995. V. 15, P. 6513−6525.

158. Chen Y., Megosh L.C., Gilmour S.K., Sawicki J.A.O'Brien T.G. K6/ODC transgenic mice as a sensitive model for carcinogen identification. // Toxicol. Lett. 2000. V. 116, P. 27−35.

159. Tamori A., Nishiguchi S., Kuroki T., Koh N., Kobayashi K., Yano Y. Otani S. Point mutation of ornithine decarboxylase gene in human hepatocellular carcinoma. // Cancer Res. 1995. V. 55, P. 3500−3503.

160. Guo Y., Harris R.B., Rosson D., Boorman D. O'Brien T.G. Functional analysis of human ornithine decarboxylase alleles. // Cancer Res. 2000. V. 60, P. 6314−6317.

161. Libby P.R., Ganis B., Bergeron R.J.Porter C.W. Characterization of human spermidine/spermine N1-acetyl transferase purified from cultured melanoma cells. I I Arch. Biochem. Biophys. 1991. V. 284, P. 238−244.

162. PeggA.E. Spermidine/spermine-N (l)-acetyltransferase: a key metabolic regulator. II Am. J. Physiol. Endocrinol. Metab. 2008. V. 294, P. E995−1010.

163. Delia Ragione F. Pegg A.E. Studies of the specificity and kinetics of rat liver spermidine/spermine Nl-acetyltransferase. II Biochem. J. 1983. V. 213, P. 701−706.

164. Wallace H.M.Mackarel A.J. Regulation of polyamine acetylation and efflux in human cancer cells. II Biochem. Soc. Trans. 1998. V. 26, P. 571−575.

165. Coleman C.S. Wallace H.M. Polyamine excretion from human cancer cells. // Biochem. Soc. Trans. 1990. V. 18, P. 1228−1229.

166. Casero R.A., Jr., Celano P., Ervin S.J., Applegren N.B., Wiest L. Pegg A.E. Isolation and characterization of a cDNA clone that codes for human spermidine/spermine N1-acetyltransferase. II J. Biol. Chem. 1991. V. 266, P. 810−814.

167. Coleman C.S.Pegg A.E. Proteasomal degradation of spermidine/spermine N1-acetyltransferase requires the carboxyl-terminal glutamic acid residues. // J. Biol. Chem. 1997. V. 272, P. 12 164−12 169.

168. Matsui I.PeggA.E. Increase in acetylation of spermidine in rat liver extracts brought about by treatment with carbon tetrachloride. // Biochem. Biophys. Res. Commun. 1980. V. 92, P. 1009−1015.

169. Wallace H.M., Nuttall M.E.Robinson F.C. Acetylation of spermidine and methylglyoxal bis (guanylhydrazone) in baby-hamster kidney cells (BHK-21/C13). // Biochem. J. 1988. V. 253, P. 223−227.

170. Casero R.A., Jr. Woster P.M. Terminally alkylated polyamine analogues as chemotherapeutic agents. II J. Med. Chem. 2001. V. 44, P. 1−26.

171. Fogel-Petrovic M" Shappell N.W., Bergeron R.J.Porter C.W. Polyamine and polyamine analog regulation of spermidine/spermine Nl-acetyltransferase in MALME-3M human melanoma cells. II J. Biol.Chem. 1993. V. 268, P. 19 118−19 125.

172. Tian Y., Wang S" Wang B., Zhang J., Jiang R. Zhang W Overexpression of SSAT by DENSPM treatment induces cell detachment and apoptosis in glioblastoma. // Oncol. Rep. 2012. V. 27, P. 1227−1232.

173. Kaasinen S.K., Grohn O.H., Keinanen T.A., Alhonen L. Janne J. Overexpression of spermidine/spermine Nl-acetyltransferase elevates the threshold to pentylenetetrazol-induced seizure activity in transgenic mice. // Exp. Neurol. 2003. V. 183, P. 645−652.

174. Alhonen L., Parkkinen J.J., Keinanen T., Sinervirta R., Herzig K.H.Janne J. Activation of polyamine catabolism in transgenic rats induces acutc pancreatitis. // Proc. Natl. Acad. Sci. U S A 2000. V. 97, P. 8290−8295.

175. Holtta E. Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. II Biochemistry 1977. V. 16, P. 91−100.

176. Wallace H.M., Duthie J., Evans D.M., Lamond S., Nicoll K.M.Heys S.D. Alterations in polyamine catabolic enzymes in human breast cancer tissue. // Clin. Cancer Res. 2000. V. 6, P. 3657−3661.

177. Wang Y., Devereux W, Woster P.M., Stewart T.M., Hacker A. Casero R.A., Jr. Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure. // Cancer Res. 2001. V. 61, P. 5370−5373.

178. Cervelli M., Amendola R., Polticelli F. Mariottini P. Spermine oxidase: ten years after. // Amino Acids 2012. V. 42, P. 441−450.

179. Cervelli M., Polticelli F., Federico R. Mariottini P. Heterologous expression and characterization of mouse spermine oxidase. II J. Biol. C/iem. 2003. V. 278, P. 5271−5276.

180. Bianchi M., Amendola R., Federico R., Polticelli F. Mariottini P. Two short protein domains are responsible for the nuclear localization of the mouse spermine oxidase mu isoform. // FEBS J. 2005. V. 272, P. 3052−3059.

181. Murray-Stewart T., Wang Y., Goodwin A., Hacker A., Meeker A. Casero R.A., Jr. Nuclear localization of human spermine oxidase isoforms possible implications in drug response and disease etiology. // FEBS J. 2008. V. 275, P. 2795−2806.

182. Babbar N., I lacker A., Huang Y. Casero R.A., Jr. Tumor necrosis factor alpha induces spermidine/spermine Nl-acetyltransferase through nuclear factor kappaB in non-small cell lung cancer cells. II J. Biol. Chem. 2006. V. 281, P. 24 182−24 192.

183. Gerner E. W. Meyskens F.L., Jr. Polyamines and cancer: old molecules, new understanding. II Nat. Rev. Cancer 2004. V. 4, P. 781−792.

184. Lotan R., Francis G.E., Freeman C.S.Waxman S. Differentiation therapy. // Cancer i? es. 1990. V. 50, P. 3453−3464.

185. Russell D.H. Clinical relevance of polyamines. // Crit. Rev. Clin. Lab. Sci. 1983. V. 18, P. 261−311.

186. Linsalata M., Caruso M.G., Leo S., Guerra V., D’Attoma B. Di Leo A. Prognostic value of tissue polyamine levels in human colorectal carcinoma. // Anticancer Res. 2002. V. 22, P. 24 652 469.

187. Becciolini A., Porciani S., Lanini A., Balzi M., Cionini L. Bandettini L. Polyamine levels in healthy and tumor tissues of patients with colon adenocarcinoma. // Dis. Colon. Rectum. 1991. V. 34, P. 167−173.

188. Kubota S., Okada M., Yoshimolo M., Murata N., Yamasaki Z, Wada T., Imahori K., Ohsawa N. Takaku F. Urinary polyamines as a tumor marker. // Cancer Detect. Prev. 1985. V. 8, P. 189−192.

189. Weiss T.S., Bernhardt G., Buschauer A., Thasler W.E., Dolgner D., Zirngibl H. Jauch K.W. Polyamine levels of human colorectal adenocarcinomas are correlated with tumor stage and grade. // Int. J. Colorectal. Dis. 2002. V. 17, P. 381−387.

190. Loser C., Folsch U.R., Paprotny C. Creutzfeldt W. Polyamines in colorectal cancer. Evaluation of polyamine concentrations in the colon tissue, serum, and urine of 50 patients with colorectal cancer. // Cancer 1990. V. 65, P. 958−966.

191. Uehara N., Shirakciwa S., Uchino H. Saeki Y. Elevated contents of spermidine and spermine in the erythrocytes of cancer patients. // Cancer 1980. V. 45, P. 108−111.

192. Bergeron C., Bansard J.Y., Le Moine P., Bouet F., Goasguen J.E., Moulinoux J.P., Le Gall E. Catros-Quemener V. Erythrocyte spermine levels: a prognostic parameter in childhood common acute lymphoblastic leukemia. // Leukemia 1997. V. 11, P. 31−36.

193. Klein S., Miret J.J., Algranati I.D.de Lustig E.S. Effect of alpha-difluoromethylornithine in lung metastases before and after surgery of primary adenocarcinoma tumors in mice. // Biol. Cell 1985. V. 53, P. 33−36.

194. Kubota S., Ohsawa N. Takaku F. Effects of DL-alpha-difluoromethylornithine on the growth and metastasis of B16 melanoma in vivo. H Int .J.Cancer. 1987. V. 39, P. 244−247.

195. Pouyssegur J., Dayan F. Mazure N.M. Hypoxia signalling in cancer and approaches to enforce tumour regression. // Nature 2006. V. 441, P. 437−443.

196. De Marzo A.M., Bradshaw C., Sauvageot J., Epstein J. I. Miller G.J. CD44 and CD44v6 downregulation in clinical prostatic carcinoma: relation to Gleason grade and cytoarchitecture. // Prostate 1998. V. 34, P. 162−168.

197. Aziz S.M., Olson J.W.Gillespie M.N. Multiple polyamine transport pathways in cultured pulmonary artery smooth muscle cells: regulation by hypoxia. I I Am. J. Respir. Cell Mol. Bio. l 1994. V. 10, P. 160−166.

198. Tsujinaka S., Soda K., Kano Y. Konishi F. Spermine accelerates hypoxia-initiated cancer cell migration. II Int. J. Oncol. 2011. V. 38, P. 305−312.

199. Cohen L.F., Lundgren D. W. Farrell P.M. Distribution of spermidine and spermine in blood from cystic fibrosis patients and control subjects. II Blood 1976. V. 48, P. 469−475.

200. Cooper K.D., Shukla J.B.Rennert O.M. Polyamine compartmentalization in various human disease states. // Clin. Chim. Acta 1978. V. 82, P. 1−7.

201. Smirnova I.S., Aksenov N.D., Vonsky M.S.Isaguliants M.G. Different transformation pathways of murine fibroblast NIH 3T3 cells by hepatitis C virus core and NS3 proteins. // Cell Biol. Int. 2006. V. 30, P. 915−919.

202. Farcionio R., Vergara P., Di Marzo D., Piercmtoni M.G., Napolitano M., Russo T. Cimino F. p53 suppresses the Nrf2-dependent transcription of antioxidant response genes. // J Biol Chem 2006. V. 281, P. 39 776−39 784.

203. Traylor A., Hock T. Hill-Kapturczak N. Specificity protein 1 and Smad-dependent regulation of human heme oxygenase-1 gene by transforming growth factor-betal in renal epithelial cells. // Am. J. Physiol. Renal Physiol. 2007. V. 293, P. F885−894.

204. Bartenschlager R. Lohmann V. Novel cell culture systems for the hepatitis C virus. // Antiviral Res. 2001. V. 52, P. 1−17.

205. Sambrook J. F.E.F., Maniatis T., Molecular Clonning, ed. Nolan C.1989: Cold Spring Harbor Laboratory Press.

206. Hyvonen T., Khomutov A.R., Khomutov R.M., Lapinjoki S. Eloranta T.O. Uptake of 3H-labeled l-aminooxy-3-aminopropane by baby hamster kidney cells. // J. Biochem. 1990. V. 107, P. 817−820.

207. Matsui /., Wiegand L. Pegg A.E. Properties of spermidine N-acetyltransferase from livers of rats treated with carbon tetrachloride and its role in the conversion of spermidine into putrescine. II J. Biol. Chem. 1981. V. 256, P. 2454−2459.

208. Mokhonov V.V., Novikov D.V., Samokhvalov E.I., Shatalov A.G., Selivanov N.A., Prilipov A.G.L'Vov D K. Genome analysis of hepatitis C virus strain 27 4933RU isolated in Russian Federation. // Vopr. Virusol. 2002. V. 47, P. 9−12.

209. Boissy R.E., Trinkle L.S.Nordlund J.J. Separation of pigmented and albino melanocytes and the concomitant evaluation of endogenous peroxide content using flow cytometry. // Cytometry 1989. V. 10, P. 779−787.

210. Bedard K. Krause K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. II Physiol. Rev. 2007. V. 87, P. 245−313.

211. Simula M.P.De Re V. Hepatitis C virus-induced oxidative stress and mitochondrial dysfunction: a focus on recent advances in proteomics. // Proteomics Clin. Appl. 2010. V. 4, P. 782−793.

212. Sancho P., Martin-Sanz P. Fabregat I. Reciprocal regulation of NADPH oxidases and the cyclooxygenase-2 pathway. // Free Radic. Biol. Med. 2011. V. 51, P. 1789−1798.

213. Molteni S.N., Fassio A., Ciriolo M.R., Filomeni G., Pasqualetto E., Fagioli C. Sitia R. Glutathione limits Erol-dependent oxidation in the endoplasmic reticulum. // J. Biol. Chem. 2004. V. 279, P. 32 667−32 673.

214. Sevier C.S. New insights into oxidative folding. // J. Cell Biol. 2010. V. 188, P. 757−758.

215. Malhotra J.D.Kaufman R.J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? // Antioxid. Redox Signal. 2007. V. 9, P. 2277−2293.

216. Ray R.B., Lagging L.M., Meyer K., Steele R. Ray R. Transcriptional regulation of cellular and viral promoters by the hepatitis C virus core protein. // Virus Res. 1995. V. 37, P. 209−220.

217. Tomitori II, Nenoi M., Mita K., Daino K, Igarashi K. Ichimura S. Functional characterization of the human spermidine/spermine N (l)-acetyltransferase gene promoter. // Biochim. Biophys. Acta 2002. V. 1579, P. 180−184.

218. De Maria N., Colantoni A., Fagiuoli S., Liu G.J., Rogers B.K., Farinati F., Van Thiel D.H.Floyd R.A. Association between reactive oxygen species and disease activity in chronic hepatitis C. // Free Radic. Biol. Med. 1996. V. 21, P. 291−295.

219. Li S" Ye L" Yu X., Xu B., Li K, Zhu X., Liu II., Wu X. Kong L. Hepatitis C virus NS4B induces unfolded protein response and endoplasmic reticulum overload response-dependent NF-kappaB activation. // Virology 2009. V. 391, P. 257−264.

220. Ciccaglione A.R., Coslantino A., Tritarelli E., Marcantonio C., Equestre M., Marziliano N. Rapicetta M. Activation of endoplasmic reticulum stress response by hepatitis C virus proteins. II Arch. Virol. 2005. V. 150, P. 1339−1356.

221. Mehmeti I., Lortz S. Lenzen S. The H (2)0(2)-sensitive HyPer protein targeted to the endoplasmic reticulum as a mirror of the oxidizing thiol-disulfide milieu. // Free Radic. Biol. Med. 2012. V. 53, P. 1451−1458.

222. Gorlach A., Klappa P. Kietzmcmn T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. // Antioxid. Redox Signal. 2006. V. 8, P. 1391−1418.

223. Gilabert J A. Cytoplasmic calcium buffering. 11 Adv. Exp. Med. Biol. 2012. V. 740, P. 483 498.

224. Wang T., Campbell R. V., Yi M.K., Lemon S.M. Weinman SA. Role of Hepatitis C virus core protein in viral-induced mitochondrial dysfunction. I I J. Viral. Hepat. 2010. V. 17, P. 784−793.

225. Gilady S.Y., Bui M., Lynes E.M., Benson M.D., Watts R., Vance J.E.Simmen T. Erolalpha requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM). // Cell. Stress. Chaperones. 2010. V. 15, P. 619−629.

226. Araki K. Inaba K. Structure, mechanism, and evolution of Erol family enzymes. II Antioxid. Redox Signal. 2012. V. 16, P. 790−799.

227. Yohannes E., Ghosh S.K., Jiang В., McCormick T.S., Weinberg A., Hill E., Faddoul F. Chance M.R. Proteomic signatures of human oral epithelial cells in HIV-infected subjects. // PLoS One 2011. V. 6, P. e27816.

228. Katsuyama M. NOX/NADPH oxidase, the superoxide-generating enzyme: its transcriptional regulation and physiological roles. I I J. Pharmacol. Sci. 2010. V. 114, P. 134 146.

229. Aubert J., Begriche K., Knockaert L., Robin MA. Fromenty B. Increased expression of cytochrome P450 2E1 in nonalcoholic fatty liver disease: mechanisms and pathophysiological role. // Clin. Res. Hepatol. Gastroenterol. 2011. V. 35, P. 630−637.

230. Lieber C.S. Cytochrome P-4502E1: its physiological and pathological role. II Physiol. Rev. 1997. V. 77, P. 517−544.

231. Ostapowicz G., Watson K.J., Locarnini S.A.Desmond P. V. Role of alcohol in the progression of liver disease caused by hepatitis C virus infection. // Hepatology 1998. V. 27, P. 1730−1735.

232. Hassan M.M., Hwang L.Y., Hatten C.J., Swaim M., Li D" Abbruzzese J.L., Beasley P. Patt Y.Z. Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and diabetes mellitus. II Hepatology 2002. V. 36, P. 1206−1213.

233. Burdette D., Olivarez M. Waris G. Activation of transcription factor Nrf2 by hepatitis C virus induces the cell-survival pathway. II J. Gen. Virol. 2010. V. 91, P. 681−690.

234. Osman H.G., Gabr O.M., Lotjy S. Gabr S. Serum levels of bcl-2 and cellular oxidative stress in patients with viral hepatitis. // Indian J. Med. Microbiol. 2007. V. 25, P. 323−329.

235. Bataller R., Paik Y.H., Lindquist J.N., Lemaslers J.J.Brenner D.A. Hepatitis C virus core and nonstructural proteins induce fibrogenic effects in hepatic stellate cells. // Gastroenterology 2004. V. 126, P. 529−540.

236. Street A., Macdonald A., Crowder K. Harris M. The Hepatitis C virus NS5A protein activates a phosphoinositide 3-kinase-dependent survival signaling cascade. // J. Biol. Chem. 2004. V. 279, P. 12 232−12 241.

237. Chakrabarti A., Chen A.W.Varner J.D. A review of the mammalian unfolded protein response. // Biotechnol. Bioeng. 2011. V. 108, P. 2777−2793.

238. BairdL. Dinkova-Kostova A.T. The cytoprotective role of the Keapl-Nrf2 pathway. // Arch. Toxicol. 2011. V. 85, P. 241−272.

239. Otieno M.A.Kensler T.W. A role for protein kinase C-delta in the regulation of ornithine decarboxylase expression by oxidative stress. // Cancer Res. 2000. V. 60, P. 4391−4396.

240. Chopra S. Wallace H.M. Hydrogen peroxide induces the catabolism of polyamines in human breast cancer cells. // Biochem. Soc. Trans. 1996. V. 24, P. 230S.

241. Babbar N. Gerner E.W.Casero R.A., Jr. Induction of spermidine/spermine N1-acetyltransferase (SSAT) by aspirin in Caco-2 colon cancer cells. // Biochem. J. 2006. V. 394, P. 317−324.

242. Persson L. Pegg A.E. Studies of the induction of spermidine/spermine Nl-acetyltransferase using a specific antiserum. ///. Biol. Chem. 1984. V. 259, P. 12 364−12 367.

243. Fogel-Petrovic M., Vujcic S., Brown P. J., Haddox M.K.Porter C. W. Effects of polyamines, polyamine analogs, and inhibitors of protein synthesis on spermidine-spermine Nl-acetyltransferase gene expression. // Biochemistry 1996. V. 35, P. 14 436−14 444.

244. Murakami Y., Matsufuji S., Kameji 71, Hayashi S., Igarashi K., Tamura T., Tanaka K. Ichihara A. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. II Nature 1992. V. 360, P. 597−599.

245. Milovic V. Turchanowa L. Polyamines and colon cancer. // Biochem. Soc. Trans. 2003. V. 31, P. 381−383.

246. Kingsnorth A.N., Wallace H.M., Bundred N.J.Dixon J.M. Polyamines in breast cancer. 11 Br. J. Surg. 1984. V. 71, P. 352−356.

247. Lipton A., Sheehan L.M.Kessler G.F., Jr. Urinary polyamine levels in human cancer. // Cancer 1975. V. 35, P. 464−468.

248. Kingsnorth A.N., Lumsden A.B.Wallace H.M. Polyamines in colorectal cancer. // Br. J. Surg. 1984. V. 71, P. 791−794.

249. Loser C., Folsch U.R., Paprotny C. Creutzfeldt W. Polyamine concentrations in pancreatic tissue, serum, and urine of patients with pancreatic cancer. // Pancreas 1990. V. 5, P. 119−127.

250. Coleman C.S., Pegg A.E., Megosh L. C, Guo Y., Sawicki J.A.O'Brien T.G. Targeted expression of spermidine/spermine Nl-acetyltransferase increases susceptibility to chemically induced skin carcinogenesis. // Carcinogenesis 2002. V. 23, P. 359−364.

251. Wang Z., Faith M., Patterson F., Tang K., Kerrin K, Wileyto E.P., Detre J.A.Lerman C. Neural substrates of abstinence-induced cigarette cravings in chronic smokers. // J. Neurosci. 2007. V. 27, P. 14 035−14 040.

252. Ha H.C., Sirisoma N.S., Kuppusamy P., Zweier J.L., Woster P.M.Casero R.A., Jr. The natural polyamine spermine functions directly as a free radical scavenger. // Proc. Natl. Acad. Sci. USA 1998. V. 95, P. 11 140−11 145.

253. Tkachenko A.G.Fedotova M.V. Dependence of protective functions of Escherichia coli polyamines on strength of stress caused by superoxide radicals. // Biochemistry (Mosc) 2007. V. 72, P. 109−116.

254. Gibson W. Roizman B. Compartmentalization of spermine and spermidine in the herpes simplex virion. // Proc. Natl. Acad. Sci. USA 1971. V. 68, P. 2818−2821.

255. Gibson W., van Breemen R., Fields A., LaFemina R. lrmiere A. D, L-alpha-difluoromethylornithine inhibits human cytomegalovirus replication. // J. Virol. 1984. V. 50, P. 145−154.

256. Clarke J.R.Tyms A.S. Polyamine biosynthesis in cells infected with different clinical isolates of human cytomegalovirus. II J. Med. Virol. 1991. V. 34, P. 212−216.

257. Sheppard S.L., Burness A.T.Boyle S.M. Polyamines in encephalomyocarditis virus. // J. Virol. 1980. V. 34, P. 266−267.

258. Lanzer W. Holowczak J.A. Polyamines in vaccinia virions and polypeptides released from viral cores by acid extraction. // J. Virol. 1975. V. 16, P. 1254−1264.

259. Kelly D.C.Elliott R.M. Polyamines contained by two densonucleosis viruses. // J. Virol. 1977. V. 21, P. 408−410.

260. Fukuma I. Cohen S.S. Polyamines in bacteriophage R17 and its RNA. // J Virol. 1975. V. 16, P. 222−227.

261. Quail A., Karrer E. Warren R.A. Polyamines in bacteriophage phi W-14 and in phi W-14-infected Pseudomonas acidovorans. II J. Gen. Virol. 1976. V. 33, P. 135−138.

262. McCormick F.P.Newton A.A. Polyamine metabolism in cells infected with herpes simplex virus. // J. Gen. Virol. 1975. V. 27, P. 25−33.

263. McCormick F. Polyamine turnover and leakage during infection of HeLa and L-cells with herpes simplex virus type 1. // Virology 1978. V. 91, P. 496−503.

264. Gibson W., and B. Roizman, The structural role and metabolic involvement of polyamines with herpes simplex virus, in Polyamines in normal and neoplastic growth, Russell D.H., Editor 1973, Raven Press, Inc: New York.

265. Isom H.C. Stimulation of ornithine decarboxylase by human cytomegalovirus. // J. Gen. Virol. 1979. V. 42, P. 265−278.

266. Garnett H.M. Altered polyamine concentrations in cytomegalovirus-infected human cells. // S. Afr. Med. J. 1988. V. 73, P. 209−211.

267. Colombatto S., De Agostini M., Corsi D. Sinicco A. Polyamines in lymphocytes from patients infected by human immunodeficiency virus. // Biol. Chem. Hoppe Seyler 1989. V. 370, P. 745−748.

268. White E.L., Rose L.M., Allan P.W., Buckheit R.W., Jr., Shannon W.M.Secrist J.A., 3rd Polyamine pools in HIV-infected cells. // J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1998. V. 17, P. 101−103.

269. Tyms A.S.Williamson J.D. Inhibitors of polyamine biosynthesis block human cytomegalovirus replication. II Nature 1982. V. 297, P. 690−691.

270. Casero R.A., Jr., Celano P., Ervin S.J., Wiest L. Pegg A.E. High specific induction of spermidine/spermine Nl-acetyltransferase in a human large cell lung carcinoma. // Biochem. J. 1990. V. 270, P. 615−620.

271. Tuomi K, Mantyjarvi R. Raina A. Inhibition of Semliki Forest and herpes simplex virus production in alpha-difluoromethylornithine-treated cells: reversal by polyamines. // FEBS Lett. 1980. V. 121, P. 292−294.

272. A.H. Коровина В.Л.Т., M.A. Хомутов, A.P. Симонян A.P.X, A. B, Иванов*, C.H. Кочетков Биогенные полиамины сперсин и спермидин активируют РНК полимеразу и ингибируют РНК хеликазу вируса гепатита С. // Биохимия 2012. V. 77, Р. 1414−1423.

273. Meyskens F.L., Jr. Gerner E.W. Development of difluoromethylornithine (DFMO) as a chemoprevention agent. // Clin. Cancer Res. 1999. V. 5, P. 945−951.

274. Seiler N., Duranton B. Raul F. The polyamine oxidase inactivator MDL 72 527. // Prog. Drug Res. 2002. V. 59, P. 1−40.

275. Soderstjerna E., Hoist C.M., Aim K. Oredsson S.M. Apoptosis induced by the potential chemotherapeutic drug N1, Nll-Diethylnorspermine in a neuroblastoma cell line. //Anticancer Drugs 2010. V. 21, P. 917−926.

276. Chang B. K, Liang Y., Miller D. W" Bergeron R.J., Porter C. W. Wang G. Effects of diethyl spermine analogues in human bladder cancer cell lines in culture. // J. Urol. 1993. V. 150, P. 1293−1297.1. БЛАГОДАРНОСТИ.

277. Мнехотелосьбыпоблагодарить своего научного руководителя Иванова Александра Владимировича за чуткое руководство и огромную помощь в подготовке диссертационной работы.

Показать весь текст
Заполнить форму текущей работой