ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² ΡƒΡ‡Ρ‘Π±Π΅, ΠΎΡ‡Π΅Π½ΡŒ быстро...
Π Π°Π±ΠΎΡ‚Π°Π΅ΠΌ вмСстС Π΄ΠΎ ΠΏΠΎΠ±Π΅Π΄Ρ‹

Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ структурных ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… особСнностСй ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π² ядрах спСрматозоидов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π«2. 1. ΠŸΡ€ΠΎΡ‚ΠΎΡ‡Π½Ρ‹Π΅ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€Ρ‹. Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ°Ρ стабилизация структуры Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π² ΡΠ΄Ρ€Π°Ρ… спСрмиСв. Π―Π΄Π΅Ρ€Π½Ρ‹Π΅ ΠΏΡ€ΠΎΡ‚Π΅Π°Π·Ρ‹ муТских ΠΏΠΎΠ»ΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ состояния Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ядСр спСрматозоидов с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠžΠΏΠ»ΠΎΠ΄ΠΎΡ‚Π²ΠΎΡ€Π΅Π½ΠΈΠ΅. РСорганизация Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ муТского пронуклСуса. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ эндогСнной протСолитичСской активности Π² ΡΠ΄Ρ€Π°Ρ…… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • 1. ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
    • 1. 1. ДинамичСскиС измСнСния структуры Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ядСр спСрматозоидов Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ созрСвания ΠΈ ΠΎΠΏΠ»ΠΎΠ΄ΠΎΡ‚ворСния: спСрматогСнСз — ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ муТского пронуклСуса
      • 1. 1. 1. Π‘ΠΏΠ΅Ρ€ΠΌΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·
      • 1. 1. 2. Π₯арактСристика ΠΏΡ€ΠΎΡ‚Π°ΠΌΠΈΠ½ΠΎΠ². МодСли взаимодСйствий Π”ΠΠš ΠΏΡ€ΠΎΡ‚Π°ΠΌΠΈΠ½Ρ‹
      • 1. 1. 3. Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ°Ρ стабилизация структуры Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π² ΡΠ΄Ρ€Π°Ρ… спСрмиСв
      • 1. 1. 4. Бтруктурная организация супСркомпактного Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°
      • 1. 1. 5. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Ρ‹ Π²Ρ‹ΡΡˆΠΈΡ… порядков ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ΠΈ Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π° ядра спСрматозоида
      • 1. 1. 6. ΠžΠΏΠ»ΠΎΠ΄ΠΎΡ‚Π²ΠΎΡ€Π΅Π½ΠΈΠ΅. РСорганизация Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ муТского пронуклСуса
    • 1. 2. Π’ΠΎΠ·ΠΌΡƒΡ‰Π°ΡŽΡ‰ΠΈΠ΅ воздСйствия Π² ΡΠΏΠ΅Ρ€ΠΌΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π΅: ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ стрСсс ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ дисбаланс
      • 1. 2. 1. ΠžΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ стрСсс
      • 1. 2. 2. Π’Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ дисбаланс
    • 1. 3. Π’Π΅Ρ…Π½ΠΈΠΊΠ° ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΡ„Π»ΡƒΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΈ Π΅Ρ‘ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ для изучСния состояния Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°
      • 1. 3. 1. ΠŸΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΡ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ исслСдования ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΊΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°
      • 1. 3. 2. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ состояния Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ядСр спСрматозоидов с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ
    • 1. 4. Π―Π΄Π΅Ρ€Π½Ρ‹Π΅ ΠΏΡ€ΠΎΡ‚Π΅Π°Π·Ρ‹ ΠΈ ΠΈΡ… Ρ€ΠΎΠ»ΡŒ Π² ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎΠΉ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°
      • 1. 4. 1. Π―Π΄Π΅Ρ€Π½Ρ‹Π΅ ΠΏΡ€ΠΎΡ‚Π΅Π°Π·Ρ‹ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ…
      • 1. 4. 2. Π―Π΄Π΅Ρ€Π½Ρ‹Π΅ ΠΏΡ€ΠΎΡ‚Π΅Π°Π·Ρ‹ муТских ΠΏΠΎΠ»ΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
  • 2. ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π«
    • 2. 1. ΠŸΡ€ΠΎΡ‚ΠΎΡ‡Π½Ρ‹Π΅ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€Ρ‹
    • 2. 2. ΠŸΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² для проточноцитомСтричСского Π°Π½Π°Π»ΠΈΠ·Π°
      • 2. 2. 1. Бтандартная ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ бромистым этидиСм ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π³Π΅ΠΏΠ°Ρ€ΠΈΠ½ΠΎΠΌ
      • 2. 2. 2. ΠžΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ядСр спСрматозоидов БН-содСрТащими Ρ€Π΅Π°Π³Π΅Π½Ρ‚Π°ΠΌΠΈ ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΏΡ€ΠΎΡ‚Π΅Π°Π·
    • 2. 3. ΠŸΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° лСчСния бСсплодия Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ ЭКО
    • 2. 4. ΠŸΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ эндогСнной ядСрной ΠΏΡ€ΠΎΡ‚Π΅Π°Π·Ρ‹ спСрмиСв Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°
      • 2. 4. 1. ΠŸΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ флуорСсцСнтно ΠΌΠ΅Ρ‡Π΅Π½ΠΎΠ³ΠΎ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π° трипсина соСвых Π±ΠΎΠ±ΠΎΠ²
      • 2. 4. 2. ΠžΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° спСрматозоидов флуорСсцСнтно ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ΠΌ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠΌ трипсина соСвых Π±ΠΎΠ±ΠΎΠ²
    • 2. 5. БтатистичСская ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ²
  • 3. РЕЗУЛЬВАВЫ Π˜Π‘Π‘Π›Π•Π”ΠžΠ’ΠΠΠ˜Π―
    • 3. 1. ΠŸΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΡ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΡ†Π΅Π½ΠΊΠΈ состояния Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ядСр муТских ΠΏΠΎΠ»ΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ лСчСния бСсплодия Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ ЭКО
      • 3. 1. 1. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° количСствСнного ΠΌΠ΅Ρ‚ΠΎΠ΄Π° рСгистрации плотности ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΊΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π² ΡΠ΄Ρ€Π°Ρ… спСрматозоидов с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ
      • 3. 1. 2. ΠŸΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΡ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ состояния Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ядСр спСрматозоидов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° — тСст Π½Π° Ρ„Π΅Ρ€Ρ‚ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ
      • 3. 1. 3. ΠœΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Π°Ρ матСматичСская модСль обсчСта ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚авлСния проточноцитомСтричСских Π΄Π°Π½Π½Ρ‹Ρ… с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ асиммСтрий распрСдСлСния
      • 3. 1. 4. ΠžΡ†Π΅Π½ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ эффСктивности очистки спСрматозоидов Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ ЭКО
      • 3. 1. 5. ВлияниС состояния Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° спСрматозоидов Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ развития эмбрионов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°
    • 3. 2. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ эндогСнной протСолитичСской активности Π² ΡΠ΄Ρ€Π°Ρ… спСрматозоидов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°
      • 3. 2. 1. ΠŸΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΡ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… Π΄Π΅ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚ΠΈΠ·Π°Ρ†ΠΈΡŽ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° муТских ΠΏΠΎΠ»ΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
      • 3. 2. 2. ДСмонстрация ядСрной Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ исслСдуСмой протСолитичСской активности спСрматозоидов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°
  • 4. ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π• Π Π•Π—Π£Π›Π¬Π’ΠΠ’ΠžΠ’
    • 4. 1. ВлияниС состояния Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° спСрматозоидов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π½Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ ΡΠΊΡΡ‚Ρ€Π°ΠΊΠΎΡ€ΠΏΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ оплодотворСния
      • 4. 1. 1. Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ состояния муТских ΠΏΠΎΠ»ΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
      • 4. 1. 2. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Ρ‹ аномальной ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ядСр муТских ΠΏΠΎΠ»ΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
      • 4. 1. 2. Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° взаимосвязи Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π² ΡΠ΄Ρ€Π°Ρ… спСрматозоидов ΠΈ ΠΌΡƒΠΆΡΠΊΠΎΠ³ΠΎ бСсплодия
      • 4. 1. 3. ΠŸΡ€Π΅ΠΈΠΌΡƒΡ‰Π΅ΡΡ‚Π²Π° ΠΈ Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΊΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ Π½Π°ΠΌΠΈ способа диагностики муТского бСсплодия
      • 4. 1. 4. ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ оплодотворСния Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² проточноцитомСтричСского Π°Π½Π°Π»ΠΈΠ·Π°
      • 4. 1. 5. УчастиС отцовского Π³Π΅Π½ΠΎΠΌΠ° Π² Ρ€Π°Π½Π½Π΅ΠΌ ΡΠΌΠ±Ρ€ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ. НСгативноС влияниС Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΉ Π² ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎΠΉ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° спСрматозоидов Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ этого процСсса
    • 4. 2. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ΅ участиС эндогСнной протСолитичСской активности спСрмиСв Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π² Ρ€Π΅ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ΠΏΡ€ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ муТского пронуклСуса
  • Π’Π«Π’ΠžΠ”Π«

Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ структурных ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… особСнностСй ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π² ядрах спСрматозоидов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Одним ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΡ… этапов ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ муТских ΠΏΠΎΠ»ΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΊ ΠΏΡ€ΠΎΡ†Π΅ΡΡΡƒ оплодотворСния являСтся Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ рСорганизация структуры ядра Π² Ρ…ΠΎΠ΄Π΅ спСрматогСнСза. Π₯Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½ Π·Ρ€Π΅Π»Ρ‹Ρ… спСрматозоидов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° отличаСтся ΠΎΡ‚ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚ΠΈΠΏΠΎΠ² ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΠΎ ΡΠΎΡΡ‚Π°Π²Ρƒ, Π½ΠΎ ΠΈ ΠΏΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π±ΠΎΠ»Π΅Π΅ высокой стСпСни ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ: ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Π΅ гистоны ΠΏΠΎΡ‡Ρ‚ΠΈ Π½Π° 85% Π·Π°ΠΌΠ΅Ρ‰Π°ΡŽΡ‚ΡΡ спСцифичСскими основными Π±Π΅Π»ΠΊΠ°ΠΌΠΈ ΠΏΡ€ΠΎΡ‚Π°ΠΌΠΈΠ½Π°ΠΌΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΡ€Π°ΠΊΡ‚ичСски ΠΏΠΎΠ»Π½ΠΎΠΌΡƒ ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΠΈΡŽ нуклСосомной ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π”ΠΠšΠΊΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ стабилизация достигаСтся Π·Π° ΡΡ‡Π΅Ρ‚ формирования Π΄ΠΈΡΡƒΠ»ΡŒΡ„ΠΈΠ΄Π½Ρ‹Ρ… мостиков ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ ΠΏΡ€ΠΎΡ‚Π°ΠΌΠΈΠ½ΠΎΠ², Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρ‡Π΅Π³ΠΎ образуСтся ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ плотная, ΠΏΠΎΡ‡Ρ‚ΠΈ кристалличСская структура (W. Ward and D. Coffey, 1991; J. Kramer and S. Krawetz, 1996). Π’Π°ΠΊΠΎΠ΅ кондСнсированноС состояниС Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π½Π° Π·Π°ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… стадиях Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΊΡ€Π°ΠΉΠ½Π΅ Π²Π°ΠΆΠ½ΠΎ для дальнСйшСго функционирования спСрматозоида, с ΠΎΠ΄Π½ΠΎΠΉ стороны, защищая муТской Π³Π΅Π½ΠΎΠΌ ΠΎΡ‚ Π²Ρ€Π΅Π΄Π½Ρ‹Ρ… воздСйствий, с Π΄Ρ€ΡƒΠ³ΠΎΠΉ стороны, являясь Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠΉ прСдпосылкой ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ€Π΅ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ муТского пронуклСуса. ПослС слияния ΠΏΠΎΠ»ΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ происходит дСкондСнсация ΠΏΠ»ΠΎΡ‚Π½ΠΎΡƒΠΏΠ°ΠΊΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° спСрматозоидов, ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‰Π°ΡΡΡ Π·Π°ΠΌΠ΅Π½ΠΎΠΉ ΠΏΡ€ΠΎΡ‚Π°ΠΌΠΈΠ½ΠΎΠ² гистонами. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ гСнСтичСский ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» муТских Π³Π°ΠΌΠ΅Ρ‚ вновь ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π°Π΅Ρ‚ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΡƒΡŽ для соматичСских ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π½ΡƒΠΊΠ»Π΅ΠžΡΠΎΠΌΠ½ΡƒΡŽ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΡŽ, Ρ‡Ρ‚ΠΎ Π΄Π΅Π»Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ Π΅Π³ΠΎ объСдинСниС Π² ΠΎΠ΄Π½ΠΎΠΌ ядрС с ΠΆΠ΅Π½ΡΠΊΠΈΠΌ пронуклСусом ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΡƒΡŽ Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΡƒΡŽ ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ гСнСтичСской ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ (J. Newport, 1987; J. Kleinchmidt and H. Steinbeisser, 1991; G. Almouzni and A. Wolffe, 1993). ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Π·Π°ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ структурной пСрСстройки Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° спСрматозоида ΠΌΠΎΠΆΠ΅Ρ‚ привСсти ΠΊ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ Π΄Π΅Ρ„Π΅ΠΊΡ‚Π½ΠΎΠ³ΠΎ муТского пронуклСуса ΠΈ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎ ΠΏΠΎΠ²Π»ΠΈΡΡ‚ΡŒ Π½Π° Ρ€Π°Π½Π½ΠΈΠ΅ стадии эмбриогСнСза.

К ΡΠΎΠΆΠ°Π»Π΅Π½ΠΈΡŽ, ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹, ΠΎΠ±ΡƒΡΠ»Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ Ρ‚Π°ΠΊΡƒΡŽ Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΡƒΡŽ ΠΏΠ΅Ρ€Π΅ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΊΡƒ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°, ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ нСясными. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² тСстирования состояния ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π² Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½ гСнСтичСского ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° муТских ΠΏΠΎΠ»ΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ молСкулярно-ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ процСссов Ρ€Π΅ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π² ΡΠΏΠ΅Ρ€ΠΌΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π΅ ΠΈ ΠΏΠΎΡΠ»Π΅ слияния с ΡΠΉΡ†Π΅ΠΊΠ»Π΅Ρ‚ΠΊΠΎΠΉ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚, нСсомнСнно, Π²Π°ΠΆΠ½ΡƒΡŽ ΠΌΠ΅Π΄ΠΈΠΊΠΎ-Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ. Π’ ΡΠ²ΡΠ·ΠΈ с Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ Π½ΠΎΠ²Ρ‹Ρ… Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ эта ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Π»Π° ΠΎΡΠΎΠ±ΡƒΡŽ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ всС большС Π΄Π°Π½Π½Ρ‹Ρ… ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΉ ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΊΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° муТских ΠΏΠΎΠ»ΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ с ΠΈΡ… ΠΎΠΏΠ»ΠΎΠ΄ΠΎΡ‚Π²ΠΎΡ€ΡΡŽΡ‰ΠΈΠΌ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ (P. Bianchi et al., 1996; R. Golan et al., 1996; K. Hoshi et al., 1996; B. Sailer et al., 1996; J. Sun et al., 1997; S. Lopes et al., 1998; D. Sakkas et al., 1998; D. Evenson et al., 1994; 1998; D. Irvine et al., 2000; J. Erenpreiss et al., 2001). ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, исслСдования Π² ΡΡ‚ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ для понимания Ρ‚Π°ΠΊΠΎΠ³ΠΎ Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ биологичСского процСсса, ΠΊΠ°ΠΊ процСсс оплодотворСния.

ЦСлью настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ являСтся ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ структурно-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… особСнностСй ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ядСр спСрматозоидов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹Ρ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ², Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… Π² ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΠΎΡ€Π΅Π½Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΊΠΈ гСнСтичСского ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° муТских ΠΏΠΎΠ»ΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Ρ‹ ΠΆΠΈΠ·Π½Π΅Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ.

1. ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«.

Π’Π«Π’ΠžΠ”Π«.

1. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΡ†Π΅Π½ΠΊΠΈ состояния Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π² ΡΠ΄Ρ€Π°Ρ… спСрматозоидов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΡ„Π»ΡƒΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΈ Π½Π° Π΅Π³ΠΎ основС сформулирован ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΉ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ сСмСнной ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» Π² ΡΠΎΠΎΡ‚вСтствии с Π΅Π³ΠΎ ΠΎΠΏΠ»ΠΎΠ΄ΠΎΡ‚Π²ΠΎΡ€ΡΡŽΡ‰Π΅ΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒΡŽ. Π”Π°Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использован для диагностики муТской ΡΡ‚Π΅Ρ€ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ прогностичСского тСста для ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ ΠΏΠΎ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ.

2. Частота оплодотворСния Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅ ΠΈ Ρ‡Π°ΡΡ‚ΠΎΡ‚Π° наступлСния бСрСмСнности Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ кондСнсации Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ядСр спСрматозоидов сущСствСнно сниТСны.

3. Аномалии ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΊΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π² ΡΠ΄Ρ€Π°Ρ… муТских ΠΏΠΎΠ»ΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎ Π²Π»ΠΈΡΡŽΡ‚ Π½Π° Ρ€Π°Π½Π½ΠΈΠ΅ стадии развития эмбрионов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, приводя ΠΊ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½ΠΈΡŽ Ρ‚Π΅ΠΌΠΏΠΎΠ² дроблСния Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅.

4. Π’ ΡΠ΄Ρ€Π°Ρ… Π·Ρ€Π΅Π»Ρ‹Ρ… спСрматозоидов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° сущСствуСт эндогСнная протСолитичСская Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ условия Π΅Π΅ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΈ Π²Ρ‹ΡΠΊΠ°Π·Π°Π½Π° Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π° ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΉ Ρ€ΠΎΠ»ΠΈ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΡ‚Π΅Π°Π·Ρ‹ Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° муТских ΠΏΠΎΠ»ΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ послС слияния с ΡΠΉΡ†Π΅ΠΊΠ»Π΅Ρ‚ΠΊΠΎΠΉ.

5. ΠžΠ±Π»Π°ΡΡ‚ΠΈ прСимущСствСнной Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ исслСдуСмой ΠΏΡ€ΠΎΡ‚Π΅Π°Π·Π½Ρ‹/ΠΏΡ€ΠΎΡ‚Π΅Π°Π· Π² ΡΠ΄Ρ€Π°Ρ… спСрматозоидов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° продСмонстрированы с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ флуорСсцСнтно ΠΌΠ΅Ρ‡Π΅Π½ΠΎΠ³ΠΎ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π° ΠΏΡ€ΠΎΡ‚Π΅Π°Π·.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. И., ΠšΠΎΡΡ‚Ρ‹Π»Π΅Π²Π° Π•., Π’ΠΎΠΌΠΈΠ»ΠΈΠ½ А., Π’ΠΎΡ€ΠΎΠ±ΡŒΠ΅Π² Π’. ΠœΡƒΠΆΡΠΊΠ°Ρ ΡΡ‚Π΅Ρ€ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ обусловлСна мутациями Π² Π³Π΅Π½Π΅ ΠΏΡ€ΠΎΡ‚Π°ΠΌΠΈΠ½Π° Π 2. Цитология, 1993, Π’. 35, N4, сс. 61−67.
  2. И. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ хромосомныС Π±Π΅Π»ΠΊΠΈ ΠΈ ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° супСркомпактного Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° спСрматозоидов. ДиссСртация Π½Π° ΡΠΎΠΈΡΠΊΠ°Π½ΠΈΠ΅ ΡƒΡ‡Π΅Π½ΠΎΠΉ стСпСни ΠΊ. Π±. Π½. Π‘. ΠŸΠ΅Ρ‚Π΅Ρ€Π±ΡƒΡ€Π³, 1992.
  3. О., Π€ΠΈΠ»Π°Ρ‚ΠΎΠ² М., Π›Π΅ΠΎΠ½Ρ‚ΡŒΠ΅Π²Π° О., Π‘Π΅ΠΌΠ΅Π½ΠΎΠ²Π° Π•. ВлияниС стСпСни ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ядСр спСрматозоидов Π½Π° Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ эмбрионов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ Ρ€Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ, 1998, Π’. 4, N 1, сс. 14−18.
  4. А., ΠšΡƒΡ†Ρ‹ΠΉ М., ЗакрТСвская Π”. Ассоциация ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°Π· с Π³ΠΈΡΡ‚ΠΎΠ½Π°ΠΌΠΈ ядСр тимуса крысы. Мол. Π‘ΠΈΠΎΠ»., 1992, Π’. 26, N 3, сс. 532−539.
  5. Π‘. Биология развития (Π Π΅Π΄. Π΄. Π±. Π½. Π‘. ВасСцкий). ΠœΠΈΡ€, Москва, 1995, Π’. 3, сс. 269−273.
  6. М. ΠΈ Π“Π°Π·ΠΈΠ΅Π² А. АктивируСмая Π”ΠΠš ΠΈ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚идтрифосфатами ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°Π·Π° ядСрного матрикса ΠΏΠ΅Ρ‡Π΅Π½ΠΈ крысы, спСцифичная ΠΊ Π³ΠΈΡΡ‚ΠΎΠ½Ρƒ HI. Мол. Π‘ΠΈΠΎΠ»., 1988, Π’. 22, N 5, сс. 1430−1436.
  7. А., ΠšΡ€Π°Π²Ρ†ΠΎΠ² А., Π›Π΅Π΄Π²Π°Π½ΠΎΠ² М. ΠŸΡ€ΠΎΡ‚ΠΎΡ‡Π½Π°Ρ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Π°Ρ Ρ†ΠΈΡ‚ΠΎΡ„Π»ΡŽΠΎΡ€ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ спСрматозоидов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Π›Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠ΅ Π΄Π΅Π»ΠΎ, 1992, Π’. 2, сс. 25−27.
  8. Π›. ΠΈ Π­Ρ€Π±Π° Π­. ΠšΡƒΠ»ΡŒΡ‚ΡƒΡ€Π° ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ (Ρ€Π΅Π΄. Π . Π€Ρ€Π΅ΡˆΠ½ΠΈ). ΠœΠΈΡ€, Москва, 1989, сс. 182−213.
  9. А. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… хромосом ΠΈ ΠΈΡ… ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ для изучСния Π³Π΅Π½ΠΎΠΌΠΎΠ² Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…. МолСк. Π±ΠΈΠΎΠ»., 1989, Ρ‚.23, N 4, сс. 917−923.
  10. А. ΠŸΡ€ΠΎΡ‚ΠΎΡ‡Π½Π°Ρ цитомСтрия ΠΈ ΡΠΎΡ€Ρ‚ΠΈΡ€ΠΎΠ²ΠΊΠ° Π² Ρ†ΠΈΡ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ, молСкулярной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ, Π±ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅. Π˜Ρ‚ΠΎΠ³ΠΈ Π½Π°ΡƒΠΊΠΈ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ, сСр. «ΠžΠ±Ρ‰ΠΈΠ΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСской Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ», Москва, Π’Π˜ΠΠ˜Π’Π˜, 1989, Π’. 12.
  11. Π‘. Π‘ΠΏΠ΅Ρ€ΠΌΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π· ΠΈ ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½Ρ‹Π΅ основы Π΅Π³ΠΎ рСгуляции. Наука, Москва, 1985, сс. 76−80.
  12. E., Π”Ρ€ΠΎΠ±Ρ‡Π΅Π½ΠΊΠΎ E., Π€ΠΈΠ»Π°Ρ‚ΠΎΠ² M. ΠšΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ состояния Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ядСр спСрматозоидов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ тСст Π½Π° Ρ„Π΅Ρ€Ρ‚ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ. Цитология, 2002, Π’. 44, N 5, сс. 470−476.
  13. Π‘., Π‘Π΅ΠΌΠ΅Π½ΠΎΠ²Π° Π•., Носкин Π›., Π”Ρ€ΠΎΠ±Ρ‡Π΅Π½ΠΊΠΎ Π•., Π€ΠΈΠ»Π°Ρ‚ΠΎΠ² М., ΠšΠΎΡ‚Π»ΠΎΠ²Π°Π½ΠΎΠ²Π° Π›. ΠŸΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ проточноцитомСтричСский Π°Π½Π°Π»ΠΈΠ· хромосом. Цитология, 1989, Π’. 31, N4, сс. 410−418.
  14. М. ΠΈ Π’Π°Ρ€Ρ„ΠΎΠ»ΠΎΠΌΠ΅Π΅Π²Π° Π•. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΊΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π² ΡΠ΄Ρ€Π°Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Цитология, 1990, Π’. 32, N 4, сс. 343 350.
  15. М. ΠΈ Π’Π°Ρ€Ρ„ΠΎΠ»ΠΎΠΌΠ΅Π΅Π²Π° Π•. ДСмонстрация ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π”ΠΠš Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… in vivo с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ бисбСнзимидозольного краситСля Π₯Схст 34 222. Цитология, 1992, Π’. 34, N 9, сс. 112−116.
  16. М., Π’ΠΎΡ€ΠΎΠ±ΡŒΠ΅Π²Π° О., Π‘Π΅ΠΌΠ΅Π½ΠΎΠ²Π° Π•., Π›Π΅ΠΎΠ½Ρ‚ΡŒΠ΅Π²Π° О. Бпособ диагностики муТского бСсплодия. ΠŸΠ°Ρ‚Π΅Π½Ρ‚ № 2 118 822 ΠΎΡ‚ 10 ΡΠ΅Π½Ρ‚ября 1998 Π³. Π—аявка № 97 103 029.
  17. Adham I., Nayernia К., Burkhardt-Gottges Π•., Topaloglu О., Dixkens Π‘., Holstein A., Engel W. Teratozoospermia in mice lacking the transition protein 2 (Tnp2). Mol. Hum. Reprod., 2001, V. 7, N6, pp. 513−520.
  18. Agell N. and Mezquita C. Cellular content of ubiquitin and formation of ubiquitin conjugates during chicken spermatogenesis. Biochem. J., 1988, V. 250, pp. 883−889.
  19. Aitken R. Assessment of human sperm function for IVF. Hum. Reprod., 1988, V. 3, pp. 8995.
  20. Aitken R. A free radical theory of male infertility. Reprod. Fertil. Dev., 1994, V. 6, pp. 1924.
  21. Aitken R. and Clarkson J. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J. Reprod. Fertil., 1987b, V. 81, pp. 459−469.
  22. Aitken R., Irvine D., Wu F. Prospective analysis of sperm-oocyte fusion and reactive oxygen species generation as criteria for the diagnosis of infertility. Am. J. Obstet. Gynec., 1991, V. 164, pp. 542−551.
  23. Aitken R., Harkiss D., Buckingham D. Relationship between iron-catalysed lipid peroxidation potential and human sperm function. J. Reorod. Fertil., 1993, V. 98, pp. 257−265.
  24. Aitken R., Buckingham D., Brindle J., Gomez F., Baker H., Irvine D. Analysis of sperm movment in relation to the oxidative stress created by leukocytes in washed sperm preparations and seminal plasma. Hum. Reprod., 1995, V. 10, pp. 2061−2071.
  25. Aitken R. and Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction, 2001, V. 122, N 4, pp. 497−506.
  26. Allen M., Lee C., Lee J. D., Pogany G., Balooch M., Siekhaus W., Balhorn R. Atomic force microscopy of mammalian sperm chromatin. Chromosoma, 1993, V. 102, N 9, pp. 623−630.
  27. Almouzni G., Clark D., Mechali M., Wolffe A. Chromatin assembly on replicating DNA in vitro. Nucleic. Acids Res., 1990, V. 18, pp. 5767−5774.
  28. Almouzni G., Mechali M. and Wolffe A. Transcription complex disruption caused by a transition in chromatin structure. Mol. Cell Biol., 1991, V. 11, pp.655−665.
  29. Almouzni G. and Wolffe A. Nuclear assembly, structure and function: the use of Xenopus in vitro systems. Exp. Cell Res., 1993, V. 205, pp. 1−15.
  30. Alvarez J. and Storey B. Spontaneous lipid peroxidation in rabbit epididymal spermatozoa: its effect on sperm motility. Biol. Reprod., 1982, V. 27, pp. 1102−1108.
  31. Alvarez J. and Storey B. Lipid peroxidation and the reactions of superoxide and in mouse spermatozoa. Biol. Reprod., 1984, V. 30, pp. 833−841.
  32. Alvarez J. and Storey B. Role of glutathione peroxidase in protecting mammalian spermatozoa from loss of motility caused by spontaneous lipid peroxidation. Gamete Res., 1989, V. 23, pp. 77−90.
  33. Alvarez J., Touchstone J., Blasco L., Storey B. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. J. Androl., 1987, V. 8, pp. 338−348.
  34. Ammer H., Henschen A., Lee S. Isolation and amino asid sequence analysis of human sperm protamines PI and P2. Occurrence of two forms of protamine P2. Biol. Chem. Hoppe-Seyler, 1986, V. 367, pp. 515−522.
  35. Anachkova B. and Russev G. Endogenous proteolytic activity of chromatin. Acta. Biol. Med. Ger., 1977, V. 36, N 11−12, pp. 1945−1950.
  36. Andreetta A., Stockert J., Barrera C. A simple method to detect sperm chromatin abnormalities: cytochemical mechanism and possible value in predicting semen quality in assisted reproductive procedures. Int. J. Androl., 1995, V. 18, Suppl. 1, pp. 23−28.
  37. Annunziato A. Inhibitors of topoisomerases I and II arrest DNA replication, but do not prevent nucleosome assembly in vivo. J. Cell. Sci., 1989, V. 93, pp. 593−603.
  38. Aravindan G., Bjordahl J., Jost L., Evenson D. Susceptibility of human sperm to in situ DNA denatured is strongly correlated with DNA strand breaks identified by singl-cell electrophoresis. Exp. Cell Res., 1997, V. 236, pp. 231−237.
  39. Ariel M., Cedar H. and McCarry J. Developmental change in methylation of spermatogenesis-specific genes include reprogramming in the epididymis. Nature Genet., 1994, V. 7, pp. 59−63.
  40. Auger J. and Dadoune J. Nuclear status of human sperm cells by transmission electron microscopy and image cytometry: change in nuclear shape and chromatine texture during spermatogenesis and epididymal transit. Biol. Reprod., 1993, V. 49, pp. 166−175.
  41. Ausio J. and Subirana J. Nuclear proteins and the organization of chromatin in spermatozoa of Mytilus edulis. Exp. Cell Res., 1982, V. 141, N 1, pp. 39−45.
  42. Ausio J. and Van Holde K. A dual chromatin organization in the sperm of the bivalve mollusc Spisula solidissima. Eur. J. Biochem., 1987, V. 165, N 2, pp. 363−371.
  43. Avramova Z. and Tasheva B. Tightly bound nonprotamine proteins from ram sperm nuclei studied by one- and two-dimensional peptide mapping. Mol. Cell Biochem., 1987, V. 74, N 1, pp. 67−75.
  44. Baarends W., Hoogerbrugge J., Roest H., Ooms M., Vreeburq J., Hoeijmakers J., Grootegoed J. Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev. Biol., 1999, V. 207, pp. 322−333.
  45. Baler R., Dahl G., Voellmy R. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol. Cell Biol., 1993, V. 13, N 4, pp. 2486−2496.
  46. Balhorn R. A model for the structure of chromatin in mammalian sperm. J. Cell Biol., 1982, V. 93, pp. 298−305.
  47. Balhorn R. Mammalian protamines: Structure and molecular interections. In Molecular Biology of Chromosome Function (Ed. K. W. Adolph). Springer Verlag, New York. 1989, pp. 366−395.
  48. Balhorn R., Corzet M., Mazrimas J., Watkins B. Identification of bull protamine disulfides. Biochemistry, 1991, V. 30, pp. 175−181.
  49. Balhorn R., Reed S., Tanpaichitr N. Abberant protamine 1 / protamine 2 ratios in sperm of infertile human males. Experientia, 1988, V. 44, pp. 52−55.
  50. Balhorn R., Weston S., Thomas C., Wyrobek A. DNA packaging in mouse spermatids. Synthesis of protamine variants and four transition proteins. Exp. Cell Res., 1984, V. 150, pp. 298−308.
  51. Baran V., Mercier Y., Renard J., Flechon J. Nucleolar substructures of rabbit cleaving embryos: an immunocytochemical study. Mol. Reprod. Dev., 1997, V. 48, N 1, pp. 34−44.
  52. Barone J., De Lara J., Cummings K., Ward W. DNA organization in human spermatozoa. J. Androl., 1994, V. 15, N2, pp. 139−144.
  53. Baskin Y. Mapping the cell’s nucleus. Science, 1995, V. 268, N 5217, pp. 1564−1565.
  54. Bauche F., Fouchard M., Jegou B. Antioxdant system in rat testicular cells. FEBS Letters, 1994, V. 349, pp. 392−396.
  55. Bedford J., Best M., Calvin H. Variations in the structural character and stability of nuclear chromatine in morphologically normal human spermatozoa. J. Reprod. Fertil., 1973, V. 33, pp. 19−29.
  56. Bellve A.R., McKay D.J., Renaux B. S., Dixon G.H. Purification and characterization of mause protamines PI and P2. Amino asid sequence of P2. Biochemistry, 1988, V. 27, pp. 28 902 897.
  57. Bench G., Corzett M., Kramer C., Grant P., Balhorn R. Zinc is sufficiently abundant within mammalian sperm nuclei to bind stoichiometrically with protamine 2. Mol. Reprod. Dev., 2000, V. 56, pp. 512−519.
  58. Bianchi P., Manicardi G., Bizzaro D. Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human spermatozoa. Biol. Reprod., 1993, V. 49, pp. 1083−1088.
  59. Bianchi P., Manicardi G., Urner F., Campana A., Sakkas D. Chromatin packaging and morphology in ejaculated human spermatozoa: evidence of hidden anomalies in normal spermatozoa. Mol. Hum. Reprod., 1996, V. 2., N 3, pp. 139−144.
  60. Bizzaro D., Manicardi G., Bianchi P., Sakkas D. Sperm decondensation during fertilisation in the mouse: presence of DNase I hypersensitive sites in situ and a putative role for topoisomerase II. Zygote, 2000, V. 8, N 3, pp. 197−202.
  61. Bjorndahl L. and Kvist U. Influence of seminal vesicle fluid on the zink content of human sperm chromatin. Int. J. Androl., 1990, V. 13, pp. 232−238.
  62. Blazak W. and Overstreet J. Unstability of nuclear chromatin in the ejaculated spermatozoa of fertile men. J. Reprod. Fertil., 1982, V. 65, pp. 331−339.
  63. Bloch D. A catalog of sperm histones. Genetics Suppl., 1969, V. 61, pp. 93−111.
  64. Blow J. and Laskey R. Initiation of DNA replication in nuclei and purified DNA by a cellfree extract of Xenopus eggs. Cell, 1986, V. 47, pp. 577−587.
  65. Bottiroli G., Croce A. C., Pellicciari C., Ramponi R. Propidium iodide and the thiol-speeific reagent DACM as a dye pair for fluorescence resonance energy transfer analysis: an application to mouse sperm chromatin. Cytometry, 1994, V. 15, pp. 106−116.
  66. Brinkley B., Brenner S., Hall J., Tousson A., Balczon R., Valdivia M. Arrangement of kinetochores in mouse cells during meiosis and spermatogenesis. Chromosoma, 1986, V. 94, pp. 309−317.
  67. Brinkley B. Towards a structural and molecular definition of the kinetochore. Cell Motil. Cytoskeleton, 1990, V. 16, pp. 104−109.
  68. Brodie S., Giron J., Latt S.A. Estimation of accessibility of DNA in chromatin from fluorescence measurements of electronic excitation energy transfer. Nature, 1975, V. 253, N 6, pp. 470−471.
  69. Brown D., Blake E., Wolgemuth D., Gordon K., Ruddle F. Chromatin decondensation and DNA synthesis in human sperm activated in vitro by using Xenopus laevis egg extracts. J. Exp. Zool., 1987, V. 242, pp. 215−131.
  70. Bunick D., Balhorn R., Stanker L., Hecht N. Expression of the rat protamine 2 gene is supressed at the level of transcription and translation. Exp. Cell. Res., 1990, V. 188, pp. 147−152.
  71. Calvin H. and Bedford J. Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J. Reprod. Fertil. (Suppl.), 1971, V. 13, pp.65−75.
  72. Carrell D. and Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J. Androl., 2001, V. 22, N 4, pp. 604−610.
  73. Chang T. and Zirkin B. Proteolytic degradation of protamine during thiol-induced nuclear decondensation in rabbit spermatozoa. J. Exp. Zool., 1978, V. 204, N 2, pp. 283−289.
  74. Chen H., Sun J., Zhang Y., Davie J., Meistrich M. Ubiquitination of histone H3 in elonqating spermatids of rat testes. J. Biol. Chem., 1998, V. 273, pp. 13 165−13 169.
  75. Cho H. and Wolffe A. Xenopus laevis B4, an intron-containing oocyte-specific linker histone-encoding gene. Gene, 1994, V. 143, N 2, pp. 233−238.
  76. Christensen M., Rattner J., Dixon G. Hyperacetylation of histone H4 promotes chromatin decondensation prior to histone replacement by protamines during spermatogenesis in rainbow trout. Nucleic Acids Res., 1984, V. 12, N 11, pp. 4575−4592.
  77. Ciechanover A., Finley D., Varshavsky A. The ubiquitin-mediated proteolytic pathway and mechanisms of energy-dependent intracellular protein degradation. J. Cell Biochem., 1984, V. 24, N 1, pp. 27−53.
  78. Ciejek E, Tsai M., O’Malley B. Actively transcribed genes are associated with the nuclear matrix. Nature, 1983, V. 306, N 5943, pp. 607−609.
  79. Claassens O., Menkveld R., Franken D., Pretorius E., Swart Y., Lombard C., Kruger T. The acridine orange test: determining the relationship between sperm morphology and fertilization in vitro. Hum. Reprod., 1992, V. 7, N 2, pp. 242−247.
  80. Clarke H. Nuclear and chromatin composition of mammalian gametes and early embryos. Biochem. Cell Biol., 1992, V. 70, N 10−11, pp. 856−866.
  81. Clermont Y., Oko R. and Hermo L. Cell biology of mammalian spermatogenesis. In Cell and Molecular Biology of the Testis (Eds. C. Desjardins and L. L. Ewing). Oxford University Press, New York. 1993, pp. 332−376.
  82. Courtens J., Biggiogera M., Rothfield N., Burnier M., Fakan S. Migration of centromere proteins in rabbit spermatids. Mol. Reprod. Dev., !992, V. 32, pp. 369−377.
  83. Craig E., Gambill B., Nelson R. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol. Rev., 1993, V. 57, N 2, pp. 402−414.
  84. Crissman H. and Steinkamp J. Cell cycle-related changes in chromatin structure detected by flow cytometry using multiple DNA fluorochromes. Eur. J. Histochem., 1993, V. 37, N 1, pp. 129−138.
  85. Czaker R. Relative position of constitutive heterochromatin and of nucleolar structures during mouse spermiogenesis. Anat. Embryol., 1987, V. 175, pp. 467−475.
  86. Dadoune J., Mayaux M. and Guihard-Moscato. Correlation between defects in chromatin condensation of human spermatozoa stained by aniline blue and semen characterictics. Andrologia, 1988, V. 20, N 3, pp. 211−217.
  87. Darzynkiewicz Z., Traganos F., Sharpless T., Melamed M. Thermal denaturation of DNA in situ as studied by acridine orange staining and automated cytofluorometry. Exp. Cell Res., 1975, V. 90, N2, pp. 411−428.
  88. Darzynkiewicz Z., Evenson D., Kapuschinski T. Denaturation of RNA and DNA in situ induced by acridine orange. Exp. Cell Res., 1983, V. 148, pp. 31−46.
  89. Darzynkiewicz Z. Acid-induced denaturation of DNA in situ as a probe of chromatin structure. Meth. Cell Biol., 1994, V. 41, pp. 527−541.
  90. Davie J., Numerow L., Delcuve G. The nonhistone chromosomal protein, H2A-specific protease, is selectively associated with nucleosomes containing histone HI. J. Biol. Chem., 1986, V. 261, N22, pp. 10 410−10 416.
  91. Davie J. and Hendzel M. Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription. Biochem., 1990, V. 29, pp. 4752−4757.
  92. Davie J. and Murphy L. Inhibition of transcription selectively reduces the level of ubiquitinated histone H2B in chromatin. Biochem. Biophts. Res. Commun., 1994, V. 203, pp. 344−350.
  93. Davies K. Protein damage and degradation by oxygen radicals. J. Biol. Chem., 1987, V. 262, N20, pp. 9895−9901.
  94. Den Boer P., Poot M., Verkerk A., Jansen R., Mackenbach P., Grootegoed J. Glutathione-dependent defence mechanisms in isolated round spermatids from the rat. Int. J. Androl., 1990, V. 13, N 1, pp. 26−38.
  95. De Yerba L., Ballesca J., Vanrell J. Complete selective absence of protamine P2 in humans. J. Biol. Chem., 1993, V. 268, pp. 10 553−10 557.
  96. Dilworth S., Honda B., Laskey R. Two complexes that contain histones are required for nucleosome assembly in vitro: role of nucleoplasmin and N1 in Xenopus egg extracts. Cell, 1987, V. 51, pp. 1009- 1018.
  97. Dimitrov S., Almouzni G., Dasso M., Wolffe A. Chromatin transitions during early Xenopus embryogenesis: changes in histone H4 acetylation and in linker histone type. Dev. Biol., 1993, V. 160, pp. 214−227.
  98. Dimitrov S., Dasso M., Wolffe A. Remodeling sperm chromatin in Xenopus laevis egg extracts: the role of core histone phosphorylation and linker histone B4 in chromatin assembly. J. Cell Biol., 1994, V. 126, N3, pp. 591−601.
  99. Doerksen T. and Trasler J. M. Developmental exposure of male germ cells to 5-azacytidine results in abnormal preimplantation development in rats. Biol. Reprod., 1996, V. 55, N 5, pp. 1155−1162.
  100. Dutta S., Akey I., Dingwall C., Hartman K., Laue T., Nolte R., Head J., Akey C. The crystal structure of nucleoplasmin-core: implications for histone binding and nucleosome assembly. Mol. Cell, 2001, V. 8, pp. 841−853.
  101. Dyson M. and Walker J. Chromatin associated protease from calf thymus. Int. J. Pept. Protein. Res., 1984, V. 24, N 3, pp. 201−207.
  102. Earnshaw W. and Rothfield N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma, 1985, V. 91, pp. 313−321.
  103. Earnshaw W., Honda B., Laskey B., Thomas J. Assembly of nucleosomes: the reaction involving X. laevis nucleoplasmin. Cell, 1980, V. 21, pp. 373−383.
  104. Ellwart J. and Dormer P. Vitality measurement using spectrum shift in Hoechst 33 342 stained cells. Cytometry, 1990, V. 11, N 3, pp. 239−243.
  105. Engh E., Scholberg A., Clausen O., Purvis K. DNA flow cytometry of sperm from normozoospermic men in barren couples and men of proven fertility. Int. J. Fertil. Menopausal Stud., 1993, V. 38, N 5, pp. 305−310.
  106. Erenpreiss J., Bars J., Lipatnikova V., Erenpreisa J., Zalkalns J. Comparative study of cytochemical tests for sperm chromatin integrity. J. Androl., 2001, V. 22, pp. 45−53.
  107. Esterhuizen A., Franken D., Lourens J., Van Zyl C., Muller I., Van Rooyen L. Chromatin packaging as an indicator of human sperm dysfunction. J. Assist. Reprod. Genet., 2000, V. 17, pp. 508−514.
  108. Evenson D., Darzynkiewicz Z. and Melamed M. Relation of mammalian sperm chromatin heterogeneity to fertility. Science, 1980, V. 210, N 4474, pp. 1131−1133.
  109. Evenson D. and Melamed M. Rapid analysis of normal and abnormal cell types in human semen and testis biopsies by flow cytometry. J. Histochem. Cytochem., 1983, V. 31, Suppl. 1A, pp. 248−253.
  110. Evenson D., Klein F., Whitmore W., Melamed M. Flow cytometric evaluation of sperm from patients with testicular carcinoma. J. Urol., 1984a, V. 132, N 6, pp. 1220−1225.
  111. Evenson D., Darzynkiewicz Z., Jost L., Janca F., Ballachey B. Changes in accessibility of DNA to various fluorochromes during spermatogenesis. Cytometry, 1986, V. 7, N 1, pp. 45−53.
  112. Evenson D., Janca F., Jost L. Effects of the fungicide methyl-benzimidazol-2-il carbamate (MBC) on mouse germ cells as determined by flow cytometry. J. Toxicol. Environ. Health., 1987, V. 20, N 4, pp. 387−399.
  113. Evenson D. Flow cytometry evaluation of male germ cells. Flow Cytometry: Advanced Reserch and Clinical Applications (Ed. A. Yen). CRC Press, Boca Raton, FL, 1989, V. 1, pp. 217−246.
  114. Evenson D., Baer R., Jost L. Flow cytometric analysis of rodent epididymal spermatozoa chromatin condensation and loss of free sulfhydryl groups. Mol. Reprod. Dev., 1989, V. 1, pp. 283−288.
  115. Evenson D. Flow cytometry assay of male fertility. Methods in Cell Biology, V. 33: Flow Cytometry (Eds. Z. Darzynkiewicz and H. Crissman). Academic Press, New York, 1990, pp. 401−410.
  116. Evenson D. and Darzynkiewicz Z. Acridine orange-induced precipitation of mouse testicular sperm cell DNA reveals new patterns of chromatin structure. Exp. Cell Res., 1990, V. 187, pp. 328−334.
  117. Evenson D., Jost L., Coico R. Effects of methyl methanesulfonate on mouse sperm chromatin structure and testicular cell kinetics. Environ. Mol. Mutagen, 1993, V. 21, N 2, pp. 144−153.
  118. Evenson D., Emeric R., Jost L., Kayongo-Male H., Stewart S. Zinc-silicon interactions influencing sperm chromatin integrity and testicular cell development in the rat as measured by flow cytometry. J. Anim. Sci., 1993, V. 71, N 4, pp. 955−962.
  119. Evenson D. and Jost L. Sperm chromatin structure assay: DNA denaturability. Flow Cytometry, Ed. 2. A Volume of Methods in Cell Biology (Eds. Z. Darzynkiewicz, J. Robinson and H. Crissman). Academic Press, Inc., Orlando, FL, 1994, pp. 159−175.
  120. Evenson D., Jost L. Utility of sperm chromatin structure assay in the infertility clinic. Cytometry, 1998, Suppl. 9, p. 97.
  121. Evenson D., Jost L., Marshall D., Zinaman M., Clegg E., Purvis K., de Angelis P., Claussen O. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in human fertility clinic. Hum. Reprod., 1999, V. 14, pp. 1039−1049.
  122. Evenson D., Jost L., Corzett M., Balhorn R. Characteristics of human sperm chromatin structure following an episode of influenza and high fever: a case study. Androl., 2000, V. 21, N 5, pp. 739−746.
  123. Filatov M. and Varfolomeeva E. Active dissociation of Hoechst 33 342 from DNA in living mammalian cells. Mutation research, 1994, V. 327, N 3, pp. 209−215.
  124. Filatov M., Semenova E., Tretyakov A., Drobchenko E. Flow cytofluorometric test of sperm chromatin organization. Cytometry, 1996, Supplement 8, p. 124.
  125. Filatov M., Semenova E., Vorob’eva O., Leont’eva O., Drobchenko E. Relationship between abnormal sperm chromatin packing and IVF results. Mol. Hum. Reprod., 1999, V. 5, N 9, pp. 825−830.
  126. Foresta C., Zorzi M., Rossato M., Varotto A. Sperm nuclear instability and staining with aniline blue: abnormal persistence of histones in spermatozoa in infertile men. Int. J. Androl., 1992, V. 15, pp. 330−337.
  127. Fossa S., De Angelis P., Kraggerud S., Evenson D., Theodorsen L., Clausen O. Prediction of posttreatment spermatogenesis in patients with testicular cancer by flow cytometric sperm chromatin structure assay. Cytometry, 1997, V. 30, N 4, pp. 192−196.
  128. Fuentes-Mascorro G., Serrano H., Rosado A. Sperm chromatin. Arch. Androl., 2000, V. 45, N3, pp. 215−225.
  129. Gajewski E., Rao G., Nackerdien Z., Dizdaroglu M. Modification of DNA bases in mammalian chromatin by radiation-generated free radicals. Biochemistry, 1990, V. 29, N 34, pp. 7876−7882.
  130. Garagna S. and C. Redi. Chromatin topology during the transformation of the sperm nucleus in pronucleus in vivo. J. Exp. Zool., 1988, V. 246, pp. 187−193.
  131. Gardiner-Garden M., Ballesteros M., Gordon M., Tam P. Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm. Mol. Cell Biol., 1998, V. 18, pp. 3350−3356.
  132. Gatewood J., Cook G., Balhorn R., Bradbury E., Sehmid C. Sequence-specific packaging of DNA in human sperm chromatin. Science, 1987, V. 236, N 4804, pp. 962−964.
  133. Gaziev A., Malakhova L., Kutsyi M. Postradiation activation of proteinases associated with the hepatocyte nuclear matrix in rats. Radiobiologiia 1987, V. 27, N 2, pp. 166−170.
  134. Gaziev A. and Kutsyi M. Histone HI-specific proteinase is associated with the nuclear matrix and is activated by DNA-containing breaks or denatured sites. Dokl Akad Nauk SSSR, 1988, V. 299, N 1, pp. 240−242.
  135. Georgiou I., Syrrou M., Stefanidis K., Konstantelli M., Lolis D. Effect of Percoll gradient and swim-up preparation on the chromomycin A3 staining of normal and abnormal semen samples. Andrologia, 1998, V. 30, N 2, pp. 101−104.
  136. Gerhart J., Wu M., Kirschner M. Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. J. Cell Biol., 1984, V. 98, N 4, pp. 1247−1255.
  137. Giaretti W., Nusse M., Bruno S., Di Vinci A., Geido E. A new method to discriminate Gl, S, G2, M and Gl postmitotic cells. Exp. Cell Res., 1989, V. 182, N 2, pp. 290−295.
  138. Gillespie P., Blow J. Nucleoplasmin-mediated chromatin remodelling is required for Xenopus sperm nuclei to become licensed for DNA replication. Nucleic Acids Res., 2000, V. 28, N 2, pp. 472−480.
  139. Golan R., Cooper T., Oschry Y., Oberpenning F., Schulze H., Shochat L. and Lewin L. Chenges in chromatin condensation of human spermatozoa during epididymal transit as determined by flow cytometry. Hum. Reprod., 1996, V. 11, N 7, pp. 1457−1462.
  140. Gopalkrishnan K., Padwal V., Meherji P., Gokral J., Shah R., Juneja H. Poor quality of sperm as it affects repeated early pregnancy loss. Arch. Androl., 2000, V. 45, N 2, pp. 111−117.
  141. Gordon K., Brown D., Ruddle F. In vitro activation of human sperm induced by amphibian egg extract. Exp. Cell Res., 1985, V. 157, pp. 409−418.
  142. Gray J., Dolbeare F., Pallavicini M., Beisker W., Waldman F. Cell cycle analysis using flow cytometry. Int. J. Radiat. Biol. 1986, V. 49, N 2, pp.237−255.
  143. Gray J. and Cram L. Flow karyotyping and chromosome sorting. Flow Cytometry and Sorting. Second Edition (Eds. M. Melamed, T. Lindmo, M. Mendelsohn). Willey-Liss, New-York, 1990, pp. 503−529.
  144. Green G. R., Balhorn R., Poccia D. L. and Hecht N. B. Synthesis and processing of mammalian protamines and transition proteins. Mol. Reprod. Dev., 1994, V. 37, pp. 255−263.
  145. Grillo J., Vasserot M., Gamerre M., Vitry G., Stahl A. Nucleolar changes in human embryo during the pre-implantation stage. Activation of ribosomal genes during the nucleologenesis. Biol. Cell, 1991, V. 72, N 3, pp. 201−209.
  146. Griveau J., Charbonneau M., Blanchard Y. Decondensation of human sperm nuclei and HP1 protamine degradation from normospermia and astenospermia in Xenopus egg extracts. Arch. Androl., 1992, V. 29, pp 127−136.
  147. Gusse M., Sautierre P., Belaiche D., Martinage A., Roux C., Dadoune J., Chevaillier P. Purification and characterization of nuclear basic proteins of human sperm. Biochim. Biophys. Acta, 1986, V. 884, pp. 124−134.
  148. Gutteridge J. and Halliwell B. The measurement and mechanism of lipid peroxidation in biological systems. Trends. Biochem. Sci., 1990, V. 15, N 4, pp. 129−135.
  149. Haaf T., Grunenberg H., Schmid M. Paired arrangements of nonhomologous centromeres during vertebrate spermatogenesis. Expt. Cell Res., 1990, V. 187, pp. 157−161.
  150. Haaf T. and Ward D. Higher order nuclear structure in mammalian sperm revealed by in situ hybridization and extended chromatin fibers. Exp. Cell Res., 1995, V. 219, pp. 604−611.
  151. Hagiwara H., Miyazaki K., Matuo Y., Yamashita J., Horio T. Novel protease bound with chromatins in normal and tumorous tissues of rats. Biochem. Biophys. Res. Commun., 1980, V. 94, pp. 988−995.
  152. Hammadeh M., Zeginiadov T., Rosenbaum P., Georg T., Schmidt W., Strehler E. Predictive value of sperm chromatin condensation (aniline blue staining) in the assessment of male fertility. Arch. Androl., 2001, V. 46, N 2, pp. 99−104.
  153. Hazzouri M., Rousseaux S., Mongelard F., Usson Y, Pelletier R., Faure A., Vourc’h C., Sele B. Genome organization in the human sperm nucleus studied by FISH and confocal microscopy. Mol. Reprod. Dev., 2000, V. 55, N 3, pp. 307−315.
  154. Hecht N. Mammalian protamines and their expression. Histones and other basic nuclear proteins. Boca Raton, CRC Press. 1989, pp. 347−373.
  155. Hecht N. Regulation of haploid expressed genes in male germ cells. J. Reprod. Fert., 1990, V. 88, pp. 679−693.
  156. Hendrick J. and Hartl F. Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem., 1993, V. 62, pp. 349−384.
  157. Hess H., Heid H., Franke W. Molecular characterization of mammalian cylicin, a basic protein of the sperm head cytoskeleton. J. Cell Biol., 1993, V. 122, pp. 1043−1052.
  158. Hess H., Heid H., Zimbelmann R., Franke W. The protein complexity of the cytoskeleton of bovine and human sperm heads: the identification and characterization of cylicin II. Exp. Cell Res., 1995, V. 218, pp. 174−182.
  159. Hock R, Moorman A., Fischer D., Scheer U. Absence of somatic histone H4 in oocytes and preblastula embryos of Xenopus laevis. Dev. Biol., 1993, V. 158, pp. 510−522.
  160. Hofmann N., Hilscher B. Use of aniline blue to assess chromatine condensation in morphological normal spermatozoa in normal and infertile men. Hum reprod., 1991, V. 6, pp. 979−982.
  161. Hoshi K., Katayose H., Yanagida K. The relationship between acridine orange fluorescence of sperm nuclei and the fertilizing ability of human sperm. Fertil. Steril., 1996, V. 66, pp. 634−639.
  162. Hughes C., Lewis S., McKelvey-Martin V., Thompson W. A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol. Hum. Reprod., 1996, V. 2, pp. 613−619.
  163. Hutchison C., Cox R., Drepaul R., Gomperts M., Ford C. Periodic DNA synthesis in cellfree extracts of Xenopus eggs. EMBO J., 1987, V. 6, N 7, pp. 2003−2010.
  164. Ibrahim M., Moussa M., Pedersen H. Sperm chromatin heterogeneity as an infertility factor. Arch. Androl., 1988, V. 21, pp. 129−133.
  165. Imajoh S. and Suzuki K. Reversible interaction between Ca2±activated neutral protease (CANP) and its endogenous inhibitor. FEBS Lett., 1985, V. 187, pp. 47−50.
  166. Imschenetzky M., Diaz F., Montecino M., Sierra F., Puchi M. Identification of a cysteine protease responsible for degradation of sperm histones during male pronucleus remodeling in sea urchins. J. Cell Biochem., 1997, V. 67, N 3, pp. 304−315.
  167. Inagaki T. Chromatin-bound protease and its inhibitor from rat peritoneal macrophages. Tanpakushitsu Kakusan Koso, 1980, V. 25, N 6, pp. 447−453.
  168. Iranpour F., Nasr-Esfahani M., Valojerdi M., al-Taraihi T. Chromomycin A3 staining as a useful tool for evaluation of male fertility. J. Assist. Reprod. Genet., 2000, V. 17, N 1, pp. 60−66.
  169. Irvine D., Twigg J., Gordon E., Fulton N., Milne P., Aitken R. DNA integrity in human spermatozoa: relationships with semen quality. J. Androl., 2000, V. 21, N 1, pp. 33−44.
  170. Itoh T., AusioJ., Katagiri C. Histone HI variants as sperm-specific nuclear proteins of Rana catesbeiana, and their role in maintaining a unique condensed state of soerm chromatin. Mol. Reprod. Dev., 1997, V. 47, N 2, pp. 181−190.
  171. Iwasaki A. and Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil. Steril., 1992, V. 57, pp. 409−416.
  172. Jager S., Wijchman J., Kremer J. Studies on the decondensation of human, mouse, and bull sperm by heparin and other polyanions. J. Exp. Zool., 1990, V. 256, N 3, pp. 315−322.
  173. Jager S. Sperm nuclear stability and male infertility. Arch. Androl., 1990, V. 25, N 3, pp. 253−259.
  174. Jentsch S., McGrath J., Varshavsky A. The yeast DNA repair gene RAD6 encodes a ubiquitin- conjugating enzime. Nature, 1987, V. 329, pp. 131−134.
  175. Jeulin C., Feneux D., Serre C., Jouannet P. Sperm factors related to failure of human in vitro fertilization. J. Reprod. Fertil., 1986, V. 76, pp. 735−744.
  176. Johnson P., Yelick P., Liem H., Hecht N. Differential distribution of the PI and P2 protamine gene sequences in eutherian and marsupial mammals and a monotreme. Gamete Res.1988, V. 19, pp. 169−175.
  177. Juttermann R., Li E., Jaenisch R. Toxicity of 5-aza-2'- oxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA demethylation. Proc. Natl. Acad. USA, 1994, V. 91, pp. 11 797−11 801.
  178. Kapuscinski J. and Darzynkievicz Z. Denaturation of nucleic acids induced by intercalating agents. Biochemical and biophysical properties of acridine orange-DNA complexes. J. Biomolec. Struct. Dynam., 1984, V. 1, N 4, pp. 1485−1499.
  179. Kasinsky H., Mann M., Huang S., Fabrel L., Coyle B., Byrd E. On the diversity of sperm basic proteins in the vertebrates: Cytochemical and amino asid analysis in Squamata, Testudines and Crocodylia. J. Exp. Zool., 1987, V. 243, pp. 137−151.
  180. Kasinsky H. Spesifisity and distribution of sperm basic proteins. In Histones and Other Basic Sperm Nuclear Proteins (Eds. L. Hnilica, G. Stein, J. Stein). CRC Press, Boca Raton, FL.1989.
  181. Kierszenbaum A. Transition nuclear proteins during spermiogenesis: unrepaired DNA breaks not allowed. Mol. Reprod. Dev., 2001, V. 58, N 4, pp. 357−358.
  182. Kim Y. and Chae C. A protease is bound to rat liver nucleosomes. Biochim. Biophys. Acta., 1983, V. 755, N l, pp. 151−154.
  183. Kleinchmidt J. and Steinbeisser H. DNA dependent phosphorylation of histone H2A. X during nucleosome assembly in Xenopus laevis oocytes: involvment of protein phosphorylation in nucleosome spacing. EMBO J., 1991, V. 10, pp. 3043−3050.
  184. Kobayashi H., Larson K., Sharma R., Nelson D., Evenson D., Toma H., Thomas A., Agarwal A. DNA damage in patients with untreated cancer as measured by the sperm chromatin structure assay. Fertil. SteriL, 2001, V. 75, N 3, pp. 469−475.
  185. Koehler J. Structural heterogeneity of the mammalian sperm flagellar membrane. J. Submicrosc. Cytol., 1983, V. 15, N 1, pp. 247−253.
  186. Koken M., Reynolds P., Jaspers-Dekker I., Prakash S., Prakash I., Bootsma D., Hoeijmakers J. Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6. Proc. Natl. Acad. Sci. USA, 1991, V. 88, pp. 8865−8869.
  187. Kopecny V., Fulka J., Pivko J., Petr J. Localization of replicated DNA-containing sites in preimplantation bovine embryo in relation to the onset of RNA synthesis. Biol. Cell, 1989, V. 65, N 3, pp. 231−238.
  188. Kosower N., Katayose H., Yanagimuchi R. Thiol disulfide status and acridine orange fluorescence of mammalian sperm nuclei. J. Androl., 1992, V. 13, pp. 342−348.
  189. Kozik A., Bradbury E., Zalensky A. Increased telomere size in sperm cells of mammals with long terminal (TTAGGG)n arrays. Mol. Reprod. Dev., 1998, V. 51, pp. 98−104.
  190. Kramer J. and Krawetz S. Matrix-associated regions in haploid expressed domains. Mamm. Genome, 1995, V. 6, N 9, pp. 677−679.
  191. Kramer J. and Krawetz S. Nuclear matrix interactions within the sperm genome. J. Biol. Chem., 1996, V. 271, N20, pp. 11 619−11 622.
  192. Kramer J. and Krawetz S. RNA in spermatozoa: implications for the alternative haploid genome. Mol. Hum. Reprod., 1997, V. 3,'pp. 473−478.
  193. Krawetz S., Kramer J., McCarrey J. Reprogramming the male gamete genome: a window to successful gene therapy. Gene, 1999, V. 234, N 1, pp. 1−9.
  194. Kukucka M. and Misra H. The antioxidant defense system of isolated guinea pig Leydig cells. Mol. Cell Biochem., 1993, V. 126, N 1, pp. 1−7.
  195. Kvist U. Spermatozoa thiol-disulphide interaction: A possible event underlying physiological sperm nuclear chromatine decondensation. Acta Physiol. Scand., 1982, V. 115, pp.β€’503−505.
  196. Kvist U., Bjorhdalh L., Kjelleberg S. Sperm nuclear zinc, chromatin stability and male fertility. Scanning Microsc., 1987, V. 1, N 3, pp. 1241−1247.
  197. Lalande M., Ling V., Miller R. Hoechst 33 342 dye uptake as a probe of membrane permeability changes in mammalian cells. Proc. Natl. Acad. Sci. USA, 1981, V. 78, N 3, pp. 363−367.
  198. Larson K., Brannian J., Singh N., Burbach J., Jost L., Hansen K., Kreger D., Evenson D. Chromatin structure in globozoospermia: a case report. J. Androl., 2001, V. 22, N 3, pp. 424 431.
  199. Laskey R., Honda B., Mills A., Finch J. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature, 1978, V. 275, pp. 416−420.
  200. Lavoie L., Tremblay A., Mirault M. Distinct oxidoresistance phenotype of human T47D cells transfected by rat glutathione S-transferase Yc expression vectors. J. Biol. Chem., 1992, V. 267, N 6, pp. 3632−3636.
  201. Lebo R. Chromosome sorting and DNA sequence localization. Cytometry, 1982, V. 3, N 1, pp. 145−154.
  202. Leclerc P., Sirard M. A., Chafouleas J. G., Lambert R. D. Decrease in calmodulin concentrations during heparin- induced capacitation in bovine spermatozoa. J. Reprod. Fertil., 1992, V. 94, N 1, pp. 23−32.
  203. Leno G., Mills A., Philpott A., Laskey R. Hyper phosphorylation of nucleoplasmin facilitates Xenopus sperm decondensation at fertilization. J. Biol. Chem., 1996, V. 271, N 13, pp. 7253−7256.
  204. Li L., Seddon A., Meister A., Risley M. Spermatogenic cell-somatic cell interactions are required for maintenance of spermatogenic cell glutathione. Biol. Reprod., 1989, V. 40, N 2, pp. 317−331.
  205. Li W., Nagaraja S., Delcuve J., Hendzel M., Davie J. Effects of histone acetylation, ubiquitination and variants on nucleosome stability. Biochem. J., 1993, V. 296, pp. 737−744.
  206. Lichter P., Cremer T., Tang C., Watkins P., Manuelidis L., Ward D. Rapid detection of human chromosome 21 aberrations by in situ hybridization. Proc. Natl. Acad. Sci. USA, 1988, V. 85, N 24, pp. 9664−9668.
  207. Lipinska A. and Klyszejko-Stefanowicz L. The activity of chromatin-bound protease extracted selectively with histone H2B from calf thymus and rat liver. Int. J. Biochem., 1980, V. l 1, N 3−4, pp. 299−303.
  208. Lipinska A., Krawczyk Z., Krajewska W., Klyszejko-Stefanowicz L., Chorazy M. Activity of chromatin-bound protease in histone fractions from rat liver and Morris hepatoma. Neoplasma, 1980, V. 27, N 4, pp. 409−413.
  209. Liu Y. and Baker H. Test of human sperm function and fertilization in vitro. Fertil. Steril. 1992, V. 58, N 3, pp. 465−483.
  210. Locklear L., Ridsdale J., Bazett-Jones D., Davie J. Ultrastructure of transcriptionally competent chromatin. Nucl. Acids Res., 1990, V. 18, pp. 7015−7024.
  211. Lohka M. and Mailer J. Induction of metaphase chromosome condensation human sperm by xenopus egg extrakts. Exp. Cell Res., 1988, V. 179, pp. 303−309.
  212. Lohka M. and Masui Y. Formation in vivo of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science, 1983, V. 220, pp. 719−721.
  213. Longo F. and Kunkle M. Transformation of sperm nuclei upon insemination. Curr. Top. Dev. Biol., 1978, V. 12, pp. 149−184.
  214. Longo F., Krohn G., Franke W. Basic proteins of the perinuclear theca of mammalian spermatozoa and spermatids: a novel class of cytoskeletal elements. J. Cell Biol., 1987, V. 105, pp. 1105−1120.
  215. Longo F. and Cook S. Formation of the perinuclear theca in spermatozoa of diverse mammalian species: relationship of the manchette and multiple band polypeptides. Mol. Rep. Dev., 1991, V. 28, pp. 380−393.
  216. Lopes S., Sun J., Jurisieova A. Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil. Steril., 1998, V. 69, pp. 528−532.
  217. MacLeod J. The role of oxygen in the metabolism and motility of human spermatozoa. Am. J. Physiol., 1943, V. 138, pp. 512−518.
  218. Maeda Y., Yanagimachi H., Tateno H., Usui N., Yanagimachi R. Decondensation of the mouse sperm nucleus within the interphase nucleus. Zigote, 1998, V. 6, N 1, pp. 39−45.
  219. Maleszewski M., Borsuk E., Koziak K., Maluchnik D., Tarkowski A. Delayed sperm incorporation into parthenogenetic mouse eggs: sperm nucleus transformation and development of resulting embryos. Mol. Reprod. Dev., 1999, V. 54, N 3, pp. 303−310.
  220. Mallidis C., Howard E., Baker H. Variation of semen quality in normal men. Int. J. Androl., 1991, V. 14, pp. 99−107.
  221. Marushige Y. and Marushige K. Enzymatic unpacking of bull sperm chromatin. Biochim. Biophys. Acta., 1975, V. 403, N 1, pp. 180−191.
  222. Marushige Y. and Marushige K. Dispersion of mammalian sperm chromatin during fertilization: an in vitro study. Biochim. Biophys. Acta., 1978, V. 519, N 1, pp. 1−22.
  223. Marushige Y. and Marushige K. Proteolysis of somatic type histones in transforming rat spermatid chromatin. Biochim. Biophys. Acta., 1983, V. 761, N 1, pp. 48−57.
  224. Matwee C., Betts D., King W. Apoptosis in the early bovine embryo. Zygote, 2000, V. 8, N 1, pp. 57−68.
  225. Mayer W., Nussbaum G., Domenjoud L., Klemm U., Engel W. The lack of protamine P2 in boar and bull spermatozoa is due to mutation within the P2 gene. Nucl. Acids. Res., 1990, V. 18, pp. 1249−1254.
  226. McCarey J. R. Development of the germ cell. In Cell and Molecular Biology of the Testis (Eds. C. Desjardins and L. Ewing). Oxford University Press, New York. 1993, pp. 58−89.
  227. McKay D., Renaux B., Dixon G. H. Human sperm protamines. Amino asid sequence of two forms of P2. Eur. J. Biochem., 1986, V. 156, pp. 5−8.
  228. Mezquita J. and Mezquita C. Characterization of a chicken polyubiquitin gene preferentially expressed during spermatogenesis. FEBS Lett., 1991, V. 279, N 1, pp. 69−72.
  229. Mieusset R. Spermatozoa and embryo development. In Frontiers in Endocrinology. Epididimis: Role and Importance in male infertility Treatment (Eds. S. Hamamah, R. Mieusset, J. Dacheux). Area Serano Symposia, Roma, 1995, pp. 105−128.
  230. Miller A. and Blakely W. Inhibition of glutathione reductase activity by a carbamoylating nitrosourea: effect on cellular radiosensitivity. Free Radic. Biol. Med., 1992, V. 12, N 1, pp. 5362.
  231. Mirault M., Tremblay A., Beaudoin N., Tremblay M. Overexpression of seleno-glutathione peroxidase by gene transfer enhances the resistance of T47D human breast cells to clastogenic oxidants. J. Biol. Chem., 1991, V. 266, N 31, pp. 20 752−20 760.
  232. Mitchell P. and Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science, 1989, V. 245, N 4916, pp. 371−378.
  233. Mitchell M., Woods D., Tucker P., Opp J., Bishop C. Homology of a candidate spermatogenesis gene from the mouse Y chromosome to the ubiquitin-activating enzyme El. Nature, 1991, V. 354, pp. 483−486.
  234. Mochida K., Tres L., Kierszenbaum A. Structural features of the 26S proteasome complex isolated from rat testis and sperm tail. Mol. Reprod. Dev., 2000, V. 57, N 2, pp. 176−184.
  235. Molina J., Castilla J., Gil T., Hortas M., Vergara F., Herruzo A. Influence of incubation on the chromatin condensation and nuclear stability of human spermatozoa by flow cytometry. Hum. Reprod., 1995, V. 10, N 5, pp. 1280−1286.
  236. Monesi V. Synthetic activities during spermatogenesis in the mouse: RNA and protein. Exp. Cell Res., 1965, V. 39, pp. 197−224.
  237. Mosser D., Theodorakis N., Morimoto R. Coordinate changes in heat shock element-binding activity and HSP70 gene transcription rates in human cells. Mol. Cell Biol., 1988, V. 8, N 11, pp. 4736−4744.
  238. Muller W. and Gantier F. Interactions of heteroaromatic compounds with nucleic acids. A-T-specific non-intercalating DNA ligands. Eur. J. Biochem ., 1975, V. 54, N 2, pp. 385−394.
  239. Naryzhny S., Levina V., Varfolomeeva E., Drobchenko E., Filatov M. Active dissociation of Hoechst from DNA in a living cell. Who could do it? Electrophoresis, 1999, V. 20, N 4−5, pp. 1033−1038.
  240. Newport J. Nuclear reconstitution in vitro: stages of assembly around protein-free DNA. Cell, 1987, V. 48, pp. 205−217.
  241. Newport J. and Kirschner M. Regulation of the cell cycle during early Xenopus development. Cell, 1984, V. 37, N 3, pp. 731−742.
  242. Ng F., Liu D., Baker H. Comparison of Percoll, Mini-Percoll and swim-up methods for sperm preparation from abnormal semen samples. Hum. Reprod., 1992, V. 7, pp. 261−266.
  243. Nickel B., Roth S., Cook R., Allis C., Davie J. Changes in the histone H2A variant H2A. Z and polyubiquitinated histone species in developing trout testis. Biochem., 1987, V. 26, pp. 4417−4421.
  244. Nonchev S. and Tsanev R. Protamine-histone replacement and DNA replication in the male mouse pronucleus. Mol. Reprod. Dev., 1990, V. 25, N 1, pp. 72−76.
  245. Ohsumi K. and Katagiri C. Occurrence of HI subtypes specific to pronuclei and cleavage-stage cell nuclei of anuran amphibians. Dev. Biol., 1991, V. 147, N 1, pp. 110−120.
  246. Okuwaki M., Matsumoto K., Tsujimoto M., Nagata K. Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Lett., 2001, V. 506, pp. 272−276.
  247. Oliva R. and Dixon G. H. Vertebrate protamine gene evolution. Sequence alignment and gene structure. J. Mol. Evol., 1990, V. 30, pp. 333−346.
  248. Oliva R. and Dixon G. H. Vertebraite protomine geges and the gistone-to-protamine replacement reaction. Prog. Nucleic Acid. Res. Mol. Biol., 1991, V. 40, pp.25−94.
  249. Oliva R., Goren R. and Dixon G. H. Quail (Coturnix japonica) protamine, full-length cDNA sequence, and the function and evolution of vertebrate protamines. J. Biol. Chem., 1989, V. 264, pp. 17 627−17 630.
  250. Palmer A., Rivett A., Thomson S., Hendil K., Butcher G., Fuertes G., Knecht E. Subpopulations of proteasomes in rat liver nuclei, microsomes and cytosol. Biochem. J., 1996, V. 316, pp. 401−407.
  251. Parry T. and Prather R. Carry-over of mRNA during nuclear transfer in pigs. Reprod. Nutr. Dev., 1995, V. 35, N 3, pp. 313−318.
  252. Pasteur X., Maubon I., Sabido O., Cottier M., Laurent J. Comparison of the chromatin stainbility of human spermatozoa separated by discontinuous percoll gradient centrifugation. Anal. Quan. Cytol. Histol., 1992, V. 14, pp. 96−104.
  253. Patrizio P., Ord T., Silber S., Asch R. Correlation between epididymal length and fertilization rate of men with congenital absence of the vas deferens. Fertil. Steril., 1994, V. 61, pp. 265−268.
  254. Peltola V., Huhtaniemi I., Ahotupa M. Antioxidant enzyme activity in the maturing rat testis. J. Androl., 1992, V. 13, N 5, pp.450−455.
  255. Perreault S. and Zirkin B. Sperm nuclear decondensation in mammals: role of spermassociated proteinase in vivo. J. Exp. Zool., 1982, V. 224, N 2, pp. 253−257.
  256. Perreault S., Barbee R., Elstein K., Zucker R., Keefer C. Interspecies differences in the stability of mammalian sperm nuclei assessed in vivo by sperm microinjection and in vitro by flow cytometry. Biol. Reprod., 1988, V. 39, N 1, pp. 157−167.
  257. Philpott A., Leno G., Laskey R. Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin. Cell, 1991, V. 65, pp. 569−578.
  258. Philpott A. and Leno G. Nucleoplasmin remodels sperm chromatin in Xenopus egg extracts. Cell, 1992, V69, pp. 759−767.
  259. Pinkel D., Lake S., Glendhill B., Van Dilla M" Stephenson D., Watchmaker G. High resolution DNA content measurements of mammalian sperm. Cytometry, 1982, V. 3, N 1, pp. 19.
  260. Pirhonen A., Linnala-Kankkunen A., Maenpaa P. Comparison of partial amino acid sequence of two protamine 2 variants from stallion sperm. FEBS Lett., 1989, V. 244, pp. 199 202.
  261. Plusa B., Ciemerych M., Borsuk E., Tarkowski A. Transcription and DNA replication of sperm nuclei introduced into blastomeres of 2-cell mouse embryos. Zygote, 1997, V. 5, N 4, pp. 289−299.
  262. Poccia D. Remodeling of nucleoproteins during gametogenesis, fertilization and early development. Int. Rev. Cytol., 1986, V. 105, pp. 1−65.
  263. Potts R., Newbury C., Smith G., Notarianni L., Jefferies T. Sperm chromatin damage associated with male smoking. Mutat. Res., 1999, V. 423, N 1−2, pp. 103−111.
  264. Quintanilla-Vega B., Hoover D., Bal W., Silbergeld E., Waalkes M., Anderson L. Lead interaction with human protamine (HP2) as a mechanism of male reproductive toxicity. Chem. Res. Toxicol., 2000 V. 13, N 7, pp. 594−600.
  265. Rao V., Goldstein S., Czapski G. The relative efficiency of radicals in radiation damage to deoxyribose. Free Radic. Res. Commun., 1991, V. 12−13, pp. 67−73.
  266. Rayburn A., Auger J., McMurphy L. Estimating percentage constitutive heterochromatin by flow cytometry. Exp. Cell Res., 1992, V.198, N 2, pp. 175−178.
  267. Redi C., Garagna S., Bottiroli G. Cytochemical evaluation of sperm and lymphocyte DNA content after treatment with 5 N HC1. Histochemistry, 1986, V. 84, N 1, pp. 41−44.
  268. Renard J.-P., Babinet C. Barra J. Participation of the paternal genome is not required before the eight-cell stage for full-term development of mouse embryos. Dev. Biol., 1991, V. 143, pp. 199−202.
  269. Redner A., Hegewisch S., Haimi J., Steiherz P., Jhanwar S., Andreeff M. A study of multidrug resistance and cell kinetics in a child with near-haploid acute lymphoblastic leukemia. Leuk. Res., 1990, V. 14, N 7, pp. 771−777.
  270. Retief J. D., Winkfein R. J., Dixon G. H., Adroer R., Queralt R., Ballabriga J., Oliva R. Evolution of protamine PI genes in primates. J. Mol. Evol., 1993, V. 37, pp. 426−434.
  271. Reyes R., Carranco A., Huacuja L., Delgado N. Male pronuclei formation release of phosphorylation of histone H-3 during decondensation of human sperm nuclei activated in vitro by heparin. Arch. AndroL, 1991, V. 26, N 2, pp. 53−60.
  272. Reyes R., Sanchez-Vazquez M., Merchant-Larios H., Rosado A., Delgado N. Effect of heparin-reduced glutathione on hamster sperm DNA unpacking and nuclear swelling. Arch. AndroL, 1996, V. 37, N 1, pp. 33−45.
  273. Robinson B., Johnson D., Poulos A. Novel molecular species of sphingomyelin containing 2-hydroxylated polyenoic very-long-chain fatty acids in mammalian testes and spermatozoa. J. Biol. Chem., 1992, V. 267, N 3, pp. 1746−1751.
  274. Rodman T., Pruslin F., Allfrey V. Mechanisms of displacement of sperm basic nuclear proteins in mammals. An in vitro simulation of post-fertilization results. J. Cell Sci., 1982, V. 53, pp. 227−244.
  275. Rousseaux J. and Rousseaux-Prevost R. Molecular localization of free thiols in human sperm chromatin. Biol. Reprod., 1995, V. 52, N 5, pp. 1066−1072.
  276. Royere D., Hamamah S., Nicolle J., Lansac J. Chromatin alterations induced by freeze-thawing influence the fertilizing ability of human sperm. Int. J. Androl., 1991, V. 14, N 5, pp. 328−332.
  277. Sailer B., Jost L., Erikson K., Tajiran M., Evenson D. Effects of X-irradiation on mouse testicular cells and sperm chromatin structure. Environ. Mol. Mutagen, 1995, V. 25, N 1, pp. 2330.
  278. Sailer B., Jost L., Evenson D. Bull sperm head morphometry related to abnormal chromatin structure and fertility. Cytometry, 1996, V. 24, pp. 167−173.
  279. Sailer B., Sarkar L., Bjordahl J., Jost L., Evenson D. Effects of heat stress on mouse testicular cells and sperm chromatin structure. J. Androl., 1997, V. 18, N 3, pp. 294−301.
  280. Sakkas D., Manicardi G., Bianchi P. Relationship between the presence of endogenous nicks and sperm chromatin packaging in maturing and fertilizing mouse spermatozoa. Biol. Reprod., 1995, V. 52, pp. 1149−1155.
  281. Sakkas D., Mariethoz E., Manicardi G., Bizzaro D., Bianchi P., Bianchi U. Origin of DNA damage in ejaculated human spermatozoa. Rev. Reprod., 1999, V. 4, N 1, pp. 31−37.
  282. Sakkas D., Urner F., Bianchi P., Bizzaro D. Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection. Hum. Reprod., 1996, V. 11, pp. 837−843.
  283. Sakkas D., Urner F., Bizzaro D., Manicardi G., Bianchi P., Shoukir Y., Campana A. Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum. Reprod., 1998, Suppl. 4, pp. 9−11.
  284. Samocha-Bone D., Lewin L., Weissenberg R., Madgar Y., Soffer Y., Shochat L., Golan R. In-vitro human spermatozoa nuclear decondensation assessed by flow cytometry. Mol. Hum. Reprod., 1998, V. 4, N 2, pp. 133−137.
  285. Sanchez-Vazquez M., Reyes R., Ramirez G., Merchant-Larios H., Rosado A., Delgado N. DNA unpacking in guinea pig sperm chromatin by heparin and reduced glutathione. Arch. Androl., 1998, V. 40, N 1, pp. 15−28.
  286. Saowaros W. and Panyim S. The formation of disulfide bonds in human protamines during sperm maturation. Experientia, 1979, V. 35, pp. 191−193.
  287. Sarge K. Male germ cell-specific alteration in temperature set point of the cellular stress response. J. Biol. Chem., 1995, V. 270, N 32, pp. 18 745−18 748.
  288. Sasagawa I., Ichiyanagi O., Yazawa H., Nakada T., Saito H., Hiroi M., Yanagimachi R.
  289. Round spermatid transfer and embryo development. Arch. Androl., 1998, V. 41, pp. 151−157.
  290. Schlicker M., Schnulle V., Schneppel L. Disturbances of nuclear condensation in human spermatozoa: seach for mutations in the genes for protamine 1, protamine 2 and transition protein 1. Hum. Reprod., 1994, V. 9, pp. 2313−2317.
  291. Schulman I. and Bloom K. Centromeres: an integrated protein/DNA complex required for chromosome movement. Annu Rev. Cell Biol., 1991, V. 7, pp. 311−336.
  292. Sealy L., Cotten M., Chalkley R. Xenopus nucleoplasmin: egg vs oocyte. Biochem., 1986, V. 25, pp. 3064−3072.
  293. Segal A. and Abo A. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem. Sci., 1993, V. 18, N 2, pp. 43−47.
  294. Seligman J., Shalgi R., Oschry Y., Kosower N. S. Sperm analysis by flow cytometry using the fluorescent thiol labeling agent monobromobimane. Mol. Reprod. Devel., 1991, V. 29, pp. 276−281.
  295. Seufert W., Futcher B., Jentsch S. Role of a ubiquitin-conjugating enzime in degradation of S- and M-phase cyclins. Nature, 1995, V. 373, pp. 78−81.
  296. Shalika S., Dugan K., Pelesh D., Padilla S. A Mono-Percoll separation technique improves sperm recovery of normal and male factor specimens when compared with the swim-up technique. Hum. Reprod., 1995, V. 10, N 12, pp. 3195−3197.
  297. Shapiro H. Practical Flow Cytometry. Alan Liss, NewYork, 1985.
  298. Shimada A., Kikuchi K., Noguchi J., Akama K., Nakano M., Kaneko H. Protamine dissociation before decondensation of sperm nuclei during in vitro fertilization of pig oocytes. J. Reprod. Fertil., 2000, V. 120, N 2, pp. 247−256.
  299. Smith P., Debenham P. and Watson J. A role of DNA topoisomerases in the active dissociation of DNA minor grooveligand complex. Mutat. Res., 1989, V. 217, N 2, pp. 169−172.
  300. Smith R., Dworkin-Rastl E., Dworkin M. Expression of a histone HI-like protein is restricted to early Xenopus development. Genes Dev., 1988, V. 2, pp. 1284−1295.
  301. Smith S., Soloy E., Kanka J., Holm P., Callesen H. Influence of recipient cytoplasm cell stage on transcription in bovine nucleus transfer embryos. Mol. Reprod. Dev., 1996, V. 45, N 4, pp. 444−450.
  302. Spano M. and Evenson D. Flow cytometric analysis for reproductive biology. Biol. Cell, 1993, V. 78, N 1−2, pp. 53−62.
  303. Spano M., Kolstad A., Larsen S., Cordelli E., Leter G., Giwercman A., Bonde J. The applicability of the flow cytometric sperm chromatin structure assay in epidemiological studies. Asclepios. Hum. Reprod., 1998, V. 13, N 9, pp. 2495−2505.
  304. Stepanov S., Konushev V., Kotlovanova L., Roganov A. Karyotyping of individual cells with flow cytometry. Cytometry, 1996, V. 23, pp. 279−283.
  305. Stokke T., Holt H., Steen H. In vitro and in vivo activation of B-lymphocytes: a flow cytometric study of chromatin structure employing 7-aminoactinomycin D. Cancer Res., 1988, V. 48, N 12, pp. 6708−6714.
  306. Stokke T., Holte H., Erikstein B., Davies C., Funderund S., Steen H. Simultaneous assessment of chromatin structure, DNA content, and antigen expression by dual wavelength excitation flow cytometry. Cytometry, 1991, V. 12, N 2, pp. 172−178.
  307. Stokke T., Holt H., Smeland E., Lie S., Steen H. Differential chromatin structure-dependent binding of 7-aminoactinomycin D in normal and malignant bone marrow hematopoietic cells. Cancer Res., 1992, V. 52, N 12, pp. 5007−5012.
  308. Subirana J. A. Protein- DNA interactions in spermatozoa. Comparative Spermatology 20 Years Later. Serono Symposia Pablications, V. 75. (Ed. B. Baccetti). Raven Press, New York. 1991, pp. 89−92.
  309. Sun J., Jurisicova A., Casper R. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol. Reprod., 1997, V. 56, pp. 602−607.
  310. Surkenova G., Malakhova L., Gaziev A. Proteinase activity of the peripheral blood cell nuclei of gamma- irradiated rats. Radiobiologiia, 1990, V. 30, N 6, pp. 740−744.
  311. Surowy C. and Berger N. Nucleotide-stimulated proteolysis of histone HI. Proc. Nat. Acad. Sci. USA, 1983, V. 80, pp. 5510−5514.
  312. Sutovsky P. and Schatten G. Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion. Int. Rev. Cytol., 2000, V. 195, pp. 1−65.
  313. Suzuki Y. and Murachi T. A chromatin-bound neutral protease and inhibitor in rat peritoneal macrophages. J. Biochem. (Tokyo), 1978, V. 84, N 4, pp. 977−984.
  314. Tanphaichitr N., Sobhon P., Taluppeth N., Chalermisarachai P. Basic nuclear proteins in testicular cells and ejaculated spermatozoa in man. Exp. Cell Res., 1978, V. 117, N 2, pp. 347 356.
  315. Tesarik J. Developmental control of human preimplantation embryos: a comparative approach. J. In Vitro Fert. Embryo Transf. 1988, V. 5, pp. 347−362.
  316. Tesarik J. and Kopecny V. Development of human male pronucleus: ultrastructure and timing. Gamete Res., 1989, V. 24, N 2, pp. 135−149.
  317. Tesarik J., Kopecny V., Plachot M., Mandelbaum J. Activation of nucleolar and extranucleolar RNA synthesis and changes in the ribosomal content of human embryos developing in vitro. J. Reprod. Fertil., 1986, V. 78, pp. 463−470.
  318. Thorn A., Sautiere P., Briand G., Crane-Robinson C. The structure of ubiquitinated histone H2B. EMBO J., 1987, V. 6, pp. 1005−1010.
  319. Tipler C., Hutchon S., Hendil K., Tanaka K., Fishel S., Mayer R. Purification and characterization of 26S proteasomes from human and mouse spermatozoa. Mol. Hum. Reprod., 1997, V. 3, N 12, pp. 1053−1060.
  320. Tosic J. and Walton A. Formation of hydrogen peroxide by spermatozoa and its inhibitory effect on respiration. Nature, 1946, V. 158, pp. 485.
  321. Tosic J. and Walton A. Metabolism of spermatozoa. Formation of hydrogen peroxide by spermatozoa and its effects on motility and survival. Biochem. J., 1950, V. 47, pp. 199−212.
  322. Tounekti O., Belehradek J., Mir L. Relationships between DNA fragmentation, chromatin condensation, and changes in flow cytometry profiles detected during apoptosis. Exp. Cell Res., 1995, V. 217, N4, pp. 506−516.
  323. Tsanev R. and Avramova Z. Nonprotamine nucleoprotein ultrastructures in mature ram sperm nuclei. Eur. J. Cell Biol., 1981, V. 24, N 1, pp. 139−145.
  324. Tsurugi К and Ogata К. Studies on the serine proteases associated with rat liver chromatin. J. Biochem., 1982, V. 92, N 5, pp. 1369−1381.
  325. Tsurugi К and Ogata K. Effects of DNA and urea on the specificity for HI histone of the neutral protease Π’ partially purified from rat liver chromatin J. Biochem., 1988, V. 99, pp. 237 241.
  326. Van der Zwalmen P. Частота оплодотворСния ΠΈ Π±Π΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΡΡ‚ΠΈ послС интрацитоплазматичСской ΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΠΈ спСрматозоида (ICSI) ΠΏΡ€ΠΈ использовании эякулированных, ΡΠΏΠΈΠ΄ΠΈΠ΄ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Ρ‚Сстикулярных спСрматозоидов. ΠŸΡ€ΠΎΠ±Π». Ρ€Π΅ΠΏΡ€ΠΎΠ΄., 1995, Π’. 2, сс. 52−60.
  327. Van der Zwalmen P., Bertin-Segal G., Geerts L., Debauche C., Schoysman R. Sperm morphology and IVF pregnancy rate: comparison between Percoll gradient centrifugation and swim-up procedures. Hum. Reprod., 1991, V 6, N 4, pp. 581−588.
  328. Vinogradov A. Cell membrane-dependent chromatin condensation. Cytometry, 1995, V. 19, N2, pp. 183−189.
  329. Visner G., Dougall W., Wilson J., Burr I., Nick H. Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-1, and tumor necrosis factor. Role in the acute inflammatory response. J. Biol. Chem., 1990, V. 265, N 5, pp. 2856−2864.
  330. Vorobjova O., Filatov M., Leontjeva O., Semenova E. A flow cytometric registration of sperm chromatin condensation: correlation with the in vitro fertilization outcome. 6 Baltic Sea Conference on Obst. and Gynec. Kiel, Germany, 1997.
  331. Wagner T. and Yun J. Human sperm chromatin has a nucleosomal structure. Arch. Androl., 1981, V.7, N 3, pp. 251−257.
  332. Wagner T. and Yun J. Fine structure of human sperm chromatin. Arch. Androl., 1979, V. 2, N4, pp. 291−294.
  333. Wang X. and Ausio J. Histones are the major chromosomal protein components of the sperm of the nemerteans Cerebratulus californiensis and Cerebratulus lacteus. J. Exp. Zool., 2001, V. 290, N4, pp. 431−436.
  334. Ward W. Deoxyribonucleic acid loop domain tertiary structure in mammalian spermatozoa. Biol. Reprod., 1993, V. 48, N 6, pp. 1193−1201.
  335. Ward W. and Coffey D. Specific organization of genes in relation to the sperm nuclear matrix. Biochem. Biophys. Res. Commun., 1990, V. 173, N. 1, pp. 20−25.
  336. Ward W. and Coffey D. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol. Reprod., 1991, V. 44, pp. 569- 574.
  337. Ward W., Kishikawa H., Akutsu H., Yanagimachi H., Yanagimachi R. Further evidence that sperm nuclear proteins are necessary for embryogenesis. Zygote, 2000, V. 8, N 1, pp. 51−56.
  338. Wassarman P. The biology and chemistry of fertilization. Science, 1987, V. 235, N 4788, pp. 553−560.
  339. Watt R. and Voss E. Characterization of affinity-labeled fluorescyl ligand to specifically-purified rabbit IgG antibodies. Immunochemistry, 1978, V. 15, pp. 875−882.
  340. Westwood J. and Wu C. Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol. Cell Biol., 1993, V. 13, N 6, pp. 3481−3486.
  341. Wiger R., Hongslo J., Evenson D., De Angelis P., Schwarze P., Holme J. Effects of acetaminophen and hydroxyurea on spermatogenesis and sperm chromatin structure in laboratory mice. Reprod. Toxicol., 1995, V. 9, N 1, pp. 21−33.
  342. Wing S. and Jain P. Molecular cloning, expression and characterization of a ubiquitin enzyme (E217kD) highly expressed in rat testis. Biochem. J., 1995, V. 305, pp. 125−132.
  343. Witmyer F., Barrett A., Cristello J. The fertilization ability of sperm correlates with staining by fluorescent label monobrobimane. Abstr. of Meetings of KSFS, 1993, p. 180.
  344. Wojcik C., Benchaib M., Lornage J., Czyba J., Guerin J. Proteasomes in human spermatozoa. Int. J. Androl., 2000, V. 23, N 3, pp. 169−177.
  345. Worcel A., Han S., Wong M. Assembly of newly replicated chromatin Cell, 1978, V. 15, pp. 969−977.
  346. Wolffe A. Chromatin: structure and function. Acad. Press, London, 1992.
  347. Yanagimachi R. Fertilization in mammals. Tokai J. Exp. Clin. Med., 1984, V. 9, N 2, pp. 81−85.
  348. Yanagimachi R. Intracytoplasmic sperm injection experiments using the mouse as a model. Hum. Reprod., 1998, V. 13, Suppl 1, pp. 87−98.
  349. Yu Y., Zhang Y., Unni E., Shirley C., Deng J., Russell L., Weil M., Behringer R., Meistrich M. Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc. Natl. Acad. Sci. USA, 2000, V. 97, pp. 4683−4688.
  350. Zalenskaya I., Pospelov V., Zalensky A., Vorob’ev V. Nucleosomal structure of sea urchin and starfish sperm chromatin. Histone H2B is possibly involved in determining the length of linker DNA. Nucleic Acids Res., 1981, V. 9, N 3, pp. 473−487.
  351. Zalenskaia I., Zalenskii A., Kostyleva E., Ibragimov R., Vorob’ev V. The role of H2B histories from the sea urchin sperm in the formation of supranucleosome structures. Mol. Biol. (Moskva), 1985, V. 19, N 3, pp. 774−783.
  352. Zalensky A. and Avramova Z. Nucleosomal organization of a part of chromatin in mollusc sperm nuclei with a mixed basic protein composition. Mol. Biol. Rep., 1984, V. 10, N 2, pp. 6974.
  353. Zalensky A., Breneman J., Zalenskaya I., Brinkley B., Bradbury E. Organization of centromeresin the decondensed nuclei of mature human sperm. Chromosoma, 1993, V. 102, pp. 509−518.
  354. Zalensky A., Tomilin N., Zalenskaya I., Teplitz R., Bradbury E. Telomere-telomere interactions and candidate telomere binding protein (s) in mammalian sperm cells. Exp. Cell. Res., 1997, V. 232, pp. 29−41.
  355. Zalenskaya I., Bradbury E., Zalensky A. Chromatin structure of telomere domain in human sperm. Biochem. Biophys. Res. Comm., 2000, V. 279, pp. 213−218.
  356. Zini A., Kamal K., Phang D., Willis J., Jarvi K. Biologic variability of sperm DNA denaturation in infertile men. Urology, 2001, V. 58, N 2, pp. 258−261.193
  357. Zinkowski R., Meyne J., Brinkley B. The centromere-kinetoehore complex: a repeated subunit model. J. Cell Biol., 1991, V. 113, pp. 1091−1110.
  358. Zirkin B., Chang T., Heaps J. Involvement of an acrosinlike proteinase in the sulfhydryl-induced degradation of rabbit sperm nuclear protamine. J. Cell Biol., 1980, V. 85, N 1, pp. 116 121.
  359. Zlatanova J. and van Holde K. Chromatin loops and transcriptional regulation. Crit. Rev. Eukaryot. Gene Expr., 1992, V. 2, N 3, pp. 211−224.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ