ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² ΡƒΡ‡Ρ‘Π±Π΅, ΠΎΡ‡Π΅Π½ΡŒ быстро...
Π Π°Π±ΠΎΡ‚Π°Π΅ΠΌ вмСстС Π΄ΠΎ ΠΏΠΎΠ±Π΅Π΄Ρ‹

Анализ структурно-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… особСнностСй РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ Ρ‚Π΅Ρ€ΠΌΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ Thermus Aquaticus

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Вранскрипция Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Ρ‚Ρ€ΠΈ основныС стадии: ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΡŽ, ΡΠ»ΠΎΠ½Π³Π°Ρ†ΠΈΡŽ ΠΈ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Ρ†ΠΈΡŽ. Π˜Π½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΡ происходит Π² ΡΠΏΠ΅Ρ†ΠΈΡ„ичСских участках Π”ΠΠš — ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°Ρ…, ΠΈ ΡΠ²Π»ΡΠ΅Ρ‚ся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½Ρ‹Ρ… мишСнСй гСнСтичСской рСгуляции. Π’ ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ РНКП ΡƒΠ·Π½Π°Π΅Ρ‚ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ ΠΈ ΠΏΠ»Π°Π²ΠΈΡ‚ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½ΡƒΡŽ Π”ΠΠš Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ, послС Ρ‡Π΅Π³ΠΎ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ синтСз РНК de novo, Π±Π΅Π· использования Π·Π°Ρ‚Ρ€Π°Π²ΠΊΠΈ. Π£ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ всС стадии ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • БПИБОК Π˜Π‘ΠŸΠžΠ›Π¬Π—Π£Π•ΠœΠ«Π₯ Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™
  • ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
  • I. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ ΠΈ ΡΠ»ΠΎΠ½Π³Π°Ρ†ΠΈΠΈ транскрипции Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ РНКП
  • 1. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ транскрипции
  • 2. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ синтСза РНК Π½Π° ΡΡ‚Π°Π΄ΠΈΠΈ элонгации транскрипции
    • 2. 1. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° эло/Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ комплСкса
    • 2. 2. Π Π΅Π°ΠΊΡ†ΠΈΠΈ, ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ РНКП
    • 2. 3. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ присоСдинСния NTP Π² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌ Ρ†Π΅Π½Ρ‚Ρ€Π΅ РНКП
    • 2. 4. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ транслокации РНКП
  • 3. ДСйствиС Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠΎΠ² Π½Π° ΠΊΠ°Ρ‚алитичСский Ρ†ΠΈΠΊΠ» РНКП
    • 3. 1. Π‘Ρ‚Ρ€Π΅ΠΏΡ‚ΠΎΠ»ΠΈΠ΄ΠΈΠ³ΠΈΠ½
    • 3. 2. Π°-Аманитин

Анализ структурно-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… особСнностСй РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ Ρ‚Π΅Ρ€ΠΌΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ Thermus Aquaticus (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹.

Вранскрипция — ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… процСссов, Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… Π² ΠΎΡΠ½ΠΎΠ²Π΅ экспрСссии гСнСтичСского ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. Вранскрипция Π³Π΅Π½ΠΎΠ² Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… всСх ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² осущСствляСтся ΠΌΠ½ΠΎΠ³ΠΎΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΌΠΈ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π°ΠΌΠΈ (РНКП). ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ транскрипции ΠΈ ΠΎΠ±Ρ‰Π°Ρ структура РНКП высоко консСрвативны Π² ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ. Π‘Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ РНКП, ΠΈΠΌΠ΅ΡŽΡ‰Π°Ρ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ простоС строСниС, являСтся ΡƒΠ΄ΠΎΠ±Π½ΠΎΠΉ модСлью для изучСния Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² транскрипции ΠΈ Π΅Π΅ Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ. РНКП способна ΡΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ РНК Π΄Π»ΠΈΠ½ΠΎΠΉ Π΄ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… дСсятков тысяч Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² с ΠΎΡ‡Π΅Π½ΡŒ высокой Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ ΠΏΡ€ΠΎΡ†Π΅ΡΡΠΈΠ²ΠΏΠΎΡΡ‚Ρ‹ΠΎ, Ρ‡Ρ‚ΠΎ обСспСчиваСтся слоТными структурными пСрСстройками Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ транскрипции. ΠΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ РНКП Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… стадиях транскрипции рСгулируСтся самыми Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ: Π±Π΅Π»ΠΊΠ°ΠΌΠΈ, Π½Π΅ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ РНК, низкомолСкулярными соСдинСниями ΠΈ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‚Π°ΠΌΠΈ, Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠ°ΠΌΠΈ. Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ рСгуляторов транскрипции Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ Π»ΠΈΠ±ΠΎ Π½Π° ΡΡ‚Π°Π΄ΠΈΠΈ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ транскрипции, влияя Π½Π° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΠ΅ РНКП с ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°ΠΌΠΈ, Π»ΠΈΠ±ΠΎ нСпосрСдствСнно Π½Π° ΠΊΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ РНКП. Π Π°ΡΡˆΠΈΡ„Ρ€ΠΎΠ²ΠΊΠ° Π΄Π΅Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… стадий транскрипции, Π² Ρ‚ΠΎΠΌ числС, Π°Π½Π°Π»ΠΈΠ· взаимодСйствий РНКП с ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°ΠΌΠΈ, рСгуляторными сигналами Π² Π”ΠΠš ΠΈ Π ΠΠš, транскрипционными Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π° Π² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌ Ρ†Π΅Π½Ρ‚Ρ€Π΅ РНКП, являСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΡ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ соврСмСнной молСкулярной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠ° для понимания основных ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² рСгуляции Π³Π΅Π½Π½ΠΎΠΉ экспрСссии.

Вранскрипция Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Ρ‚Ρ€ΠΈ основныС стадии: ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΡŽ, ΡΠ»ΠΎΠ½Π³Π°Ρ†ΠΈΡŽ ΠΈ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Ρ†ΠΈΡŽ. Π˜Π½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΡ происходит Π² ΡΠΏΠ΅Ρ†ΠΈΡ„ичСских участках Π”ΠΠš — ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°Ρ…, ΠΈ ΡΠ²Π»ΡΠ΅Ρ‚ся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½Ρ‹Ρ… мишСнСй гСнСтичСской рСгуляции. Π’ ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ РНКП ΡƒΠ·Π½Π°Π΅Ρ‚ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ ΠΈ ΠΏΠ»Π°Π²ΠΈΡ‚ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½ΡƒΡŽ Π”ΠΠš Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ, послС Ρ‡Π΅Π³ΠΎ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ синтСз РНК de novo, Π±Π΅Π· использования Π·Π°Ρ‚Ρ€Π°Π²ΠΊΠΈ. Π£ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ всС стадии ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‚ΡΡ Ρ…ΠΎΠ»ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠΌ РНКП, состоящим ΠΈΠ· ΠΊΠΎΡ€-Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° (ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΉ состав Π°Π³Π Π ’со) ΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ — ст-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹, которая диссоциируСт ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ ΠΊ ΡΠ»ΠΎΠ½Π³Π°Ρ†ΠΈΠΈ. Элонгация ΠΈ Ρ‚Срминация транскрипции ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‚ΡΡ ΠΊΠΎΡ€-Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠΌ РНКП. Π‘ΠΈΠ³ΠΌΠ°-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π° ΠΈΠ³Ρ€Π°Π΅Ρ‚ ΠΎΡΠ½ΠΎΠ²Π½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² ΡƒΠ·Π½Π°Π²Π°Π½ΠΈΠΈ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ² ΠΈ ΠΏΠ»Π°Π²Π»Π΅Π½ΠΈΠΈ Π”ΠΠš Π² Ρ€Π°ΠΉΠΎΠ½Π΅ стартовой Ρ‚ΠΎΡ‡ΠΊΠΈ транскрипции, Π° Ρ‚Π°ΠΊΠΆΠ΅ нСпосрСдствСнно участвуСт Π² ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ синтСза РНК ΠΈ ΡƒΡ…ΠΎΠ΄Π΅ РНКП с ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°. Π˜ΠΌΠ΅ΡŽΡ‚ΡΡ Π΄Π°Π½Π½Ρ‹Π΅, ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΠΊΠΎΡ€-Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ РНКП Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΡƒΡ‡Π°ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π² ΡΠΏΠ΅Ρ†ΠΈΡ„ичСском ΡƒΠ·Π½Π°Π²Π°Π½ΠΈΠΈ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ², Π½ΠΎ Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎ Π΅Π³ΠΎ Ρ€ΠΎΠ»ΡŒ Π² ΡΡ‚ΠΎΠΌ процСссС пс ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»Π°ΡΡŒ.

ПониманиС молСкулярных ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π° РНКП стало Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ Π² ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Π³ΠΎΠ΄Ρ‹ Π² ΡΠ²ΡΠ·ΠΈ с ΡƒΡΠΏΠ΅Ρ…Π°ΠΌΠΈ Π² Ρ€Π°ΡΡˆΠΈΡ„Ρ€ΠΎΠ²ΠΊΠ΅ Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΉ структуры РНКП Ρ‚Π΅Ρ€ΠΌΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ (Thermus aquaticus ΠΈ Thermus thermophilus) ΠΈ Π ΠΠšΠŸ II Saccharomyces cerevisiae, Π° Ρ‚Π°ΠΊΠΆΠ΅ структуры элонгационных комплСксов этих РНКП Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… состояниях. Активный Ρ†Π΅Π½Ρ‚Ρ€ РНКП ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΡ‡Π΅Π½ΡŒ ΠΊΠΎΠ½ΡΠ΅Ρ€Π²Π°Ρ‚ΠΈΠ²Π½ΡƒΡŽ структуру ΠΈ ΡΠΎΠ΄Π΅Ρ€ΠΆΠΈΡ‚ Π΄Π²Π° ΠΈΠΎΠ½Π° магния, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ структурныС элСмСнты, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ связываниС ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ субстратов Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ. На ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… Π±Ρ‹Π»Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° модСль присоСдинСния Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Π² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌ Ρ†Π΅Π½Ρ‚Ρ€Π΅ РНКП, которая позволяСт ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… структурных элСмСнтов Π² ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π΅ ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ основой для Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ структурно-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° РНКП.

Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠ½ΡƒΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π΄ΠΎ Π½Π°ΡΡ‚оящСго Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎΠ΄Π°Π²Π»ΡΡŽΡ‰Π΅Π΅ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ исслСдований ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ транскрипции ΠΈ ΠΊΠ°Ρ‚алитичСских ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² РНКП Π±Ρ‹Π»ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ РНКП ΠΌΠ΅Π·ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ Escherichia coli. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя, Π±Ρ‹Π»ΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ РНКП Π΄Ρ€ΡƒΠ³ΠΈΡ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ, Π² Ρ‡Π°ΡΡ‚ности Ρ‚Π΅Ρ€ΠΌΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Π’. aquaticus ΠΈ Π’. thermophilus, ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€ΠΎΡΠ²Π»ΡΡ‚ΡŒ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ отличия Π² ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°Ρ… узнавания ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ², ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ транскрипции ΠΈ Π² ΠΊΠ°Ρ‚алитичСских свойствах (Xue et al., 2000; Minakhin et al., 2001; Kulbachinskiy et al., 2004). РНКП Ρ‚Π΅Ρ€ΠΌΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ интСрСсной модСлью для изучСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… стадий транскрипции, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ, ΠΏΡ€ΠΈ сохранСнии консСрвативного ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° транскрипции, ΠΎΠ½ΠΈ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ особСнностями, связанными с Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠ΅ΠΉ ΠΊ Π²Ρ‹ΡΠΎΠΊΠΈΠΌ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°ΠΌ. РНКП Ρ‚Π΅Ρ€ΠΌΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΠΈΠΌΠ΅ΡŽΡ‚ Π±ΠΎΠ»Π΅Π΅ «ΠΆΠ΅ΡΡ‚ΠΊΡƒΡŽ» структуру ΠΈ ΡΠ½ΠΈΠΆΠ΅Π½Π½ΡƒΡŽ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΡƒΡŽ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ обСспСчиваСт ΠΈΡ… Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ. Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ транскрипционных свойств РНКП Ρ‚Π΅Ρ€ΠΌΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΈ ΠΌΠ΅Π·ΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Π΄Π°Π΅Ρ‚ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½ΡƒΡŽ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ для поиска Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ-Π²Π°ΠΆΠ½Ρ‹Ρ… участков РНКП, задСйствованных Π² ΡƒΠ·Π½Π°Π²Π°Π½ΠΈΠΈ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ² ΠΈ Π² ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π΅ ΠΈ ΠΎΡ‚вСтствСнных Π·Π° Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½Ρ‹Π΅ различия Π² ΡΠ²ΠΎΠΉΡΡ‚Π²Π°Ρ… РНКП Ρ€Π°Π·Π½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ. РНКП Π’. aquaticus являСтся Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ интСрСсной модСльной РНКП, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ для этой РНКП извСстна трСхмСрная структура высокого Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ.

ΠšΡ€ΠΎΠΌΠ΅ нСсомнСнной Π½Π°ΡƒΡ‡Π½ΠΎΠΉ цСнности, исслСдованиС Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ транскрипции ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π° Π² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌ Ρ†Π΅Π½Ρ‚Ρ€Π΅ РНКП ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚Π°ΠΊΠΆΠ΅ большоС практичСскоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. Π’ Ρ‡Π°ΡΡ‚ности, Π°Π½Π°Π»ΠΈΠ· ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° транскрипции ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌ для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² рСгуляции активности Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ РНКП, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π½Π°ΠΉΡ‚ΠΈ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² Π±ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ для получСния Π½ΠΎΠ²Ρ‹Ρ… ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠ² РНКП, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ большоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ для ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Ρ‹.

Π¦Π΅Π»ΠΈ ΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ исслСдования.

ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлся Π°Π½Π°Π»ΠΈΠ· особСнностСй узнавания ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ² ΠΈ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π° РНКП Ρ‚Π΅Ρ€ΠΌΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ Π’. aquaticus ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π ΠΠšΠŸ ΠΌΠ΅Π·ΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Π•. coli ΠΈ Deinococcus radiodurans. Для достиТСния Π΄Π°Π½Π½ΠΎΠΉ Ρ†Π΅Π»ΠΈ Π±Ρ‹Π»ΠΈ поставлСны ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ:

1. Π˜Π·ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ узнавания Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ элСмСнта GGGA РНКП Π’. aquaticus. Π‘Ρ€Π°Π²Π½ΠΈΡ‚ΡŒ Ρ€ΠΎΠ»ΡŒ этого элСмСнта Π² ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ транскрипции РНКП Π’. aquaticus ΠΈ Π•. coli.

2. Π‘Ρ€Π°Π²Π½ΠΈΡ‚ΡŒ каталитичСскиС свойства РНКП Π’. aquaticus ΠΈ D. radiodurans ΠΈ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ структурныС элСмСнты Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° РНКП, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π² ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π΅ ΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ различия ΠΌΠ΅ΠΆΠ΄Ρƒ этими РНКП.

ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«.

I. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ ΠΈ ΡΠ»ΠΎΠ½Π³Π°Ρ†ΠΈΠΈ транскрипции Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ РНКП.

РНКП являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ², ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π² ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΠΈ Π³Π΅Π½ΠΎΠ². Π—Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 50 Π»Π΅Ρ‚, ΠΏΡ€ΠΎΡˆΠ΅Π΄ΡˆΠΈΡ… с ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° открытия РНКП, Π±Ρ‹Π»ΠΈ достаточно ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ исслСдованы ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ основных стадий транскрипции, ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ-Π²Π°ΠΆΠ½Ρ‹Π΅ Ρ€Π°ΠΉΠΎΠ½Ρ‹ РНКП, ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ гСнСтичСскиС ΠΈ Π±ΠΈΠΎΡ…имичСскиС эффСкты ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π°Ρ… Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°. Настоящий ΠΏΡ€ΠΎΡ€Ρ‹Π² Π² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΡ… структурно-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ РНКП ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ΅Π» Π² ΡΠ°ΠΌΡ‹Π΅ послСдниС Π³ΠΎΠ΄Ρ‹, Π² ΡΠ²ΡΠ·ΠΈ с Ρ€Π°ΡΡˆΠΈΡ„Ρ€ΠΎΠ²ΠΊΠΎΠΉ Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½Ρ‹Ρ… структур РНКП Ρ‚Π΅Ρ€ΠΌΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Π’. aquaticus ΠΈ Π’. thermophilus ΠΈ Π ΠΠšΠŸ II Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ S. cerevisiae. Π’ Ρ‡Π°ΡΡ‚ности, Π±Ρ‹Π»ΠΈ Ρ€Π°ΡΡˆΠΈΡ„Ρ€ΠΎΠ²Π°Π½Ρ‹ структуры ΠΊΠΎΡ€-Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° РНКП Π’. aquaticus (Zhang et al., 1999), ст-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ РНКП Π•. coli ΠΈ Π’. aquaticus (Campbell et al., 2002; Malhotra et al., 1996), Ρ…ΠΎΠ»ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² РНКП Π’. aquaticus ΠΈ Π’. thermophilus (Murakami et al., 2002aMurakami et al., 2002bVassylyev et al., 2002), РНКП II Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ S. cerevisiae (Cramer et al., 2001), элонгационного комплСкса (ЭК) РНКП Π’. thermophilus ΠΈ S. cerevisiae (Gnatt et al., 2001; Vassylyev et al., 2007aVassylyev et al., 2007b), Π° Ρ‚Π°ΠΊΠΆΠ΅ структуры комплСксов РНКП с ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π°ΠΌΠΈ: миксопиронином (Belogurov et al., 2009; Mukhopadhyay et al., 2008), стрСптолидигином (Temiakov et al., 2005; Tuske et al., 2005), Π°-Π°ΠΌΠ°Π½ΠΈΡ‚ΠΈΠ½ΠΎΠΌ (Brueckner and Cramer, 2008; Bushnell et al., 2002), тагСтитоксином (Vassylyev et al., 2005), Ρ€ΠΈΡ„Π°ΠΌΠΏΠΈΡ†ΠΈΠ½ΠΎΠΌ (Artsimovitch et al., 2005; Campbell et al., 2001), сорангицином (Campbell et al., 2005). ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π±Ρ‹Π»ΠΈ Ρ€Π°ΡΡˆΠΈΡ„Ρ€ΠΎΠ²Π°Π½Ρ‹ структуры Ρ†Π΅Π»ΠΎΠ³ΠΎ ряда транскрипционных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², нСпосрСдствСнно Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Ρ€Π°Π±ΠΎΡ‚Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° РНКП: Gre-Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² (Vassylyeva et al., 2007), Π±Π΅Π»ΠΊΠΎΠ² DksA (Perederina et al., 2004), Gfhl (Lamour et al., 2006; Laptenko et al., 2006; Symersky et al., 2006), Rnk (Lamour et al., 2008). Анализ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΡΠΎΠ·Π΄Π°Ρ‚ΡŒ ΠΌΠΎΠ΄Π΅Π»ΠΈ транскрипционных комплСксов Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… стадиях синтСза РНК, ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΡ‚ΡŒ основныС ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° РНКП ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ рСгуляции транскрипции Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ. ΠŸΠ΅Ρ€Π²Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΠ±Π·ΠΎΡ€Π° посвящСна ΠΊΡ€Π°Ρ‚ΠΊΠΎΠΌΡƒ Π°Π½Π°Π»ΠΈΠ·Ρƒ извСстных Π½Π° ΡΠ΅Π³ΠΎΠ΄Π½ΡΡˆΠ½ΠΈΠΉ дСнь Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°Ρ… ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ, элонгации транскрипции ΠΈ ΠΎ ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π΅ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ РНКП.

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. ΠŸΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹ΠΉ элСмСнт GGGA стимулируСт ΡƒΠ·Π½Π°Π²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ ΡΠΈΠ½Ρ‚СтичСских ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ² РНКП Π’. aquaticus. GGGA-элСмСнт способствуСт плавлСнию ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ² ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹Ρ… комплСксов РНКП.

2. РНКП Π’. aquaticus ΡƒΠ·Π½Π°Π΅Ρ‚ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Ρ‹, содСрТащиС GGGA-элСмСнт, с Π±ΠΎΠ»ΡŒΡˆΠ΅ΠΉ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ, Ρ‡Π΅ΠΌ РНКП Π•. coli. Π­Ρ‚ΠΈ различия Π½Π΅ ΡΠ²ΡΠ·Π°Π½Ρ‹ с Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡΠΌΠΈ Π² ΡΠΏΠ΅Ρ†ΠΈΡ„ичности узнавания GGGA-элСмСнта ст-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π°ΠΌΠΈ Π’. aquaticus ΠΈ Π•. coli, Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ся особСнностями структуры ΠΊΠΎΡ€-Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° РНКП Π’. aquaticus.

3. РНКП Π’. aquaticus характСризуСтся Ρ€Π΅Π·ΠΊΠΎ сниТСнной ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ синтСза РНК ΠΏΡ€ΠΈ ΡƒΠΌΠ΅Ρ€Π΅Π½Π½Ρ‹Ρ… ΠΈ Π½ΠΈΠ·ΠΊΠΈΡ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π ΠΠšΠŸ D. radiodurans. Π­Ρ‚ΠΈ различия ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ особСнностями структуры Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… участков Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° РНКП Π’. aquaticus, Π² Ρ‚ΠΎΠΌ числС, F-спирали, F-ΠΏΠ΅Ρ‚Π»ΠΈ ΠΈ «jaw''-Π΄ΠΎΠΌΠ΅Π½Π° Π '-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹.

4. F-пСтля, располоТСнная Π² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌ Ρ†Π΅Π½Ρ‚Ρ€Π΅ РНКП, стимулируСт присоСдинСниС Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ², способствуя Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ Π·Π°ΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°. F-пСтля участвуСт Π² Π΄ΠΈΡΠΊΡ€ΠΈΠΌΠΈΠ½Π°Ρ†ΠΈΠΈ субстратов Π² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌ Ρ†Π΅Π½Ρ‚Ρ€Π΅ РНКП. F-пСтля Π½Π΅ ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΠ΅Ρ‚ Π² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ расщСплСния РНК.

ΠŸΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π² Ρ€Π°Π±ΠΎΡ‚Π΅.

ΠŸΠΎΠΊΠ°Π·Π°Π½Ρ‹ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ части ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ², Π²ΠΊΠ»ΡŽΡ‡Π°Ρ участки ΠΎΡ‚ΠΆΠΈΠ³Π° ΠΏΡ€Π°ΠΉΠΌΠ΅Ρ€ΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… для Π°ΠΌΠΏΠ»ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹Ρ… Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ². ΠŸΡ€Π°ΠΉΠΌΠ΅Ρ€Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ ΠΏΠΎΠ΄ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡΠΌΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ²Π² составС ΠΏΡ€Π°ΠΉΠΌΠ΅Ρ€ΠΎΠ² ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠ½ΡƒΡ‚Ρ‹ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ рСстриктных сайтов EcoRL ΠΈ Hindlll. -10, -35, TG ΠΈ GGGA элСмСнты Π² ΡΠΎΡΡ‚Π°Π²Π΅ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ² ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ красным, Π³ΠΎΠ»ΡƒΠ±Ρ‹ΠΌ, Π·Π΅Π»Π΅Π½Ρ‹ΠΌ ΠΈ ΠΆΠ΅Π»Ρ‚Ρ‹ΠΌ Ρ†Π²Π΅Ρ‚Π°ΠΌΠΈ, соотвСтствСнно. Бтартовая Ρ‚ΠΎΡ‡ΠΊΠ° транскрипции ΠΏΠΎΠΊΠ°Π·Π°Π½Π° сСрым.

Π’7А1 ΠΈ Π΅Π³ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅.

Π’7А1 gaaaat Π’ Π’AT CAAAAAGAGTAl.

T7A1GGGA GAAAATTTATCAAAAAGAGTAl t7aiccct gaaaatttatcaaaaagagtaI TAAAGTCTAACCTATAGj Π· ΠΠ¨ T AAAG TCTAAC Π‘ TAT AG- ^J^AAAGTCTAACCTATAG tacagccatcgagagggacacggcgaatag gggagccatcgagagggacacggcgaatag ccctgccatcgagagggacacggcgaatag.

T7A11RI T7AlrHindIII.

AGTGAATTCTATTTGGATCCAGATCCCGAAAArrrATCAAAAAGAG CGAAGCTTCCCCGGTGTCGATTGGGATGGCrATrCGCCGrGTCCC galPl ^^^ ccactaatttattccatgtcacacttttcgcatcttttttahck^^tatttcataccataagcctaatggagcgaa galPllRI galPl rHindlll.

AGTGAATTCATTCTTGTGTAAACGATTCCACTAArrrArrCCATGr CCGAAGCTTCGGTAACCAGAACTCTCATAATrCGCrCCArrAGGCr.

XPR.

CGTTAAATCTATCACCGCAAGGGATAAATATCTAACACCGTGCGTGBBBATTTTACCTCTGGCGGTC.

TATGGAAGAGGCGGTAGCGTGCGTTTTTCGATCTTCC.

EGGTTGCATGTAGTAAGGAGGTTG.

XPRleft XPRright.

CGTTAAATCTATCACCGCAAGGGATAAATATCTAACACCGTGCGTG GGCTTTCTCATGCGTTCATGCACCACTGGAAGATCGAAAAACG dnaK dnaK dnaKGGGA dnaK-35 tcatactcaactcc tcatactcaactcc.

TGA<

TGCGGCATGTGCGT1 TGCGGCATGTGCGT^.

GGGAGGCGAGGTGAAGACGTATGGCCAAGGCAGT TACTCGCGAGGTGAAGACGTATGGCCAAGGCAGT.

TCATACTCAACTCCCGGTCACAAAATGCGGCATGTGCGTTAGCCTGGGAGGCGAGGTGAAGACGTATGGCCAAGGCAGT dnaK-35GGGA TCATACTCAACTCCC GGTCACAAAATGCGGCATGTGCGTTAGCCT|IACTGGCgAGGTGAAGACGTATGGCCAAGGCAGT dnaKleft dnaKright.

AGTGAATTCACAAAATCATACTCAACTCCCCGAAGCTTTCAATGCCCACTGCCTTGGCCATAC.

БинтСтичСскиС ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Ρ‹ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π°ΠΏΡ‚Π°ΠΌΠ΅Ρ€ΠΎΠ² sTapl sTapl+35 sTapl+35-GGGA sTap2 sTap2 «-GGGA» sTap2 «+35» sTap2 «+35-GGGA1.

AGAATAAACGCTCAACACGGCCGAGGj AGAA|^eCTCAACACGGCCGAGG.

AGAA^^HCTCAACACGGCCGAGGI.

GGGAGCTCAGAATAAACGCTCAAGGCCACGj GGGAGCTCAGAATAAACGCTCAAGGCCACG GGGAGCTC^^eAACGCTCAAGGCCACG| GGGAGCTC^^eAACGCTCAAGGCCACG! itaatgggagcggtat pta&tgggagcgg'TAT шш ccctgc gg T AT eaaactgggagcacctacggatggttcgacatgaggcccggatc h^^^ccctgcacctacggatggttcgacatgaggcccggatc.

Sgggagcacctacggatggttcgacatgaggcccggatc Btaaactccctg сacсtacggatggttсgacatgaggcссggatс.

PLEcoRI:

PL+35.

PRHindHI:

5'-cagtgaattcgggagctcagaataaacgctcaa.

5'-CAGTGAATTCGGGAGCTCTTGACAAACGCTCAAGGCC 5'-CCGAAGCTTGATCCGGGCCTCATGTCGAA.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Acharya, P., Rajakumara, Π•., Sankaranarayanan, R., and Rao, N.M. (2004). Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase. J Mol Biol 341, 12 711 281.
  2. Aniskovitch, L.P., and Winkler, H.H. (1995). Instability of Rickettsia prowazekii RNA polymerase-promoter complexes. J Bacteriol 177, 6301−6303.
  3. Artsimovitch, I., Chu, C., Lynch, A.S., and Landick, R. (2003). A new class of bacterial RNA polymerase inhibitor affects nucleotide addition. Science 302, 650−654.
  4. Artsimovitch, I., Patlan, V., Sekine, S., Vassylyeva, M.N., Hosaka, Π’., Ochi, K., Yokoyama, S., and Vassylyev, D.G. (2004). Structural basis for transcription regulation by alarmone ppGpp. Cell 117, 299−310.
  5. Artsimovitch, I., Svetlov, V., Anthony, L., Burgess, R.R., and Landick, R. (2000). RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro. J Bacteriol 182, 6027−6035.
  6. Bae, E., and Phillips, G.N., Jr. (2004). Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. J Biol Chem 279, 28 202−28 208.
  7. Bar-Nahum, G., Epshtein, V., Ruckenstein, A.E., Rafikov, R., Mustaev, A., and Nudler, E. (2005). A ratchet mechanism of transcription elongation and its control. Cell 120, 183−193.
  8. Bar-Nahum, G., and Nudler, E. (2001). Isolation and characterization of sigma (70)-retaining transcription elongation complexes from Escherichia coli. Cell 106, 443−451.
  9. Barlow, D.J., and Thornton, J.M. (1983). Ion-pairs in proteins. J Mol Biol 168, 867−885.
  10. Barne, K.A., Bown, J. A., Busby, S.J., and Minchin, S.D. (1997). Region 2.5 of the Escherichia coli RNA polymerase sigma70 subunit is responsible for the recognition of the 'extended-10' motif at promoters. EMBO J 16, 4034−4040.
  11. Batada, N.N., Westover, K.D., Bushnell, D.A., Levitt, M., and Komberg, R.D. (2004). Diffusion of nucleoside triphosphates and role of the entry site to the RNA polymerase II active center. Proc Natl Acad Sci U S A101, 17 361−17 364.
  12. Bell, G.S., Russell, R.J., Connaris, H., Hough, D.W., Danson, M.J., and Taylor, G.L. (2002). Stepwise adaptations of citrate synthase to survival at life’s extremes. From psychrophile to hyperthermophile. Eur J Biochem 269, 6250−6260.
  13. , C.C. (1967). On the average hydrophobicity of proteins and the relation between it and protein structure. J Theor Biol 16, 187−211.
  14. Bismuto, E., Febbraio, F., Limongelli, S., Briante, R., and Nucci, R. (2003). Dynamic fluorescence studies of beta-glycosidase mutants from Sulfolobus solfataricus: effects of single mutations on protein thermostability. Proteins 51, 10−20.
  15. Bouthier de la Tour, C., Portemer, C., Nadal, M., Stetter, K.O., Forterre, P., and Duguet, M. (1990). Reverse gyrase, a hallmark of the hyperthermophilic archaebacteria. J Bacteriol 172, 68 036 808.
  16. Brodolin, K.L., Studitsky, V.M., and Mirzabekov, A.D. (1993). Conformational changes in E. coli RNA polymerase during promoter recognition. Nucleic Acids Res 21, 5748−5753.
  17. Brueckner, F., and Cramer, P. (2008). Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. Nat Struct Mol Biol 15, 811−818.
  18. Bushnell, D.A., Cramer, P., and Kornberg, R.D. (2002). Structural basis of transcription: alpha-amanitin-RNA polymerase II cocrystal at 2.8 A resolution. Proc Natl Acad Sci U S A 99, 1218−1222.
  19. Cambillau, C., and Claverie, J.M. (2000). Structural and genomic correlates of hyperthermostability. J Biol Chem 275, 32 383−32 386.
  20. Campbell, E.A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A., and Darst, S.A. (2001). Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell 104, 901−912.
  21. Campbell, E.A., Muzzin, O., Chlenov, M., Sun, J.L., Olson, C.A., Weinman, O., Trester-Zedlitz, M.L., and Darst, S.A. (2002). Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol Cell 9, 527−539.
  22. Campbell, E.A., Pavlova, O., Zenkin, N., Leon, F., Irschik, H., Jansen, R., Severinov, K., and Darst, S.A. (2005). Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase. Embo J 24, 674−682.
  23. Carey, J., Cameron, V., de Haseth, P.L., and Uhlenbeck, O.C. (1983). Sequence-specific interaction of R17 coat protein with its ribonucleic acid binding site. Biochemistry 22, 2601−2610.
  24. Cech, C.L., and McClure, W.R. (1980). Characterization of ribonucleic acid polymerase-T7 promoter binary complexes. Biochemistry 19, 2440−2447.
  25. Chafin, D.R., Guo, H., and Price, D.H. (1995). Action of alpha-amanitin during pyrophosphorolysis and elongation by RNA polymerase II. J Biol Chem 270, 19 114−19 119.
  26. Chakrabartty, A., and Baldwin, R.L. (1995). Stability of alpha-helices. Adv Protein Chem 46, 141 176.
  27. Chakravarty, S., and Varadarajan, R. (2000). Elucidation of determinants of protein stability through genome sequence analysis. FEBS Lett 470, 65−69.
  28. Cramer, P., Bushnell, D.A., and Kornberg, R.D. (2001). Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292, 1863−1876.
  29. Croft, J.E., Love, D.R., and Bergquist, P.L. (1987). Expression of leucine genes from an extremely thermophilic bacterium in Escherichia coli. Mol Gen Genet 210, 490−497.
  30. Davis, C.A., Capp, M.W., Record, M.T., Jr., and Saecker, R.M. (2005). The effects of upstream DNA on open complex formation by Escherichia coli RNA polymerase. Proc Natl Acad Sci USA 102, 285−290.
  31. Demirjian, D.C., Moris-Varas, F., and Cassidy, C.S. (2001). Enzymes from extremophiles. Curr OpinChemBiol 5,144−151.
  32. , K.A. (1990). Dominant forces in protein folding. Biochemistry 29, 7133−7155.
  33. Ederth, J., Artsimovitch, I., Isaksson, L.A., and Landick, R. (2002). The downstream DNA jaw of bacterial RNA polymerase facilitates both transcriptional initiation and pausing. J Biol Chem 277, 37 456−37 463.
  34. Eichler, J., and Adams, M.W. (2005). Posttranslational protein modification in Archaea. Microbiol Mol Biol Rev 69, 393−425.
  35. , A.H. (1998). The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. J Mol Biol 284, 489−502.
  36. Epshtein, V., Mustaev, A., Markovtsov, V., Bereshchenko, O., Nikiforov, V., and Goldfarb, A. (2002). Swing-gate model of nucleotide entry into the RNA polymerase active center. Mol Cell 10, 623−634.
  37. Faraldo, M.M., de Pedro, M.A., and Berenguer, J. (1992). Sequence of the S-layer gene of Thermus thermophilus HB8 and functionality of its promoter in Escherichia coli. J Bacteriol 174, 7458−7462.
  38. Farias, S.T., and Bonato, M.C. (2003). Preferred amino acids and thermostability. Genet Mol Res 2,383−393.
  39. , P.A. (2001). Review: Protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol A Mol Integr Physiol 129, 417−431.
  40. Fields, P.A., and Somero, G.N. (1998). Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci U S A 95, 11 476−11 481.
  41. Fitter, J., Herrmann, R., Dencher, N.A., Blume, A., and Hauss, T. (2001). Activity and stability of a thermostable alpha-amylase compared to its mesophilic homologue: mechanisms of thermal adaptation. Biochemistry 40, 10 723−10 731.
  42. Fukuchi, S., Yoshimune, K., Wakayama, M., Moriguchi, M., and Nishikawa, K. (2003). Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol 327, 347−357.
  43. Gershenson, A., Schauerte, J.A., Giver, L., and Arnold, F.H. (2000). Tryptophan phosphorescence study of enzyme flexibility and unfolding in laboratory-evolved thermostable esterases. Biochemistry 39, 4658−4665.
  44. Gianese, G., Bossa, F., and Pascarella, S. (2002). Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. Proteins 47, 236−249.
  45. Gnatt, A.L., Cramer, P., Fu, J., Bushnell, D.A., and Kornberg, R.D. (2001). Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 292, 1876−1882.
  46. Golding, G.B., and Dean, A.M. (1998). The structural basis of molecular adaptation. Mol Biol Evol 15, 355−369.
  47. , A. (1995). How to make my blood boil. Structure 3, 1277−1279.
  48. Gourse, R.L., Gaal, Π’., Aiyar, S.E., Barker, M.M., Estrem, S.T., Hirvonen, C.A., and Ross, W. (1998). Strength and regulation without transcription factors: lessons from bacterial rRNA promoters. Cold Spring Harb Symp Quant Biol 63, 131−139.
  49. Gross, C.A., Chan, C., Dombroski, A., Gruber, Π’., Sharp, M., Tupy, J., and Young, B. (1998). The functional and regulatory roles of sigma factors in transcription. Cold Spring Harb Symp Quant Biol 63, 141−155.
  50. Haney, P.J., Stees, M., and Konisky, J. (1999b). Analysis of thermal stabilizing interactions in mesophilic and thermophilic adenylate kinases from the genus Methanococcus. J Biol Chem 274, 28 453−28 458.
  51. Hartmann, R.K., and Erdmann, V.A. (1989). Thermits thermophilus 16S rRNA is transcribed from an isolated transcription unit. J Bacteriol 171, 2933−2941.
  52. Hartmann, R.K., Ulbrich, N., and Erdmann, V.A. (1987). An unusual rRNA operon constellation: in Thermus thermophilus HB8 the 23S/5S rRNA operon is a separate entity from the 16S rRNA operon. Biochimie 69, 1097−1104.
  53. Haslbeck, M., Franzmann, Π’., Weinfurtner, D., and Buchner, J. (2005). Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12, 842−846.
  54. Haugen, S.P., Berkmen, M.B., Ross, W., Gaal, Π’., Ward, C., and Gourse, R.L. (2006). rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase. Cell 125, 1069−1082.
  55. Haugen, S.P., Ross, W., and Gourse, R.L. (2008a). Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat Rev Microbiol 6, 507−519.
  56. Haugen, S.P., Ross, W., Manrique, M., and Gourse, R.L. (2008b). Fine structure of the promoter-sigma region 1.2 interaction. Proc Natl Acad Sci USA 105, 3292−3297.
  57. Hendsch, Z.S., and Tidor, B. (1999). Electrostatic interactions in the GCN4 leucine zipper: substantial contributions arise from intramolecular interactions enhanced on binding. Protein Sci 8, 1381−1392.
  58. Henne, A., Bruggemann, H., Raasch, C., Wiezer, A., Hartsch, Π’., Liesegang, H., Johann, A., Lienard, Π’., Gohl, O., Martinez-Arias, R., et al. (2004). The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 22, 547−553.
  59. , R. (2000). Do ultrastable proteins from hyperthermophiles have high or low conformational rigidity? Proc Natl Acad Sci U S A 97, 2962−2964.
  60. Johns, G.C., and Somero, G.N. (2004). Evolutionary convergence in adaptation of proteins to temperature: A4-lactate dehydrogenases of Pacific damselfishes (Chromis spp.). Mol Biol Evol 21, 314−320.
  61. Jung, Y.H., and Lee, Y. (1997). Escherichia coli rnpB promoter mutants altered in stringent response. Biochem Biophys Res Commun 230, 582−586.
  62. Kannan, N., and Vishveshwara, S. (2000). Aromatic clusters: a determinant of thermal stability of thermophilic proteins. Protein Eng 13, 753−761.
  63. Kaplan, C.D., and Kornberg, R.D. (2008). A bridge to transcription by RNA polymerase. J Biology 7,39.31−39.34.
  64. Kaplan, C.D., Larsson, K.M., and Kornberg, R.D. (2008). The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. Mol Cell 30, 547−556.
  65. Karshikoff, A., and Ladenstein, R. (1998). Proteins from thermophilic and mesophilic organisms essentially do not differ in packing. Protein Eng 11, 867−872.
  66. Kettenberger, H., Armache, K.J., and Cramer, P. (2004). Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol Cell 16, 955−965.
  67. Komissarova, N., and Kashlev, M. (1997a). RNA polymerase switches between inactivated and activated states By translocating back and forth along the DNA and the RNA. J Biol Chem 272, 15 329−15 338.
  68. Komissarova, N., and Kashlev, M. (1997b). Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3' end of the RNA intact and extruded. Proc Natl Acad Sci USA 94, 1755−1760.
  69. Korkegian, A., Black, M.E., Baker, D., and Stoddard, B.L. (2005). Computational thermostabilization of an enzyme. Science 308, 857−860.
  70. Korndorfer, I., Steipe, Π’., Huber, R., Tomschy, A., and Jaenicke, R. (1995). The crystal structure of holo-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima at 2.5 A resolution. J Mol Biol 246, 511−521.
  71. Korolev, S., Nayal, M., Barnes, W.M., Di Cera, E., and Waksman, G. (1995). Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-A resolution: structural basis for thermostability. Proc Natl Acad Sci U S A 92, 9264−9268.
  72. Korzheva, N., Mustaev, A., Kozlov, M., Malhotra, A., Nikiforov, V., Goldfarb, A., and Darst, S.A. (2000). A structural model of transcription elongation. Science 289, 619−625.
  73. Korzheva, N., Mustaev, A., Nudler, E., Nikiforov, V., and Goldfarb, A. (1998). Mechanistic model of the elongation complex of Escherichia coli RNA polymerase. Cold Spring Harb Symp Quant Biol 63, 337−345.
  74. Kotik, M., and Zuber, H. (1993). Mutations that significantly change the stability, flexibility and quaternary structure of the 1-lactate dehydrogenase from Bacillus megaterium. Eur J Biochem 211, 267−280.
  75. Kulbachinskiy, A., Bass, I., Bogdanova, E., Goldfarb, A., and Nikiforov, V. (2004). Cold sensitivity of thermophilic and mesophilic RNA polymerases. J Bacteriol 186, 7818−7820.
  76. Kumar, S., and Nussinov, R. (2001). How do thermophilic proteins deal with heat? Cell Mol Life Sci 58, 1216−1233.
  77. Kumar, S., Tsai, C.J., and Nussinov, R. (2001). Thermodynamic differences among homologous thermophilic and mesophilic proteins. Biochemistry 40, 14 152−14 165.
  78. Kuznedelov, K., Lamour, V., Patikoglou, G., Chlenov, M., Darst, S.A., and Severinov, K. (2006). Recombinant Thermus aquaticus RNA polymerase for structural studies. J Mol Biol 359, 110−121.
  79. Kuznedelov, К., Minakhin, L., and Severinov, K. (2003). Preparation and characterization of recombinant Thermus aquaticus RNA polymerase. Methods Enzymol 370, 94−108.
  80. Ma, Π’., Kumar, S., Tsai, C.J., and Nussinov, R. (1999). Folding funnels and binding mechanisms. Protein Eng 12, 713−720.
  81. Macedo-Ribeiro, S., Darimont, Π’., Sterner, R., and Huber, R. (1996). Small structural changes account for the high thermostability of l4Fe-4S. ferredoxin from the hyperthermophilic bacterium Thermotoga maritima. Structure 4, 1291−1301.
  82. Machius, M., Declerck, N., Huber, R., and Wiegand, G. (2003). Kinetic stabilization of Bacillus licheniformis alpha-amylase through introduction of hydrophobic residues at the surface. J Biol Chem 278, 11 546−11 553.
  83. Madigan, M.T., and Oren, A. (1999). Thermophilic and halophilic extremophiles. Curr Opin Microbiol 2, 265−269.
  84. Makhatadze, G.I., and Privalov, P.L. (1995). Energetics of protein structure. Adv Protein Chem 47, 307−425.
  85. Malhotra, A., Severinova, E., and Darst, S.A. (1996). Crystal structure of a sigma 70 subunit fragment from E. coli RNA polymerase. Cell 87, 127−136.
  86. Markovtsov, V., Mustaev, A., and Goldfarb, A. (1996). Protein-RNA interactions in the active center of transcription elongation complex. Proc Natl Acad Sci U S A 93, 3221−3226.
  87. Maseda, H., and Hoshino, T. (1995). Screening and analysis of DNA fragments that show promoter activities in Thermus thermophilus. FEMS Microbiol Lett 128, 127−134.
  88. Matsui, I., and Harata, K. (2007). Implication for buried polar contacts and ion pairs in hyperthermostable enzymes. FEBS J 274, 4012−4022.
  89. McClure, W.R. (1985). Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem 54, 171−204.
  90. McDonald, J.H. (2001). Patterns of temperature adaptation in proteins from the bacteria Deinococcus radiodurans and Thermus thermophilus. Mol Biol Evol 18, 741−749.
  91. McDonald, J.H., Grasso, A.M., and Rejto, L.K. (1999). Patterns of temperature adaptation in proteins from Methanococcus and Bacillus. Mol Biol Evol 16, 1785−1790.
  92. Meyer, J., Clay, M.D., Johnson, M.K., Stubna, A., Munck, E., Higgins, C., and Wittung-Stafshede, P. (2002). A hyperthermophilic plant-type 2Fe-2S. ferredoxin from Aquifex aeolicus is stabilized by a disulfide bond. Biochemistry 41, 3096−3108.
  93. Minakhin, L., Nechaev, S., Campbell, E.A., and Severinov, K. (2001). Recombinant Thermus aquaticus RNA polymerase, a new tool for structure- based analysis of transcription. J Bacteriol 183, 71−76.
  94. Minakhin, L., and Severinov, K. (2003). On the role of the Escherichia coli RNA polymerase sigma 70 region 4.2 and alpha-subunit C-terminal domains in promoter complex formation on the extended -10 galPl promoter. J Biol Chem 278,29 710−29 718.
  95. Miyazaki, K., Wintrode, P.L., Grayling, R.A., Rubingh, D.N., and Arnold, F.H. (2000). Directed evolution study of temperature adaptation in a psychrophilic enzyme. J Mol Biol 297, 1015−1026.
  96. Mukhopadhyay, J., Das, K., Ismail, S., Koppstein, D., Jang, M., Hudson, Π’., Sarafianos, S., Tuske, S., Patel, J., Jansen, R., et al. (2008). The RNA polymerase «switch region» is a target for inhibitors. Cell 135, 295−307.
  97. Murakami, K.S., Masuda, S., Campbell, E.A., Muzzin, O., and Darst, S.A. (2002a). Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296, 12 851 290.
  98. Murakami, K.S., Masuda, S., and Darst, S.A. (2002b). Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution. Science 296, 1280−1284.
  99. Muslin, E.H., Clark, S.E., and Henson, C.A. (2002). The effect of proline insertions on the thermostability of a barley alpha-glucosidase. Protein Eng 15, 29−33.
  100. Nagi, A.D., and Regan, L. (1997). An inverse correlation between loop length and stability in a four-helix-bundle protein. Fold Des 2, 67−75.
  101. Nardmann, J., and Messer, W. (2000). Identification and characterization of the dnaA upstream region of Thermus thermophilus. Gene 261, 299−303.
  102. Naryshkina, Π’., Kuznedelov, K., and Severinov, K. (2006). The role of the largest RNA polymerase subunit lid element in preventing the formation of extended RNA-DNA hybrid. J Mol Biol 361, 634−643.
  103. , V.G. (1971). Hybrid RNA polymerases formed from core enzymes and sigma factors of E. coli and thermophilic B. megaterium. FEBS Lett 16, 74−76.
  104. Nudler, E., Kashlev, M., Nikiforov, V., and Goldfarb, A. (1995). Coupling between transcription termination and RNA polymerase inchworming. Cell 81, 351−357.
  105. Opalka, N., Chlenov, M., Chacon, P., Rice, W.J., Wriggers, W., and Darst, S.A. (2003). Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase. Cell 114, 335−345.
  106. Orlova, M., Newlands, J., Das, A., Goldfarb, A., and Borukhov, S. (1995). Intrinsic transcript cleavage activity of RNA polymerase. Proc Natl Acad Sci USA 92, 4596−4600.
  107. Osipiuk, J., and Joachimiak, A. (1997). Cloning, sequencing, and expression of dnaK-operon proteins from the thermophilic bacterium Thermus thermophilus. Biochim Biophys Acta 1353, 253 265.
  108. Pack, S.P., and Yoo, Y.J. (2004). Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins. J Biotechnol 111, 269−277.
  109. Pack, S.P., and Yoo, Y.J. (2005). Packing-based difference of structural features between thermophilic and mesophilic proteins. Int J Biol Macromol 35, 169−174.
  110. Pemberton, I.K., Muskhelishvili, G., Travers, A.A., and Buckle, M. (2000). The G+C-rich discriminator region of the tyrT promoter antagonises the formation of stable preinitiation complexes. J Mol Biol 299, 859−864.
  111. Perederina, A., Svetlov, V., Vassylyeva, M.N., Tahirov, Π’.Н., Yokoyama, S., Artsimovitch, I., and Vassylyev, D.G. (2004). Regulation through the secondary channel—structural framework for ppGpp-DksA synergism during transcription. Cell 118, 297−309.
  112. Perutz, M.F., and Raidt, H. (1975). Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature 255, 256−259.
  113. Ramirez-Romero, M.A., Masulis, I., Cevallos, M.A., Gonzalez, V., and Davila, G. (2006). The Rhizobium etli sigma70 (SigA) factor recognizes a lax consensus promoter. Nucleic Acids Res 34, 1470−1480.
  114. Razvi, A., and Scholtz, J.M. (2006). Lessons in stability from thermophilic proteins. Protein Sci 15, 1569−1578.
  115. Ring, B.Z., Yarnell, W.S., and Roberts, J.W. (1996). Function of E. coli RNA polymerase sigma factor sigma 70 in promoter-proximal pausing. Cell 86, 485−493.
  116. Roberts, C.W., and Roberts, J.W. (1996). Base-specific recognition of the nontemplate strand of promoter DNA by E. coli RNA polymerase. Cell 86, 495−501.
  117. Roberts, J.W., Yarnell, W., Bartlett, E., Guo, J., Marr, M., Ко, D.C., Sun, H., and Roberts, C.W. (1998). Antitermination by bacteriophage lambda Q protein. Cold Spring Harb Symp Quant Biol 63, 319−325.
  118. Robinson, C.R., and Sauer, R.T. (1998). Optimizing the stability of single-chain proteins by linker length and composition mutagenesis. Proc Natl Acad Sci USA 95, 5929−5934.
  119. Ross, W., Gosink, K.K., Salomon, J., Igarashi, K., Zou, C., Ishihama, A., Severinov, K., and Gourse, R.L. (1993). A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 262, 1407−1413.
  120. Ross, W., and Gourse, R.L. (2005). Sequence-independent upstream DNA-alphaCTD interactions strongly stimulate Escherichia coli RNA polymerase-lacUV5 promoter association. Proc Natl Acad Sci USA 102, 291−296.
  121. Rozovskaya, T.A., Chenchik, A.A., and Beabealashvilli, R. (1982). Processive pyrophosphorolysis of RNA by Escherichia coli RNA polymerase. FEBS Lett 137, 100−104.
  122. Rudd, M.D., Izban, M.G., and Luse, D.S. (1994). The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes. Proc Natl Acad Sci U S A 91, 8057−8061.
  123. Rudd, M.D., and Luse, D.S. (1996). Amanitin greatly reduces the rate of transcription by RNA polymerase II ternary complexes but fails to inhibit some transcript cleavage modes. J Biol Chem 271, 21 549−21 558.
  124. Russell, R.J., Hough, D.W., Danson, M.J., and Taylor, G.L. (1994). The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum. Structure 2, 1157−1167.
  125. Sadeghi, M., Naderi-Manesh, H., Zarrabi, M., and Ranjbar, B. (2006). Effective factors in thermostability of thermophilic proteins. Biophys Chem 119, 256−270.
  126. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning. (Cold Spring Harbour Press.).
  127. Sanchez, R., Roovers, M., and Glansdorff, N. (2000). Organization and expression of a Thermus thermophilus arginine cluster: presence of unidentified open reading frames and absence of a Shine-Dalgarno sequence. J Bacteriol 182, 5911−5915.
  128. Sanderova, H., Hulkova, M., Malon, P., Kepkova, M., and Jonak, J. (2004). Thermostability of multidomain proteins: elongation factors EF-Tu from Escherichia coli and Bacillus stearothermophilus and their chimeric forms. Protein Sci 13, 89−99.
  129. Sandman, K., Krzycki, J.A., Dobrinski, Π’., Lurz, R., and Reeve, J.N. (1990). HMf, a DNA-binding protein isolated from the hyperthermophilic archaeon Methanothermus fervidus, is most closely related to histones. Proc Natl Acad Sci U S A 87, 5788−5791.
  130. Sato, S., Nakada, Y., Kanaya, S., and Tanaka, T. (1988). Molecular cloning and nucleotide sequence of Thermus thermophilus HB8 trpE and trpG. Biochim Biophys Acta 950, 303−312.
  131. Serrano, L., Bycroft, M., and Fersht, A.R. (1991). Aromatic-aromatic interactions and protein stability. Investigation by double-mutant cycles. J Mol Biol 218, 465−475.
  132. Shiraki, K., Nishikori, S., Fujiwara, S., Hashimoto, H., Kai, Y., Takagi, M., and Imanaka, T. (2001). Comparative analyses of the conformational stability of a hyperthermophilic protein and its mesophilic counterpart. Eur J Biochem 268, 4144−4150.
  133. Siddhikol, C., Erbstoeszer, J.W., and Weisblum, B. (1969). Mode of action of streptolydigin. J Bacteriol 99, 151−155.
  134. Singer, G.A., and Hickey, D.A. (2003). Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content. Gene 317, 39−47.
  135. Sosunov, V., Sosunova, E., Mustaev, A., Bass, I., Nikiforov, V., and Goldfarb, A. (2003). Unified two-metal mechanism of RNA synthesis and degradation by RNA polymerase. EMBO J 22, 22 342 244.
  136. Sosunova, E., Sosunov, V., Kozlov, M., Nikiforov, V., Goldfarb, A., and Mustaev, A. (2003). Donation of catalytic residues to RNA polymerase active center by transcription factor Gre. Proc Natl Acad Sci USA 100, 15 469−15 474.
  137. , T.A. (1998). A mechanism for all polymerases. Nature 391, 231−232.
  138. Sterner, R., and Liebl, W. (2001). Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol 36, 39−106.
  139. , K.O. (1999). Extremophiles and their adaptation to hot environments. FEBS Lett 452, 2225.
  140. Struck, J.C., Toschka, H.Y., and Erdmann, V.A. (1988). Nucleotide sequence of the 4.5S RNA gene from Thermus thermophilus HB8. Nucleic Acids Res 16, 9042.
  141. Suhre, K., and Claverie, J.M. (2003). Genomic correlates of hyperthermostability, an update. J Biol Chem 278, 17 198−17 202.
  142. Svetlov, V., Belogurov, G.A., Shabrova, E., Vassylyev, D.G., and Artsimovitch, I. (2007). Allosteric control of the RNA polymerase by the elongation factor RfaH. Nucleic Acids Res 35, 56 945 705.
  143. Svetlov, V., Vassylyev, D.G., and Artsimovitch, I. (2004). Discrimination against deoxyribonucleotide substrates by bacterial RNA polymerase. J Biol Chem 279, 38 087−38 090.
  144. Svingor, A., Kardos, J., Hajdu, I., Nemeth, A., and Zavodszky, P. (2001). A better enzyme to cope with cold. Comparative flexibility studies on psyclirotrophic, mesophilic, and thermophilic IPMDHs. J Biol Chem 276, 28 121−28 125.
  145. Szilagyi, A., and Zavodszky, P. (2000). Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 8, 493−504.
  146. Tan, L., Wiesler, S., Trzaska, D., Carney, H.C., and Weinzierl, R.O. (2008). Bridge helix and trigger loop perturbations generate superactive RNA polymerases. J Biol 7, 40.
  147. Tanner, J.J., Hecht, R.M., and Krause, K.L. (1996). Determinants of enzyme thermostability observed in the molecular structure of Thermus aquaticus D-glyceraldehyde-3-phosphate dehydrogenase at 25 Angstroms Resolution. Biochemistry 35, 2597−2609.
  148. Temiakov, D., Zenkin, N., Vassylyeva, M.N., Perederina, A., Tahirov, Π’.Н., Kashkina, E., Savkina, M., Zorov, S., Nikiforov, V., Igarashi, N., et al. (2005). Structural basis of transcription inhibition by antibiotic streptolydigin. Mol Cell 19, 655−666.
  149. Thompson, M.J., and Eisenberg, D. (1999). Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J Mol Biol 290, 595−604.
  150. Tomazic, S.J., and Klibanov, A.M. (1988). Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases. J Biol Chem 263, 3086−3091.
  151. Toulokhonov, I., and Landick, R. (2006). The role of the lid element in transcription by E. coli RNA polymerase. J Mol Biol 361, 644−658.
  152. Toulokhonov, I., Zhang, J., Palangat, M., and Landick, R. (2007). A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol Cell 27, 406 419.
  153. , A.A. (1980). Promoter sequence for stringent control of bacterial ribonucleic acid synthesis. J Bacteriol 141, 973−976.
  154. Trivedi, S., Gehlot, H.S., and Rao, S.R. (2006). Protein thermostability in Archaea and Eubacteria. Genet Mol Res 5,816−827.
  155. Unsworth, L.D., van der Oost, J., and Koutsopoulos, S. (2007). Hyperthermophilic enzymes-stability, activity and implementation strategies for high temperature applications. FEBS J 274, 40 444 056.
  156. Van de Casteele, M., Chen, P., Roovers, M., Legrain, C., and Glansdorff, N. (1997). Structure and expression of a pyrimidine gene cluster from the extreme thermophile Thermus strain Z05. J Bacteriol 179, 3470−3481.
  157. Van den Burg, Π’., Vriend, G., Veltman, O.R., Venema, G., and Eijsink, V.G. (1998). Engineering an enzyme to resist boiling. Proc Natl Acad Sci U S A 95, 2056−2060.
  158. Vassylyev, D.G., Sekine, S., Laptenko, O., Lee, J., Vassylyeva, M.N., Borukhov, S., and Yokoyama, S. (2002). Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nature 417, 712−719.
  159. Vassylyev, D.G., Svetlov, V., Vassylyeva, M.N., Perederina, A., Igarashi, N., Matsugaki, N., Wakatsuki, S., and Artsimovitch, I. (2005). Structural basis for transcription inhibition by tagetitoxin. Nat Struct Mol Biol 12, 1086−1093.
  160. Vassylyev, D.G., Vassylyeva, M.N., Perederina, A., Tahirov, Π’.Н., and Artsimovitch, I. (2007a). Structural basis for transcription elongation by bacterial RNA polymerase. Nature 448, 157−162.
  161. Vassylyev, D.G., Vassylyeva, M.N., Zhang, J., Palangat, M., Artsimovitch, I., and Landick, R. (2007b). Structural basis for substrate loading in bacterial RNA polymerase. Nature 448, 163−168.
  162. Vassylyeva, M.N., Svetlov, V., Dearborn, A.D., Klyuyev, S., Artsimovitch, I., and Vassylyev, D.G. (2007). The carboxy-terminal coiled-coil of the RNA polymerase beta'-subunit is the main binding site for Gre factors. EMBO Rep 8, 1038−1043.
  163. Vetriani, C., Maeder, D.L., Tolliday, N., Yip, K.S., Stillman, T.J., Britton, K.L., Rice, D.W., Klump, И.Н., and Robb, F.T. (1998). Protein thermostability above 100 degreesC: a key role for ionic interactions. Proc Natl Acad Sci U S A 95, 12 300−12 305.
  164. Vieille, C., and Zeikus, G.J. (2001). Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65, 1−43.
  165. Villbrandt, Π’., Sobek, H., Frey, Π’., and Schomburg, D. (2000). Domain exchange: chimeras of Thermus aquaticus DNA polymerase, Escherichia coli DNA polymerase I and Thermotoga neapolitana DNA polymerase. Protein Eng 13, 645−654.
  166. Vogt, G., Woell, S., and Argos, P. (1997). Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269, 631−643.
  167. Wang, D., Bushnell, D.A., Westover, K.D., Kaplan, C.D., and Kornberg, R.D. (2006). Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127, 941−954.
  168. Wang, D., and Hawley, D.K. (1993). Identification of a 3'—>5' exonuclease activity associated with human RNA polymerase II. Proc Natl Acad Sci U S A 90, 843−847.
  169. Weisburg, W.G., Giovannoni, S.J., and Woese, C.R. (1989). The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. Syst Appl Microbiol 11, 128 134.
  170. Westover, K.D., Bushnell, D.A., and Kornberg, R.D. (2004). Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center. Cell 119, 481−489.
  171. Wieland, Π’., and Faulstich, H. (1991). Fifty years of amanitin. Experientia 47, 1186−1193.
  172. Wintrode, P.L., Miyazaki, K., and Arnold, F.H. (2001). Patterns of adaptation in a laboratory evolved thermophilic enzyme. Biochim Biophys Acta 1549, 1−8.
  173. Wooll, J.O., Wrabl, J.O., and Hilser, V.J. (2000). Ensemble modulation as an origin of denaturant-independent hydrogen exchange in proteins. J Mol Biol 301, 247−256.
  174. Xiao, L., and Honig, B. (1999). Electrostatic contributions to the stability of hyperthermophilic proteins. J Mol Biol 289, 1435−1444.
  175. Xue, Y., Hogan, B.P., and Erie, D.A. (2000). Purification and initial characterization of RNA polymerase from Thermus thermophilus strain HB8. Biochemistry 39, 14 356−14 362.
  176. Yang, X., and Price, C.W. (1995). Streptolydigin resistance can be conferred by alterations to either the beta or beta' subunits of Bacillus subtilis RNA polymerase. J Biol Chem 270, 23 930−23 933.
  177. , G. (2000). How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288, 1604−1607.
  178. Zavodszky, P., Kardos, J., Svingor, and Petsko, G.A. (1998). Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci USA 95, 74 067 411.
  179. Zaychikov, E., Martin, E., Denissova, L., Kozlov, M., Markovtsov, V., Kashlev, M., Heumann, H., Nikiforov, V., Goldfarb, A., and Mustaev, A. (1996). Mapping of catalytic residues in the RNA polymerase active center. Science 273, 107−109.
  180. Zenkin, N., Naryshkina, Π’., Kuznedelov, K., and Severinov, K. (2006a). The mechanism of DNA replication primer synthesis by RNA polymerase. Nature 439, 617−620.
  181. Zenkin, N., Yuzenkova, Y., and Severinov, K. (2006b). Transcript-assisted transcriptional proofreading. Science 313, 518−520.
  182. Zhang, G., Campbell, E.A., Minakhin, L., Richter, C., Severinov, K., and Darst, S.A. (1999). Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 98, 811−824.
  183. Zhou, X.X., Wang, Y.B., Pan, Y.J., and Li, W.F. (2008). Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids 34, 25−33.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ