Помощь в учёбе, очень быстро...
Работаем вместе до победы

Методы моделирования наднуклеосомной структуры хроматина и расчета спектров малоуглового рассеяния нейтронов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Таким образом, разработка методов молекулярного моделирования наднуклеосомной структуры хроматина геномного размера (порядка 106 нуклеосом или Ю10 атомов) и соответствующих методов расчёта спектров МУРН, применимых для систем такого размера, является актуальной биофизической задачей. Её решение позволит рассчитывать спектры МУРН и другие свойства моделей наднуклеосомной структуры хроматина для… Читать ещё >

Содержание

  • Список сокращений
  • 1. Обзор литературы
    • 1. 1. Структура нуклеосомы
    • 1. 2. Компактизация хроматина
    • 1. 3. Структура нити хроматина
    • 1. 4. Структура хроматина на уровне ядра
    • 1. 5. Малоугловое рассеяние нейтронов
  • 2. Методы
    • 2. 1. Геометрическая модель нуклеосомы
    • 2. 2. Алгоритм анализа СС-состава сайтов образования нуклеосом
      • 2. 2. 1. Определение последовательностей сайтов образования нуклеосом
      • 2. 2. 2. Биномиальный тест .4^
      • 2. 2. 3. и-тест Манна — Уитни
    • 2. 3. Геометрическая модель наднуклеосомной структуры
      • 2. 3. 1. Параметризация межнуклеосомного интерфейса
      • 2. 3. 2. Режим одноцепочечной генерации наднуклеосомной структуры
        • 2. 3. 2. 1. Подрежим локально-регулярной генерации
      • 2. 3. 3. Режим фрактальной генерации
    • 2. 4. Полишаровая физическая модель нуклеосомы
    • 2. 5. Полноатомная физическая модель нуклеосомы
      • 2. 5. 1. Построение списка атомов нуклеосомы
        • 2. 5. 1. 1. Регуляризированная модель нуклеосомы
      • 2. 5. 2. Построение списка остатков нуклеосомы
      • 2. 5. 3. Монте-Карло моделирование распределения парных расстояний и двумерная гистограмма
      • 2. 5. 4. Параметризация плотности длин рассеяния
      • 2. 5. 5. Одномерная гистограмма и расчёт спектров малоуглового рассеяния нейтронов
    • 2. 6. Модель однородного шара в методе Монте-Карло
  • 3. Результаты и обсуждение
    • 3. 1. Анализ геометрии мононуклеосомных структур из банка РБВ
    • 3. 2. Анализ СС-состава сайтов образования нуклеосом
    • 3. 3. Расчёты спектров малоуглового рассеяния нейтронов с использованием полишаровой модели нуклеосомы
      • 3. 3. 1. Расчёты с помощью формулы Дебая
        • 3. 3. 1. 1. Мононуклеосома
        • 3. 3. 1. 2. Наднуклеосомные структуры
        • 3. 3. 1. 3. Анализ применения формулы Дебая
      • 3. 3. 2. Переход к методу Монте-Карло
        • 3. 3. 2. 1. Мононуклеосома
        • 3. 3. 2. 2. Наднуклеосомные структуры
        • 3. 3. 2. 3. Анализ применения метода Монте-Карло
    • 3. 4. Расчёты спектров малоуглового рассеяния нейтронов с использованием полноатомной модели нуклеосомы
      • 3. 4. 1. Мононуклеосома
      • 3. 4. 2. Наднуклеосомные структуры, полученные в режиме одноцепочечной генерации
        • 3. 4. 2. 1. Наднуклеосомные структуры, полученные в подрежиме локально-регулярной генерации
      • 3. 4. 3. Наднуклеосомные структуры, полученные в режиме фрактальной генерации

Методы моделирования наднуклеосомной структуры хроматина и расчета спектров малоуглового рассеяния нейтронов (реферат, курсовая, диплом, контрольная)

Актуальность исследования.

Современный арсенал экспериментальных биофизических методов исследования позволяет отвечать на многие вопросы о функционировании живой клетки. Тем не менее, наши знания о структурной организации биологических объектов по-прежнему недостаточны. Например, длина ДНК генома человека составляет около 2 м, в то время как характерный размер клеточных ядер — порядка 10 мкм, что означает весьма высокую степень упаковки ДНК.

Ядерная ДНК в геномах эукариот представляет собой нуклеопротеиновый комплекс — хроматин. Для компактного хранения генетической информации и обеспечения доступа к ней требуется его определённая организация. В середине 1970;х гг. было известно, что хроматин состоит из ДНК и гистонов HI, Н2А, Н2 В, НЗ и Н4 (Kornberg and Thomas, 1974). На основании имеющихся биохимических данных Корнбергом (Kornberg, 1974) была выдвинута гипотеза о существовании структурного элемента хроматина, которая позднее была подтверждена экспериментально (Oudet et al., 1975). Обнаруженные частицы назвали нуклеосомами. В 1997 г. была получена полноатомная структура нуклеосомы (Luger et al., 1997).

Достигаемая с помощью нуклеосомной организации степень компак-тизации хроматина является недостаточной для объяснения наблюдаемой плотности упаковки ДНК в ядре, что указывает на наличие наднуклеосомных структур хроматина (Woodcock and Ghosh, 2010). Наблюдаемые при помощи электронной микроскопии 30-нанометровые нити хроматина считаются следующим уровнем компактизации ДНК (Oudet et al., 1975; Finch and Klug, 1976). За прошедшие десятилетия нити хроматина исследовались множеством экспериментальных методов, однако полученные результаты не позволяют сделать однозначных выводов об их структуре, а ряд исследователей ставит под сомнение само существование регулярной упаковки нуклеосом в 30-нанометровые нити (van Holde and Zlatanova, 1995; Tremethick, 2007; Fussner et al., 2011).

Определённый прогресс достигнут в исследовании структуры хроматина в масштабе целого ядра. Применение биофизических и биохимических методов позволило установить двухуровневую фрактальную организацию хроматина (McNally and Mazza, 2010) и, в ряде случаев, построить трёхмерные модели исследуемых геномов (Duan et al., 2010). Тем не менее единая молекулярная модель структурной организации хроматина, охватывающая все уровни компактизации ДНК, от нуклеосомного до геномного, пока не создана.

В нашей лаборатории получены данные о малоугловом рассеянии нейтронов (МУРН) на различных клеточных ядрах (Lebedev et al., 2005; Исаев-Иванов и dp., 2010). Графики экспериментальных спектров МУРН имеют линейные участки в двойном логарифмическом масштабе для широкого интервала значений величины векторов рассеяния, что указывает на фрактальную организацию хроматина (Schmidt, 1989).

МУРН обладает рядом преимуществ перед другими экспериментальными методами исследования наднуклеосомной структуры хроматина. Во-первых, он позволяет получить данные о структуре хроматина в нативном ядре без применения биохимических техник выделения отдельных нитей хроматина. Во-вторых, при использовании метода вариации контраста возможно наблюдать рассеяние нейтронов на различных частях нуклеопротеидных комплексов, например, при концентрации тяжёлой воды в растворе порядка 65% спектр МУРН будет обусловлен преимущественно белковой компонентой. В-третьих, спектры МУРН охватывают практически полный интервал размеров наднуклеосомных структур хроматина, от нуклеосомных до геномных.

Указанные преимущества использования МУРН для исследования структуры хроматина и других биомакромолекулярных комплексов обуславливают большое число нейтронных экспериментов для изучения биологических объектов (Harroun et al, 2006).

Существует несколько методов расчёта спектров малоуглового рассеяния нейтронов и рентгеновского излучения для молекулярных моделей, разработаны соответствующие компьютерные программы.

В рамках аналитического подхода может быть использовано полишаровое представление объекта, расчёт спектров МУРН в таком случае осуществляется при помощи формулы Дебая (Debye, 1915; Свергун и Фейгин, 1986). Такой метод расчёта спектров рассеяния применяется в ряде программ: DALAIGA (Chacon et al., 1998, 2000), SAXS3D (Walther et al., 2000).

Другим приближением является представление однородного объекта в виде радиальной оболочки, которая аппроксимируется сферическими функциями, что позволяет непосредственно вычислить спектр рассеяния (Stuhrmann, 1970). Этот подход используются в программе SASHA (Svergun et al., 1996, 1997). Аналогично приближению радиальной оболочки, в программах DAMMIN, CRYSOL и CRYSON используется представление форм-факторов отдельных атомов в виде разложения по сферическим функциям, что позволяет вычислять спектры рассеяния для полноатомных моделей (Svergun et al., 1995, 1998; Svergun, 1999).

Кроме того, в ряде работ разработаны методы непосредственного вычисления функции распределения парных расстояний (ФРПР) и получения спектров МУРН с помощью Фурье-преобразования (Hammermann et al., 2000).

Общим недостатком этих методов является их неприменимость для систем большого размера, таких как сложные биомакромолекулярные комплексы, состоящие из миллионов атомов.

Таким образом, разработка методов молекулярного моделирования наднуклеосомной структуры хроматина геномного размера (порядка 106 нуклеосом или Ю10 атомов) и соответствующих методов расчёта спектров МУРН, применимых для систем такого размера, является актуальной биофизической задачей. Её решение позволит рассчитывать спектры МУРН и другие свойства моделей наднуклеосомной структуры хроматина для исследования влияния различных геометрических и физических параметров на экспериментально наблюдаемые характеристики хроматина.

Цель и задачи исследования

.

Целью настоящей работы являлась разработка методов молекулярного моделирования наднуклеосомной структуры хроматина геномного размера и расчёта спектров МУРН для получаемых моделей нуклеопротеидных комплексов.

Для достижения этой цели были поставлены следующие задачи:

1. разработать метод построения физической модели нуклеосомы и соответствующий метод расчёта спектров МУРН, применимый для нуклеопротеидных комплексов геномного размера;

2. определить геометрические параметры межнуклеосомного интерфейса и разработать методы построения геометрических моделей наднуклеосомных структур геномного размера;

3. разработать методы построения фрактальных наднуклеосомных структур с заданным значением фрактальной размерности;

4. рассчитать спектры МУРН для построенных моделей наднуклеосомной структуры хроматина и сопоставить с полученными экспериментально.

Основные положения, выносимые на защиту.

1. Разработанный метод расчёта спектров МУРН, основанный на методе Монте-Карло, применим для нуклеопротеидных комплексов, состоящих из ~ Ю10 атомов.

2. Разработанный алгоритм фрактальной генерации наднуклеосомных структур позволяет создавать фрактальные структуры с заданной фрактальной размерностью в интервале 2 < < 3.

3. Спектры МУРН, рассчитанные для фрактальных моделей наднуклеосомной структуры хроматина высоких порядков упаковки, имеющих две фрактальные размерности, удовлетворительно описывают экспериментально наблюдаемые спектры МУРН, а именно имеют степенной характер зависимости интенсивности рассеяния от величины вектора рассеяния (I ос и точку кроссовера, определяющую переход от одной фрактальной размерности (?/ к другой.

Научная новизна.

1. Разработан метод построения фрактальных моделей наднуклеосомной структуры хроматина с заданным значением фрактальной размерности или двумя различными значениями фрактальной размерности (структуры с кроссовером).

2. Разработан метод расчёта спектров МУРН для молекулярных моделей, применимый для нуклеопротеидных комплексов геномного размера (порядка 106 нуклеосом «Ю10 атомов).

3. Построена фрактальная молекулярная модель наднуклеосомной структуры хроматина геномного размера 106 мононуклеосомных частиц) с двумя фрактальными размерностями, описывающая двухуровневую фрактальную организацию хроматина.

Теоретическая и практическая значимость.

Разработанные методы построения молекулярных моделей наднуклеосомной структуры хроматина могут быть использованы при расчёте спектров МУРН и других экспериментально наблюдаемых характеристик хроматина, таких как карта контактов удалённых по цепи участков геномной ДНК и диффузионное поведение маркеров, для исследования роли различных геометрических и физических параметров.

Разработанные методы расчёта спектров МУРН могут применяться как для моделей наднуклеосомной структуры хроматина, полученных в данной работе, так и для вычисления спектров МУРН для полноатомных моделей любых биомакромолекулярных или полимерных комплексов с большим количеством атомов, где невозможно применение других методов.

Апробация работы.

Материалы диссертации были представлены на VIII Национальной конференции «Рентгеновское, синхротронное излучения, нейтроны и электроны для исследования наносистем и материалов» РСНЭ-НБИК.

2011 (Курчатовский институт, Москва, 2011), на XV Международной Пущинской школ е-конференции молодых учёных «Биология — наука XXI века» (Пущино, 2011), на XI Международной конференции по рассеянию рентгеновского излучения и нейтронов на поверхностях БХИБ-П (СевероЗападный университет, Эванстон, Иллинойс, США, 2010), на XX и XXI Совещаниях по использованию рассеяния нейтронов в исследованиях конденсированного состояния РНИКС-2008 и РНИКС-2010 (ПИЯФ, Гатчина, 2008, Курчатовский институт, Москва, 2010), на Санкт-Петербургском семинаре по компьютерной биологии (СПбГПУ, Санкт-Петербург, 2009), на IX конференции молодых учёных Отделения молекулярной и радиационной биофизики ПИЯФ РАН (ПИЯФ, Гатчина, 2008), на XVI и XVII Политехнических симпозиумах «Молодые учёные — промышленности Северо-Западного региона» (СПбГПУ, Санкт-Петербург, 2007, 2008).

Начальный этап работы (диссертация на соискание степени магистра) был отмечен медалью «За лучшую научную студенческую работу» по итогам Всероссийского открытого конкурса на лучшую научную работу студентов вузов по естественным, техническим и гуманитарным наукам в 2008 г.

Публикации и личный вклад автора.

По материалам диссертации опубликовано 13 работ, в том числе 4 в рецензируемых научных журналах из перечня изданий, рекомендованных Высшей аттестационной комиссией для публикации материалов диссертаций на соискание учёной степени кандидата наук (полный список приведён на страницах 1Ц—115).

Автор принимал непосредственное участие как в постановке задач, так и в их решении и обсуждении полученных результатов. Личный вклад автора в получение результатов, выносимых на защиту, является определяющим. Вклад автора в совместных публикациях с научным руководителем и/или другими сотрудниками лаборатории является основным (анализ литературы, разработка, апробация и применение методов, расчёты и анализ результатов, написание статей), за исключением публикаций [3, 6, 9], в которых автором была выполнена лишь часть исследования.

Объём и структура диссертации.

Диссертационная работа изложена на 128 страницах машинописного текста и включает введение, три главы (обзор литературы, методы, результаты и обсуждение) и выводы. Материал иллюстрирован 26 рисунками и 7 таблицами. Библиографический указатель содержит 120 источников.

Основные результаты и выводы.

1. Разработан новый метод расчёта спектров малоуглового рассеяния нейтронов (МУРН), основанный на Монте-Карло моделировании распределения парных расстояний.

2. Установлено, что разработанный метод расчёта спектров МУРН применим для систем, состоящих из ~ Ю10 атомов.

3. Разработан алгоритм генерации фрактальных структур на основе преобразования самоподобия.

4. Показано, что разработанный алгоритм фрактальной генерации над-нуклеосомных структур позволяет создавать фрактальные структуры с заданным значением фрактальной размерности в интервале 2 < с18 < 3 или с двумя различными значениями фрактальной размерности (структуры с кроссовером).

5. Создан ряд моделей наднуклеосомной структуры хроматина геномного размера, полученных в режимах одноцепочечной и фрактальной генерации.

6. Показано, что спектры МУРН, рассчитанные для фрактальных моделей наднуклеосомной структуры хроматина с кроссовером, удовлетворительно описывают особенности экспериментально наблюдаемых спектров МУРН для целых ядер.

Список опубликованных работ по теме диссертации.

1. A. Ilatovskiy, D. Lebedev, M. Filatov, M. Petukhov and V. Isaev-Ivanov, 2012. SANS Spectra of the Fractal Supernucleosomal Chromatin Structure Models. Journal of Physics: Conference Series, 351, 12 007 (9 pp.).

2. A. Ilatovskiy, D. Lebedev, M. Filatov, M. Grigoriev, M. Petukhov, V. Isaev-Ivanov, 2011. Modeling and Small-Angle Neutron Scattering Spectra of Chromatin Supernucleosomal Structures at Genome Scale. Journal of Applied Physics, 110, 102 217 (9 pp.).

3.E. Руденко, А. Сабанцев, А. Швецов, А. Илатовский, Д. Червякова, M. Григорьев, M. Петухов, 2011. Анализ молекулярных механизмов растяжения коротких фрагментов двухнитевых ДНК. Научно-технические ведомости СПбГПУ, 134: 147−154.

4. A. Ilatovskiy and M. Petukhov, 2009. Genome-Wide Search for Local DNA Segments with Anomalous GC-Content. Journal of Computational Biology, 16: 555−564.

5. А. Илатовский, Д. Лебедев, M. Филатов, M. Петухов, В. Исаев-Иванов, 2011. Спектры МРН для локально-регулярных моделей супернуклеосомных структур хроматина хромосомного размера / / VIII Национальная конференция «Рентгеновское, синхротронное излучения, нейтроны и электроны для исследования наносистем и материалов». Сборник тезисов. — Москва — С. 445.

6. Д. Лебедев, Ю. Гармай, А. Швецов, А. Илатовский, М. Филатов, М. Петухов, В. Исаев-Иванов, 2011. Использование методов нейтронного рассеяния в изучении структуры и динамики нуклеопротеидных комплексов VIII Национальная конференция «Рентгеновское, синхротронное излучения, нейтроны и электроны для исследования наносистем и материалов». Сборник тезисов. — Москва — С. 31.

7. А. Илатовский, Д. Лебедев, М. Филатов, М. Григорьев, М. Петухов, В. Исаев-Иванов, 2011. Расчёт спектров МРН для моделей супернуклео-сомной структуры хроматина // «Биология — наука XXI века»: 15-я Международная Пугцинская школа-конференция молодых учёных. Сборник тезисов. — Пугцино — С. 118.

8. A. Ilatovskiy, D. Lebedev, М. Petukhov, V. Isaev-Ivanov, 2010. SANS Spectra and Modeling of Chromatin Supernucleosomal Structures at Genome Scale // The Eleventh International Conference on Surface X-ray and Neutron Scattering SXNS-11. Abstracts. Evanston, IL, USA. PO-A-45.

9. A. Ilatovskiy, Y. Garmaj, A. Shvetsov, D. Lebedev, M. Petukhov, V. Isaev-Ivanov, 2010. Molecular Dynamics and Large-Seale Conformational Flexibility of DNA-binding Proteins // The Eleventh International Conference on Surface X-ray and Neutron Scattering SXNS-11. Abstracts. Evanston, IL, USA. PO-A-46.

10. А. Илатовский, 2008. Моделирование супернуклеосомной структуры хроматина // 13 Санкт-Петербургская Ассамблея молодых учёных и специалистов. Сборник аннотаций. — Санкт-Петербург — С. 37.

11. А. Илатовский, М. Петухов, 2008. Расчёт спектров МРН для супернуклеосомной структуры хроматина // «Молодые учёные — промышленности Северо-Западного региона»: Материалы конференций политехнического симпозиума. — Санкт-Петербург —С. 115—116.

12. A. Ilatovskiy, D. Lebedev, М. Petukhov, V. Isaev-Ivanov, 2008. Modelling of the Supernucleosomal Chromatin Structure // Workshop on Neutron Scattering Application for Condensed Matter Investigations. Abstracts. Gatchina, Russia. P. 165.

13. А. Илатовский, M. Петухов, 2007. Моделирование супернуклеосомной структуры хроматина // «Молодые учёные — промышленности Северо-Западного региона»: Материалы конференций политехнического симпозиума. — Санкт-Петербург — С. 119—120.

Показать весь текст

Список литературы

  1. Дональд Эрвин Кнут. Искусство программирования. Т. 3. Сортировка и поиск: Перевод с английского/ Дональд Э. Кнут- под общей редакцией Ю. В. Козаченко. — 2-е изд. М.: Издательский дом «Вильяме», 2000. — 832 с.
  2. Дмитрий Иванович Свергун и Лев Абрамович Фейгин. Рентгеновское и нейтронное малоугловое рассеяние. М.: Наука, 1986. — 280 с.
  3. Илья Меерович Соболь. Численные методы Монте-Карло. М.: Наука, 1973. 312 с.
  4. Ruben Abagyan and Maxim Totrov. 1994. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. Journal of Molecular Biology, 235:983−1002.
  5. Ruben Abagyan, Maxim Totrov, and Dmitry Kuznetsov. 1994. ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. Journal of Computational Chemistry, 15:488−506.
  6. Yunhe Bao, Cindy L. White, and Karolin Luger. 2006. Nucleosome core particles containing a poly (da-dt) sequence element exhibit a locally distorted dna structure. Journal of Molecular Biology, 361:617−624.
  7. Salvador Bartolome, Antonio Bermudez, and Joan-Ramon Daban. 1994. Internal structure of the 30 nm chromatin fiber. Journal of Cell Science, 107:2983−2992.
  8. Daniel A. Beard and Tamar Schlick. 2001. Computational modeling predicts the structure and dynamics of chromatin fiber. Structure, 9:105−114.
  9. Jan Bednar, Rachel A. Horowitz, Jacques Duboehet, and Christopher L. F. Woodcock. 1995. Chromatin conformation and salt-induced compaction: Three-dimensional structural information from cryoelectron microscopy. Journal of Cell Biology, 131:1365−1376.
  10. Helen Berman, Kim Henrick, and Haruki Nakamura. 2003. Announcing the worldwide Protein Data Bank. Nature Structural & Molecular Biology, 10:980.
  11. M. M. Srinivas Bharath, Nagasuma R. Chandra, and M. R. S. Rao. 2003. Molecular modeling of the chromatosome particle. Nucleic Acids Research, 31: 4264−4274.
  12. Gordon F. Bonifacio, Tom Brown, Graeme L. Conn, and Andrew N. Lane. 1997. Comparison of the electrophoretic and hydrodynamic properties of DNA and RNA oligonucleotide duplexes. Biophysical Journal, 73:1532−1538.
  13. David T. Brown, Tina Izard, and Tom Misteli. 2006. Mapping the interaction surface of linker histone Hl° with the nucleosome of native chromatin in vivo. Nature Structural & Molecular Biology, 13:250−255.
  14. P. J. G. Butler. 1984. A defined structure of the 30 nm chromatin fibre which accommodates different nucleosomal repeat lengths. EM BO Journal, 3:25 992 604.
  15. Pablo Castro-Hartmann, Maria Milla, and Joan-Ramon Daban. 2010. Irregular orientation of nucleosomes in the well-defined chromatin plates of metaphase chromosomes. Biochemistry, 49:4043−4050.
  16. Pablo Chacon, Federico Moran, J. Fernando Diaz, E. Pantos, and Jose M. Andreu. 1998. Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm. Biophysical Journal, 74:2760−2775.
  17. Pablo Chacon, J. Fernando Diaz, Federico Moran, and Jose M. Andreu. 2000. Reconstruction of protein form with X-ray solution scattering and a genetic algorithm. Journal of Molecular Biology, 299:1289−1302.
  18. Srinivas Chakravarthy and Karolin Luger. 2006. The histone variant macro-H2A preferentially forms «hybrid nucleosomes». Journal of Biological Chemistry, 281: 25 522−25 531.
  19. Srinivas Chakravarthy and Karolin Luger. Comparative analysis of nucleosome structures from different species, unpublished.
  20. Srinivas Chakravarthy, Sampath Kumar Y. Gundimella, Cecile Caron, PierreYves Perche, John R. Pehrson, Saadi Khochbin, and Karolin Luger. 2005. Structural characterization of the histone variant macroH2A. Molecular and Cellular Biology, 25:7616−7624.
  21. Cedric R. Clapier, Srinivas Chakravarthy, Carlo Petosa, Carlos Fernandez-Tornero, Karolin Luger, and Christoph W. Muller. 2008. Structure of the
  22. Yujia Cui and Carlos Bustamante. 2000. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proceedings of the National Academy of Sciences of the United States of America, 97:127−132.
  23. Yamini Dalai, Hongda Wang, Stuart Lindsay, and Steven Henikoff. 2007. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biology, 5: e218.
  24. Curt A. Davey, David F. Sargent, Karolin Luger, Armin W. Maeder, and Timothy J. Richmond. 2002. Solvent mediated interactions in the structure ofothe nucleosome core particle at 1.9 A resolution. Journal of Molecular Biology, 319:1097−1113.
  25. Peter Debye. 1915. Zerstreuung von rontgenstrahlen. Annalen der Physik, 351: 809−823.
  26. Zhijun Duan, Mirela Andronescu, Kevin Schutz, Sean Mcllwain, Yoo Jung Kim, Choli Lee, Jay Shendure, Stanley Fields, C. Anthony Blau, and William Stafford Noble. 2010. A three-dimensional model of the yeast genome. Nature, 465: 363−367.
  27. Anton Eberharter and Peter B. Becker. 2004. ATP-dependent nucleosome remodelling: Factors and functions. Journal of Cell Science, 117:3707−3711.
  28. Mogens Engelhardt. 2007. Choreography for nueleosomes: the conformational freedom of the nucleosomal filament and its limitations. Nucleic Acids Research, 35: el06.
  29. J. T. Finch and A. Klug. 1976. Solenoidal model for superstructure in chromatin. Proceedings of the National Academy of Sciences of the United States of America, 73:1897−1901.
  30. J. T. Finch, L. C. Lutter, D. Rhodes, R. S. Brown, B. Rushton, M. Levitt, and A. Klug. 1977. Structure of nucleosome core particles of chromatin. Nature, 269: 29−36.
  31. Satoru Fujiwara. 1992. Interpretation of the X-ray scattering profiles of chromatin at various NaCl concentrations by a simple chain model. Biophysical Chemistry, 43:81−87.
  32. Satoru Fujiwara, Yoji Inoko, and Tatzuo Ueki. 1989. Synchrotron X-ray scattering study of chromatin condensation induced by monovalent salt: Analysis of the small-angle scattering data. Journal of Biochemistry, 106:119−125.
  33. Eden Fussner, Reagan W. Ching, and David P. Bazett-Jones. 2011. Living without 30 nm chromatin fibers. Trends in Biochemical Sciences, 36:1−6.
  34. S. E. Gerchman and V. Ramakrishnan. 1987. Chromatin higher-order structure studied by neutron scattering and scanning transmission electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 84:7802−7806.
  35. A. Grosberg, Y. Rabin, S. Havlin, and A. Neer. 1993. Crumpled globule model of the three-dimensional structure of DNA. Europhysics Letters, 23:373−378.
  36. Markus Hammermann, Katalin Toth, Claus Rodemer, Waldemar Waldeck, Roland P. May, and Jorg Langowski. 2000. Salt-dependent compaction of di- andtrinucleosomes studied by small-angle neutron scattering. Biophysical Journal, 79:584−594.
  37. Joel M. Harp, Bryant Leif Hanson, David E. Timm, and Gerard John Bunick. o2000. Asymmetries in the nucleosome core particle at 2.5 A resolution. Acta Crystallographica. Section D: Biological Crystallography, 56:1513−1534.
  38. Thad Alan Harroun, George D. Wignall, and John Katsaras. Neutron Scattering for Biology. Neutron Scattering in Biology, edited by Jorg Fitter, Thomas Gutberlet and John Katsaras. Springer, Heidelberg, 2006. Chapter 1, pp. 118.
  39. Sepideh Khorasanizadeh. 2004. The nucleosome: From genomic organization to genomic regulation. Cell, 116:259−272.
  40. Roger D. Kornberg. 1974. Chromatin structure: A repeating unit of histones and DNA. Science, 184:868−871.
  41. Roger D. Kornberg and Jean O. Thomas. 1974. Chromatin structure: Oligomers of the histones. Science, 184:865−868.
  42. Sandeep Kumar and Manju Bansal. 1996. Structural and sequence characteristics of long a helices in globular proteins. Biophysical Journal, 71:1574−1586.
  43. Gemot Langst and Peter B. Becker. 2001. Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors. Journal of Cell Science, 114:2561−2568.
  44. Sanford H. Leuba, Carlos Bustamante, Jordanka Zlatanova, and Kensal van Holde. 1998. Contributions of linker histones and histone H3 to chromatin structure: Scanning force microscopy studies on trypsinized fibers. Biophysical Journal, 74:2823−2829.
  45. Karolin Luger, Armin W. Mader, Robin K. Richmond, David F. Sargent, and Timothy J. Richmond. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389:251−260.
  46. Ravindra D. Makde, Joseph R. England, Hemant P. Yennawar, and Song Tan. 2010. Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature, 467:562−566.
  47. Benoit B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman and Co., New York, 1982.
  48. H. B. Mann and D. R. Whitney. 1947. On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18:50−60.
  49. James D. McGhee, Joanne M. Nickol, Gary Felsenfeld, and Donald C. Rau. 1983. Higher order structure of chromatin: Orientation of nucleosomes within the 30 nm chromatin solenoid is independent of species and spacer length. Cell, 33:831−841.
  50. James G MeNally and Davide Mazza. 2010. Fractal geometry in the nucleus. EMBO Journal, 29:2−3.
  51. Karen J. Meaburn and Tom Misteli. 2007. Cell biology: Chromosome territories. Nature, 445:379−381.
  52. Yuko Mitane, Mamoru Nakanishi, Masamichi Tsuboi, Terumi Kohwi-Shigematsu, Takemi Enomoto, and Masa-Atsu Yamada. 1980. Hydrogen-exchange study of a nucleosome. FEBS Letters, 121:130−132.
  53. Yoh-Ichi Miyake, Bunei Syuto, and Hiroshi Kanagawa. 1984. Gene expression of triploidy in six adult intersexual chickens. Japanese Journal of Veterinary Research, 32:143−153.
  54. Dessy N. Nikova, Lisa H. Pope, Martin L. Bennink, Kirsten A. van Leijenhorst-Groener, Kees van der Werf, and Jan Greve. 2004. Unexpected binding motifs for subnucleosomal particles revealed by atomic force microscopy. Biophysical Journal, 87:4135−4145.
  55. Michelle S. Ong, Timothy J. Richmond, and Curt A. Davey. 2007. DNA stretching and extreme kinking in the nucleosome core. Journal of Molecular Biology, 368:1067−1074.
  56. P. Oudet, M. Gross-Bellard, and P. Chambon. 1975. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell, 4:281 300.
  57. Jerod Parsons, J. Bradley Holmes, J. Maurice Rojas, Jerry Tsai, and Charlie E. M. Strauss. 2005. Practical conversion from torsion space to Cartesian space for in silico protein synthesis. Journal of Computational Chemistry, 26:10 631 068.
  58. V. Ramakrishnan, J. T. Finch, V. Graziano, P. L. Lee, and R. M. Sweet. 1993. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature, 362:219−223.
  59. Timothy J. Richmond, J. T. Finch, B. Rushton, Daniela Rhodes, and A. Klug. o1984. Structure of the nucleosome core particle at 7 A resolution. Nature, 311: 532−537.
  60. Philip J. J. Robinson and Daniela Rhodes. 2006. Structure of the '30 nm' chromatin fibre: A key role for the linker histone. Current Opinion in Structural Biology, 16:336−343.
  61. Andrew Routh, Sara Sandin, and Daniela Rhodes. 2008. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proceedings of the National Academy of Sciences of the United States of America, 105:8872−8877.
  62. Thomas Schalch, Sylwia Duda, David F. Sargent, and Timothy J. Richmond. 2005. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature, 436:138−141.
  63. Tamar Schlick and Ognjen Perisic. 2009. Mesoscale simulations of two nucleosome-repeat length oligonucleosomes. Physical Chemistry Chemical Physics, 11:10 729−10 737.
  64. Paul W. Schmidt. Use of Scattering to Determine the Fractal Dimension. The Fractal Approach to Heterogeneous Chemistry: Surfaces- Colloids7 Polymers, edited by David Avnir. John Wiley k Sons Ltd., New York, 1989. Chapter 2.2, pp. 67−79.
  65. Dustin E. Schones, Kairong Cui, Suresh Cuddapah, Tae-Young Roh, Artem Barski, Zhibin Wang, Gang Wei, and Keji Zhao. 2008. Dynamic regulation of nucleosome positioning in the human genome. Cell, 132:887−898.
  66. Anita Scipioni, Giulia Turchetti, Stefano Morosetti, and Pasquale De Santis. 2010. Geometrical, conformational and topological restraints in regular nucleosome compaction in chromatin. Biophysical Chemistry, 148:56−67.
  67. Eran Segal, Yvonne Fondufe-Mittendorf, Lingyi Chen, AnnChristine Thastrom, Yair Field, Irene K. Moore, Ji-Ping Z. Wang, and Jonathan Widom. 2006. A genomic code for nucleosome positioning. Nature, 442:772−778.
  68. Hiromu Sugeta and Tatsuo Miyazawa. 1967. General method for calculating helical parameters of polymer chains from bond lengths, bond angles, and internal-rotation angles. Biopolymers, 5:673−679.
  69. Robert K. Suto, Michael J. Clarkson, David J. Tremethick, and Karolin Luger. 2000. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nature Structural & Molecular Biology, 7:1121−1124.
  70. Dmitri I. Svergun. 1999. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophysical Journal, 76:2879−2886.
  71. Dmitri I. Svergun and Michel H. J. Koch. 2003. Small-angle scattering studies of biological macromolecules in solution. Reports on Progress in Physics, 66: 1735−1782.
  72. Dmitri I. Svergun, V. V. Volkov, M. B. Kozin, and Heinrich B. Stuhrmann. 1996. New developments in direct shape determination from small-angle scattering. 2. Uniqueness. Acta Crystallographica. Section A: Foundations of Crystallography, 52:419−426.
  73. Dmitri I. Svergun, V. V. Volkov, M. B. Kozin, Heinrich B. Stuhrmann, C. Barberato, and M. H. J. Koch. 1997. Shape determination from solution scattering of biopolymers. Journal of Applied Crystallography, 30:798−802.
  74. Dmitry I. Svergun, C. Barberato, and M. H. J. Koch. 1995. CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. Journal of Applied Crystallography, 28:768−773.
  75. Manabu Takahashi. 1989. A fractal model of chromosomes and chromosomal DNA replication. Journal of Theoretical Biology, 141:117−136.
  76. F. Thoma and Th. Koller. 1977. Influence of histone HI on chromatin structure. Cell, 12:101−107.
  77. F. Thoma, Th. Koller, and A. Klug. 1979. Involvement of histone HI in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. Journal of Cell Biology, 83:403−427.
  78. David J. Tremethick. 2007. Higher-order structures of chromatin: The elusive 30 nm fiber. Cell, 128:651−654.
  79. Yasuo Tsunaka, Naoko Kajimura, Shin-ichi Tate, and Kosuke Morikawa. 2005. Alteration of the nucleosomal DNA path in the crystal structure of a human nucleosome core particle. Nucleic Acids Research, 33:3424−3434.
  80. Kensal van Holde and Jordanka Zlatanova. 1995. Chromatin higher order structure: Chasing a mirage? Journal of Biological Chemistry, 270:8373−8376.
  81. Dirk Walther, Fred E. Cohen, and Sebastian Doniach. 2000. Reconstruction of low-resolution three-dimensional density maps from one-dimensional small-angle X-ray solution scattering data for biomolecules. Journal of Applied Crystallography, 33:350−363.
  82. Cindy L. White, Robert K. Suto, and Karolin Luger. 2001. Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO Journal, 20:5207−5218.
  83. Burghardt Wittig and Stephanie Wittig. 1977. Nucleosome mono-, di-, tri-, and tetramers from chicken embryo chromatin. Nucleic Acids Research, 4:3901−3917.
  84. Hua Wong, Jean-Marc Victor, and Julien Mozziconacci. 2007. An all-atom model of the chromatin fiber containing linker histones reveals a versatile structure tuned by the nucleosomal repeat length. PLoS ONE, 2: e877.
  85. Christopher L. F. Woodcock. 2006. Chromatin architecture. Current Opinion in Structural Biology, 16:213−220.
  86. Christopher L. F. Woodcock and Rajarshi P. Ghosh. 2010. Chromatin higherorder structure and dynamics. Cold Spring Harbor Perspectives in Biology, 2: a000596.
  87. Christopher L. F. Woodcock, L.-L. Y. Frado, and J. B. Rattner. 1984. The higher-order structure of chromatin: Evidence for a helical ribbon arrangement. Journal of Cell Biology, 99:42−52.
  88. Bin Wu, Peter Droge, and Curt A. Davey. 2008. Site selectivity of platinum anticancer therapeutics. Nature Chemical Biology, 4:110−112.
  89. J. Yao, P. T. Lowary, and J. Widom. 1990. Direct detection of linker DNA bending in defined-length oligomers of chromatin. Proceedings of the National Academy of Sciences of the United States of America, 87:7603−7607.
  90. J. Yao, P. T. Lowary, and J. Widom. 1991. Linker DNA bending induced by the core histones of chromatin. Biochemistry, 30:8408−8414.
  91. Yong Zhang, Hyunjin Shin, Jun S. Song, Ying Lei, and X. Shirley Liu. 2008. Identifying positioned nucleosomes with epigenetic marks in human from ChlP-Seq. BMC Genomics, 9:537.
  92. Jordanka Zlatanova, Sanford H. Leuba, and Kensal van Holde. 1998. Chromatin fiber structure: Morphology, molecular determinants, structural transitions. Biophysical Journal, 74:2554−2566.
Заполнить форму текущей работой