ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² ΡƒΡ‡Ρ‘Π±Π΅, ΠΎΡ‡Π΅Π½ΡŒ быстро...
Π Π°Π±ΠΎΡ‚Π°Π΅ΠΌ вмСстС Π΄ΠΎ ΠΏΠΎΠ±Π΅Π΄Ρ‹

РСгуляция транспорта ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ…

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π‘Π΅Π»ΠΎΠΊ mDial ΠΈΠ³Ρ€Π°Π΅Ρ‚ ΠΊΠ»ΡŽΡ‡Π΅Π²ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ транспорта ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ. ЀлуорСсцСнтная микроскопия2. 2. 1. Ѐиксация ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. ΠœΠΈΠΊΡ€ΠΎΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΡ2. 5. 1. ΠœΠΈΠΊΡ€ΠΎΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΡ ΠΊΠ”ΠΠš. АнтитСла, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅. 2. Роль Π±Π΅Π»ΠΊΠΎΠ² Ρ„ΠΎΡ€ΠΌΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ сСмСйства Π² ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ цитоскСлСта. Π”ΠΠš конструкции. Роль F-Π°ΠΊΡ‚ΠΈΠ½Π° Π² ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ двиТСния ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ. ΠŸΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ Π°ΠΊΡ‚ΠΈΠ½Π°, стимулируСмая нСзависимыми ΠΎΡ‚ mDial… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • БПИБОК ПРИНЯВЫΠ₯ Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™
  • Π“Π»Π°Π²Π° 1. ΠžΠ‘Π—ΠžΠ  ДАННЫΠ₯ Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
    • 1. 1. РаспрСдСлСниС ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅
    • 1. 2. ЦитоскСлСт, ΠΊΠ°ΠΊ срСдство Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ транспорта
      • 1. 2. 1. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ систСмы ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ
      • 1. 2. 2. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ цитоскСлСта
        • 1. 2. 2. 1. ΠŸΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ Π½ΠΎΠ²Ρ‹Ρ… Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΌΠΈΠΊΡ€ΠΎΡ„ΠΈΠ»Π°ΠΌΠ΅Π½Ρ‚ΠΎΠ². Агр2/3-комплСкс
        • 1. 2. 2. 2. Роль Π±Π΅Π»ΠΊΠΎΠ² Ρ„ΠΎΡ€ΠΌΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ сСмСйства Π² ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ цитоскСлСта
      • 1. 2. 3. РСгуляция Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ ΠΈ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ цитоскСлСта
      • 1. 2. 4. УчастиС Π΄Π²ΡƒΡ… цитоскСлСтных систСм Π² Ρ‚ранспортС ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ
    • 1. 3. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ ΠΌΠΎΡ‚ΠΎΡ€Ρ‹, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π² Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ
    • 1. 4. РСгуляция распрСдСлСния ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ ΠΊΠ°ΠΊ процСсс ΠΏΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρƒ стационарным ΠΈ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹ΠΌ состояниями
    • 1. 5. ВидСомикроскопичСскиС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ Π½Π°Π±Π»ΡŽΠ΄Π΅Π½ΠΈΡŽ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ Π² ΠΆΠΈΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…
  • Π“Π»Π°Π²Π° 2. ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π«
    • 2. 1. ΠšΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
    • 2. 2. ЀлуорСсцСнтная микроскопия
      • 2. 2. 1. Ѐиксация ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
      • 2. 2. 2. ΠŸΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° иммунофлуорСсцСнтного ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡ
      • 2. 2. 3. АнтитСла, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅
      • 2. 2. 4. ΠžΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ Π°ΠΊΡ‚ΠΈΠ½Π°
    • 2. 3. Π”ΠΠš конструкции
    • 2. 4. ВрансфСкция ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
    • 2. 5. ΠœΠΈΠΊΡ€ΠΎΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΡ
      • 2. 5. 1. ΠœΠΈΠΊΡ€ΠΎΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΡ ΠΊΠ”ΠΠš
      • 2. 5. 2. ΠœΠΈΠΊΡ€ΠΎΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΡ Π±Π΅Π»ΠΊΠ°
    • 2. 6. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ видСомикроскопичСских Π΄Π°Π½Π½Ρ‹Ρ…
    • 2. 7. ΠžΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π΄Π°Π½Π½Ρ‹Ρ…
  • Π“Π»Π°Π²Π° 3. РЕЗУЛЬВАВЫ Π˜Π‘Π‘Π›Π•Π”ΠžΠ’ΠΠΠ˜Π―
    • 3. 1. НаблюдСниС ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ Π² ΠΆΠΈΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…
    • 3. 2. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ подвиТности ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…
    • 3. 3. ΠŸΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ находится ΠΏΠΎΠ΄ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ Π²Π½Π΅ΡˆΠ½ΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ²
    • 3. 4. Лизофосфатидная кислота ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΠ΅Ρ‚ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ Ρ‡Π΅Ρ€Π΅Π· Π±Π΅Π»ΠΎΠΊ RhoA
    • 3. 5. Π‘Π΅Π»ΠΎΠΊ RhoA Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΠ΅Ρ‚ распрСдСлСниС ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ, дСйствуя Ρ‡Π΅Ρ€Π΅Π· свои Π±Π΅Π»ΠΊΠΈ-мишСни
      • 3. 5. 1. ИзмСнСниС активности Rho ΠΊΠΈΠ½Π°Π·Ρ‹ Π½Π΅ Π²Π»ΠΈΡΠ΅Ρ‚ Π½Π° ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ
      • 3. 5. 2. Π‘Π΅Π»ΠΎΠΊ mDial ΠΈΠ³Ρ€Π°Π΅Ρ‚ ΠΊΠ»ΡŽΡ‡Π΅Π²ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ транспорта ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ
    • 3. 6. Роль F-Π°ΠΊΡ‚ΠΈΠ½Π° Π² ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ двиТСния ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ
    • 3. 7. ΠŸΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ Π°ΠΊΡ‚ΠΈΠ½Π°, стимулируСмая нСзависимыми ΠΎΡ‚ mDial способами, Π½Π΅ ΡΠ½ΠΈΠΆΠ°Π΅Ρ‚ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ
  • Π“Π»Π°Π²Π° 4. ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π• Π Π•Π—Π£Π›Π¬Π’ΠΠ’ΠžΠ’
  • Π’Π«Π’ΠžΠ”Π«

РСгуляция транспорта ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ΠœΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ ΠΈΠ³Ρ€Π°ΡŽΡ‚ Π²Π°ΠΆΠ½Π΅ΠΉΡˆΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Ρ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ. Они ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ ΠΊΠ»Π΅Ρ‚ΠΊΡƒ энСргиСй Π² Ρ„ΠΎΡ€ΠΌΠ΅ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» АВЀ, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ Π² Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ΅, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ваТнСйшим Π·Π²Π΅Π½ΠΎΠΌ Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π³ΠΈΠ±Π΅Π»ΠΈ. Для Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ функционирования ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ Π²Π°ΠΆΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΈΡ… Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ распрСдСлСниС: Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΡƒΡŽΡ‚ΡΡ Π²Π±Π»ΠΈΠ·ΠΈ мСст высокого потрСблСния энСргии ΠΈΠ»ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΊΠ°Π»ΡŒΡ†ΠΈΡ. Локализация ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ находится ΠΏΠΎΠ΄ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ Π²Π½Π΅ΡˆΠ½ΠΈΡ… ΠΈ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ Π΄ΠΎΡΡ‚игаСтся ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ транспорта этих ΠΎΡ€Π³Π°Π½Π΅Π»Π» вдоль ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ ΠΈ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²Ρ‹Ρ… Ρ„ΠΈΠ»Π°ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹ΠΌΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ. Π§Ρ‚ΠΎΠ±Ρ‹ Ρ€Π°Π±ΠΎΡ‚Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π±Ρ‹Π»Π° скоординирована, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Ρ‡Π΅Ρ‚ΠΊΠΎΠΉ систСмы ΠΈΡ… Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ. РСгуляция распрСдСлСния ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΎΠΈΡΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ Π½Π° ΡΡ‚Π°Π΄ΠΈΠΈ собствСнно транспорта, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ измСнСния активности ΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² ΠΈ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ ΠΈ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²Ρ‹Ρ… Ρ„ΠΈΠ»Π°ΠΌΠ΅Π½Ρ‚ΠΎΠ², Ρ‚Π°ΠΊ ΠΈ ΠΏΡ€ΠΈ посрСдством рСгуляции взаимодСйствий ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ с Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹ΠΌΠΈ цитоскСлСтными структурами.

Π’ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΎΡ€Π³Π°Π½Π΅Π»Π», ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π±ΠΎΠ»ΡŒΡˆΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ проводят Π² Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΌ состоянии. Вопрос ΠΎ Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊΠΈΠ΅ ΠΈΠΌΠ΅Π½Π½ΠΎ Π±Π΅Π»ΠΊΠΈ ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π² Π½Π΅ΠΏΠΎΡΡ€Π΅Π΄ΡΡ‚Π²Π΅Π½Π½ΠΎΠΌ ΡƒΠ΄Π΅Ρ€ΠΆΠΈΠ²Π°Π½ΠΈΠΈ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ Π² Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΌ состоянии, Π² Π½Π°ΡΡ‚оящСС врСмя остаСтся ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΌ. НакапливаСтся всС большС Π΄Π°Π½Π½Ρ‹Ρ…, ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ стационарных взаимодСйствий ΠΌΠ΅ΠΆΠ΄Ρƒ митохондриями ΠΈ ΡΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ цитоскСлСта. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡƒΡ‚ΠΈ, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² ΠΎΡΠ½ΠΎΠ²Π΅ рСгуляции ΠΏΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρƒ стационарным ΠΈ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹ΠΌ состояниСм ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ, Π΅Ρ‰Π΅ Π½Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹.

ΠœΡ‹ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… CV-1 ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ пСрСходят ΠΈΠ· ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠ³ΠΎ состояния Π² ΡΡ‚Π°Ρ†ΠΈΠΎΠ½Π°Ρ€Π½ΠΎΠ΅ Π² ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² роста, лизофосфатидной кислоты (LPА). Π‘Π²ΡΠ·Ρ‹Π²Π°ΡΡΡŒ с Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°ΠΌΠΈ Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…ности ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, LPA Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ Ρ‚Π°ΠΊΠΈΠ΅ измСнСния Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…, ΠΊΠ°ΠΊ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²Ρ‹Ρ… стрСсс-Ρ„ΠΈΠ±Ρ€ΠΈΠ»Π», созрСваниС Ρ„ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΎΠ² ΠΈ ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ двиТСния ΠΊΠ»Π΅Ρ‚ΠΊΠΈ.

ЦСлью настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΎ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ сигнала LPA, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ, ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ участников этой ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ.

ΠœΡ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ Π·Π° ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ рСгуляторный ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹ΠΉ каскад, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠΉ Π±Π΅Π»ΠΎΠΊ RhoA ΠΈ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΉ ΠΈΠΌ Π±Π΅Π»ΠΎΠΊ mDial. LPA, ΡΠ²ΡΠ·Ρ‹Π²Π°ΡΡΡŒ с ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌΠΈ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°ΠΌΠΈ, стимулируСт Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡŽ ΠΌΠ°Π»ΠΎΠΉ Π“Π’Π€-Π°Π·Ρ‹ RhoA, которая Π·Π°Ρ‚Π΅ΠΌ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΠ΅Ρ‚ Π±Π΅Π»ΠΎΠΊ mDial, относящийся ΠΊ ΡΠ΅ΠΌΠ΅ΠΉΡΡ‚Π²Ρƒ Ρ„ΠΎΡ€ΠΌΠΈΠ½ΠΎΠ². Активный Π±Π΅Π»ΠΎΠΊ mDial стимулируСт ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡŽ Π°ΠΊΡ‚ΠΈΠ½Π°, ΠΈ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ΡΡ структуры Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ цитоскСлСта Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ с ΠΌΠΈΡ‚охондриями, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ пСрСходят Π² ΡΡ‚Π°Ρ†ΠΈΠΎΠ½Π°Ρ€Π½ΠΎΠ΅ состояниС.

Π’Π«Π’ΠžΠ”Π«.

1. НайдСн Π½ΠΎΠ²Ρ‹ΠΉ рСгулятор подвиТности ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ лизофосфатидная кислота (LPА), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΠ΅Ρ‚ ΠΈΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡ΠΊΠ°ΠΌ.

2. ВыявлСно участиС рСгуляторных Π±Π΅Π»ΠΊΠΎΠ², ΠΌΠ°Π»ΠΎΠΉ Π“Π’Π€Π°Π·Ρ‹ RhoA ΠΈ Π΅Π΅ Π±Π΅Π»ΠΊΠ°-мишСни mDial, Π² ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π΅ сигнала LPA, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΡŽ двиТСния ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ.

3. Показано, Ρ‡Ρ‚ΠΎ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π½ΠΎΠ΅ дСйствиС Π±Π΅Π»ΠΊΠ° mDial Π½Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ строго зависит ΠΎΡ‚ Π΅Π³ΠΎ способности ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡŽ Π°ΠΊΡ‚ΠΈΠ½Π°, ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ.

4. Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ ингибируСтся ΠΏΡ€ΠΈ ΠΈΡ… Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΠΈ с ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΌ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ образуСтся Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΠΎΠ΄ дСйствиСм mDial, Π° Π½Π΅ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΎΡ€ΠΎΠ².

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. A.S. (2001). Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J Biol Chem 276, 2824−2830.
  2. R.D., Metuzals J., Tasaki I., Brady S.T., Gilbert S.P. (1982). Fast axonal transport in squid giant axon. Science 218, 1127−1129
  3. M., Chihara K., Kimura K., Fukata Y., Nakamura N., Matsuura Y., Kaibuchi K. (1997). Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 75, 1308−1311.
  4. S.S. (2000). Spindle assembly and the art of regulating microtubule dynamics by MAPs and stathmin/Opl8. Trends Cell Biol. 10, 261−267.
  5. F., Emans N., Griffiths G., Gruenberg J. (1993). Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J. Cell Biol., 123, 1373−1387.
  6. C., Donnadieu E., Brennan P., Keryer G., Bismuth G., Cantrell D., Trautmann A. (1998). Involvement of phosphoinositide 3-kinase and Rac in membrane ruffling induced by IL-2 in T cells. Eur J Immunol 28, 1877−1885.
  7. K., Hamasaki Π’., Satir P. (1994). Regulation of 22S dynein by a 29kD light chain. J Cell Biol 126, 727−735
  8. Baumann O, Murphy D.B. (1995). Microtubule-associated movement of mitochondria and small particles in Acanthamoeba castellanii. Cell Motil Cytoskeleton. 32 (4): 305−17.
  9. Bereiter-Hahn J. (1976). Dimethylaminostyrylmethylpyridiniumiodine (daspmi) as a fluorescent probe for mitochondria in situ. Biochim Biophys Acta. Jan 15- 423(1): 1−14.
  10. J.S., Powell B.C., Cheney R.E. (2001). A millennial myosin census. Mol Biol Cell Apr 12:4 780−94
  11. T.J., Satir P. (1979). Evidence of microfilament-associated mitochondrial movement. J Supramol Struct. 12(2): 165−75.
  12. S.T., Lasek R.J., Allen R.D. (1982). Fast axonal transport in extruded axoplasm from squid giant axon. Science 218, 1129−1131
  13. Brenner C, Kroemer G. (2000). Apoptosis. Mitochondria—the death signal integrators. Science. Aug 18- 289(5482): 1150−1.
  14. Bubb M.R., Senderowicz A.M.J., Sausville E.A., Duncan K.L.K., Korn E.D. (1994). Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J. Biol. Chem. 269, 14 869−14 871
  15. Cambray-Deakin M.A., Robson S.J., Burgoyne R.D. (1988). Colocalisation of acetylated microtubules, glial filaments, and mitochondria in astrocytes in vitro. Cell Motil Cytoskeleton. 10(3): 438−49.
  16. Carlier M.F. and Pantaloni D. (1997). Control of actin dynamics in cell motility. J. Mol. Biol. 269, 459−467.
  17. Castrillon D.H. and Wasserman S.A. (1994). Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the productsof the limb deformity gene. Development 120, 3367−3377.
  18. Chada S.R. and Hollenbeck P.J. (2003). Mitochondrial movement and positioning in axons: the role of growth factor signaling. J Exp Biol 206, 19 851 992.
  19. Chada S.R. and Hollenbeck P.J. (2004). Nerve Growth Factor Signaling Regulates Motility and Docking of Axonal Mitochondria. Current Biol. 14, 1272−1276.
  20. F., Drubin D., Nurse P. (1997). cdcl2p, a protein required for cytokinesis in fission yeast, is a component of the cell division ring and interacts with profilin. J. Cell Biol. 137, 169−182.
  21. Chilcote T.J. and Johnson K.A. (1990). Phosphorylation of Tetrahymena 22 S dynein. J Biol Chem 265, 17 257−17 266
  22. T.J., Berridge M.J., Lipp P., Bootman M.D. (2002). Mitochondria are morphologically and functionally heterogenous within cells. EMBO J., 21, 16 161 627.
  23. T.A., Nagasaki Π’., Gundersen G.G. (1998). Rho guanosine triphosphatase mediated the selective stabilization of microtubules induced by lysophosphatidic acid. J Cell Biol, 141:175−185.
  24. Copeland J.W. and Treisman R. (2002). The Diaphanous-related formin mDial controls serum response factor activity through its effects on actin polymerization. Mol. Biol. Cell 13, 4088−4099.
  25. Corthesy-Theulaz I., Pauloin A., Pfeffer S.R. (1992). Cytoplasmicdynein participates in the centrosomal localization of the Golgi complex. J. Cell Biol., 118, 1333−1345.
  26. A., Salvioli S. (2001). Analysis of mitochondria during cell death. Methods Cell Biol. 63: 467−86
  27. G., Thomas A.P., Hajnoczky G. (1999). Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBOJ. 18:96−108.
  28. De Vos K.J., Sable J., Miller K.E., Sheetz M.P. (2003). Expression of phosphatidylinositol (4,5) bisphosphate-specific pleckstrin homology domains alters direction but not the level of axonal transport of mitochondria. Mol. Biol. Cell 14, 3636−3649.
  29. De Vos K., Severin F., Van Herreweghe F., Vancompernolle K., Goossens V., Hyman A., Grooten J. (2000). Tumor necrosis factor receptor induces hyperphosphorylation of kinesin light chain and inhibits transport of mitochondria. J.Cell.Biol. 149:1207−1214.
  30. De Zwaan T.M., Ellingson E., Pellman D., Roof D.M. (1997). Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration. J Cell Biol. Sep 8−138(5):1023−40.
  31. Del Pozo M.A., Alderson N.B., Kiosses W.B., Chiang H.H., Anderson R.G., Schwartz M.A. (2004). Integrins regulate rac targeting by internalization of membrane domains. Science 303, 839−842.
  32. S., Martinou J.C. (2000). Mitochondria as the central control point of apoptosis. Trends Cell Biol. Sep-10(9):369−77. Review.
  33. Dillman J.F. and Pfister K.K. (1994). Differential phosphorylation in vivo of cytoplasmic dynein associated with anterogradely moving organelles. J Cell Biol 127, 1671−1681.
  34. R.G., Bloom G.S., Brady S.T. (1995). Fast axonal transport of kinesin in the rat visual system: functionality of kinesin heavy chain isoforms. Mol Biol Cell. 1995 Jan-6(l):21−40. Erratum in: Mol Biol Cell Sep- 6(9): 1261.
  35. Etienne-Manneville S. and Hall A. (2001). Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106, 489−498.
  36. Etienne-Manneville S. and Hall A. (2002) Rho GTPases in cell biology. Nature. Dec 12−420(6916):629−35. Review.
  37. Evangelista M., Blundell K., Longtine M.S., Chow C.J., Adames N.,
  38. J.R., Peter M., Boone C. (1997). Bnilp, a yeast forminlinking cdc42p and the actin cytoskeleton during polarized morphogenesis.1. Science 276, 118−122.
  39. M., Pruyne D., Amberg D.C., Boone C., Bretscher A. (2002). Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat. Cell Biol. 4, 32−41.
  40. M., Zigmond S., Boone C. (2003). Formins: signaling effectors for assembly and polarization of actin filaments. J Cell Sci. Jul 1- 116(Pt 13): 260 311. Review.
  41. Evans L.L. and Bridgman P.C. (1995). Particles move along actin filament bundles in nerve growth cones. Proc Natl Acad Sci USA 92, 10 954−10 958.
  42. K.R., Trimbur G.M., Burgess D.R. (1994). Molecularmotors are differentially distributed on Golgi membranes from polarizedepithelial cells. J. Cell Biol., 126, 661−675.
  43. Fernandez-Borja M., Janssen L., Verwoerd D., Hordijk P., Neefjes J. (2005) RhoB regulates endosome transport by promoting actin assembly on endosomal membranes through Dial. J Cell Sci. Jun 15- 118(Pt 12):2661−70.
  44. D.S., Lynch K.J., Smith R.S. (1987). Organelle dynamics in lobster axons: anterograde, retrograde and stationary mitochondria. Brain Res 412, 96 106.
  45. S., Kalaidzidis Y., Zerial M. (2003). RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase. Nat Cell Biol. Mar- 5(3): 195−204. Erratum in: Nat Cell Biol. Jul- 5(7): 680.
  46. L.S. (2001). Kinesin molecular motors: transport pathways, receptors, and human disease. Proc Natl Acad Sci USA. Jun 19- 98(13): 6999−7003. Review.
  47. Goldstein L.S. and Gunawardena S. (2000). Flying through the drosophila cytoskeletal genome. J. Cell Biol. 150, F63−68.
  48. A. (1998). Rho GTPases and the actin cytoskeleton. Science. 279:509−514.
  49. Harlander R.S., Way M., Ren Q., Howe D., Grieshaber S.S., Heinzen R.A. (2003). Effects of ectopically expressed neuronal Wiskott-Aldrich syndrome protein domains on Rickettsia rickettsii actin-based motility. Infect Immun. V. 71(3). P. 1551−6.
  50. Higgs H.N. and Pollard T.D. (2001). Regulation of actin filament network formation through Arp2/3 complex: activation by a diverse array of proteins. Annu. Rev. Biochem. 70, 649−676
  51. Hirokawa N., Sato-Yoshitake R., Yoshida Π’., Kawashima T. (1990). Brain dynein (MAP 1Π‘) localizes on both anterogradely and retrogradely transported membranous organelles in vivo. J Cell Biol. Sep- 111(3): 1027−37.
  52. N. (1998). Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519−526.
  53. Holleran E.A., Tokito M.K., Karki S., Holzbaur E.L.F. (1996). Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles. J. Cell Biol., 135, 1815−1829.
  54. E.L., Vallee RB. (1994). DYNEINS: molecular structure and cellular function. Annu Rev Cell Biol. 10: 339−72. Review.
  55. H., Horio T. (1988). Dynamics of microtubules visualized by darkfield microscopy: treadmilling and dynamic instability. Cell Motil Cytoskeleton 10:12 229−36.
  56. L.V., Walsh M.L., Chen L.B. (1980) «Localization of mitochondria in living cells with rhodamine 123.» Proc Natl Acad Sci USA 77, 990−994 PN774.
  57. J.F., Atkinson S.J., Pollard T.D. (1995). Sequences, structural models, and cellular localization of the actin-related proteins Arp2 and Arp3 from Acanthamoeba. J Cell Biol, 131: 385−397.
  58. Kimura K., Ito M., Amano M., Chihara K., Fukata Y., Nakafuku M., Yamamori Π’., Feng J., Nakano Π’., Okawa K., Iwamatsu A., Kaibuchi K. (1996). Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273,245−248.
  59. Z., Okamoto K., Hayashi Y., Sheng M. (2004). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell. Dec 17−119(6):873−87.
  60. Matthies H.J.G., Miller R.J., Palfrey H.C. (1993). Calmodulin binding to and cAMPdependent phosphorylation of kinesin light chains modulate kinesin ATPase activity. J Biol Chem 268, 11 176−11 187.
  61. Mcllvain J.M., Burkhardt J.K., HammAlvarez S., Argon Y., Sheetz M.P. (1994). Regulation of kinesin activity by phosphorylation of kinesinassociated proteins. J Biol Chem 269, 19 176−19 182.
  62. H., Miura K., Takenawa T. (1996). N-WASP, a novel actindepolymerizing protein, regulates the cortical cytoskeletal rearrangementin a PIP2-dependent manner downstream of tyrosine kinases. EMBO J. 15, 5326−5335.
  63. H., Sasaki Π’., Takai Y., Takenawa T. (1998). Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391,93−96.
  64. K.E., Sheetz M.P. (2004). Axonal mitochondrial transport and potential are correlated. J Cell Sci. Jun 1- 117(Pt 13):2791−804. Epub 2004 May 18.
  65. Moreau V., Frischknecht F., Reckmann I., Vincentelli R., Rabut G., Stewart D., Way M. (2000). A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nature Cell Biol. 2, 441−448.
  66. Morris R.L. and Hollenbeck P.J. (1993). The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci 104, 917−927.
  67. Morris R.L. and Hollenbeck P.J. (1995). Axonal transport of mitochondria along microtubules and Factin in living vertebrate neurons. J Cell Biol 131, 13 151 326.
  68. Mull ins R.D., Heuser J. A., Pollard T.D. (1998). The interaction of Arp2/3 complex with actin: nucleation high affinity pointed end capping and formation of branching networks of filaments. Proc Natl Acad Sci USA, 95:6181−6186.
  69. Nangaku M., Sato-Yoshitake R., Okada Y., Noda Y., Takemura R., Yamazaki H., Hirokawa N. (1994). KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell. 79: 1209−1220.
  70. S. (1996). The small GTPase Rho: cellular functions and signal transduction. J Biochem (Tokyo). Aug 120:2 215−28.
  71. C.D., Hall A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53.
  72. Oda H., Stockert R.J., Collins C., Wang H., Novikoff P.M., Satir P., Wolkoff A.W. (1995). Interaction of the microtubule cytoskeleton with endocytic vesicles and cytoplasmic dynein in cultured rat hepatocytes. J. Biol. Chem., 270, 1 524 215 249.
  73. C.C., Rieff H.I., Hollenbeck P.J. (1996). Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons. J Cell Sci 109: 971−980.
  74. Pacher P. and Hajnoczky G. (2001). Propagation of the apoptotic signal by mitochondrial waves. EMBO J. 20:4107−4121.
  75. A.F., Cook T.A., Alberts A.S., Gundersen G.G. (2001). mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat Cell Biol 3, 723−729.
  76. Palazzo A.F., Eng C.H., Schlaepfer D.D., Marcantonio E.E., Gundersen G.G. (2004). Localized Stabilization of Microtubules by Integrin- and FAK-Facilitated Rho Signaling. Science 303, 836−839.
  77. Paterson H.F., Self A. J., Garrett M. D., Just I., Aktories K., Hall, A. (1990). Microinjection of recombinant p21rho induces rapid changes in cell morphology. J. Cell Biol. 111, 1001−1007.
  78. Pollard T.D. and Beltzner C.C. (2002). Structure and function of the Arp2/3 complex. Curr. Opin. Struct. Biol. 12, 768−774.
  79. T.D. Blanchoin L., Mullins R.D. (2000). Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545−576.
  80. M., Zhang Y.Z., Kramer J.A., Wells K.S., Jones L.J., Hanzel D.K., Lugade A.G., Singer V.L., Haugland R.P. (1996). Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem. Dec-44(12): 1363−72.
  81. Provance D.W. Jr., Wei M., Ipe V., Mercer J.A. (1996). Cultured melanocytes from dilute mutant mice exhibit dendritic morphology and altered melanosome distribution. Proc Natl Acad Sci USA. Dec 10- 93(25): 14 554−8.
  82. Pruyne D., Evangelista M., Yang C., Bi E., Zigmond S., Bretscher A., Boone C. (2002). Role of formins in actin assembly: nucleation and barbed-end association. Science 297, 612−615.
  83. K., Nobes C.D., Thomas G., Hall A., Cantrell D.A. (1996). Phosphatidylinositol 3-kinase signals activate a selective subset of Rac/Rho-dependent effector pathways. Curr Biol 6, 1445−1455.
  84. A.R., Rogers S.L., Tuma M.C., Gelfand V.I. (2001). Regulation of molecular motor proteins. Int Rev Cytol. 204: 179−238. Review.
  85. A.J. (1996). Rho: theme and variations. Curr. Biol. 10:1256−1264.
  86. A.J. (1999). Stress fibres take shape. Nat. Cell Biol. 1, E64-E66.
  87. Ridley A.J. and Hall A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibres in response to growth factors. Cell 70, 389−399.
  88. A.J., Paterson H.F., Johnston C.L., Diekmann D., Hall A. (1992). The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell. 70: 401−410.
  89. R., Brini M., Murgia M., Pozzan T. (1993). Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science. Oct 29- 262 (5134): 744−7.
  90. R., Brini M., Pizzo P., Murgia M., Pozzan T. (1995). Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr. Biol. 5, 635−642.
  91. Rizzuto R., Pinton P., Carrington W., Fay F.S., Fogarty K.E., Lifshitz L.M., Tuft R.A., Pozzan T. (1998). Close contacts with the endoplasmic1. J ireticulum as determinants of mitochondrial Ca responses. Science. 280: 1763−1766.
  92. Rogers S. L, Gelfand V.I. (1998). Myosin cooperates with microtubule motors during organelle transport in melanophores. Curr. Biol. 8:161−64
  93. S.L., Karcher R.L., Roland J.T., Minin A.A., Steffen W., Gelfand V.I. (1999). Regulation of melanosome movement in the cell cycle by reversible association with myosin V. J Cell Biol. Sep 20- 146(6): 1265−76.
  94. Rohatgi R., Ma L., Miki H., Lopez M., Kirchhausen Π’., Takenawa Π’., Kirschner M.W. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell. Apr 16−97(2):221−31
  95. I., Klee S.K., Pellman D. (2002). Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat. Cell Biol. 4, 42
  96. SatoYoshitake R., Yorifuji H., Inagaki M., Hirokawa N. (1992). The phosphorylation of kinesin regulates its binding to synaptic vesicles. J Biol Chem 267, 23 930−23 936.
  97. A., Hall A. (2002). Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. Jul 1- 16(13): 1587−609. Review.
  98. T.A. (1994). Structure, function and regulation of cytoplasmic dynein. Curr Opin Cell Biol. Feb- 6(1): 69−73. Review.
  99. Schulze E. and Kirschner M. (1988). New features of microtubule behavior observed in vivo. Nature 334: 356−359.
  100. Sheetz M.P. and Spudich J.A. (1983). Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature. May 5−11- 303 (5912): 31−5.
  101. J.V. (1988). The actin cytoskeleton. Electron Microsc. Rev. 1: 155−174.
  102. Small, J.V., Rottner, K., Kaverina, I. 1999. Functional design in the actin cytoskeleton. Curr. Opin. Cell Biol. 11: 54−60.
  103. H., Hunt C. (1987). The translocation of mitochondria along insect ovarian microtubules from isolated nutritive tubes: a simple reactivated model. J Cell Sci. Dec- 88 (Pt 5): 641−8.
  104. Stowers R.S., Megeath L.J., Gorska-Andrzejak J., Meinertzhagen I.A., Schwarz T.L. (2002). Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron. Dec 19- 36 (6): 1063−77.
  105. T.M., Verkhovsky A.B., Borisy G.G. (1995). Improved procedures for electron microscopic visualization of the cytoskeleton of cultured cells. J Struct Biol. 115:290−303.
  106. Π’., Kawakami Π’., Hikawa N., Gotoh H. ((1990). «Axoplasmic transport of mitochondria in cultured dorsal root ganglion cells.» Brain Res 528, 285−290 PN11071.
  107. Y., Kanai Y., Okada Y., Nonaka S., Takeda S., Harada A., Hirokawa N. (1998). Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93: 1147−1158.
  108. Π’., Ebneth A., Mandelkow E.M., Mandelkow E. (1999). Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J Cell Sci. Jul 112 (Pt 14): 2355−67.
  109. R.D., Reese T.S., Sheetz M.P. (1985). Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. Aug- 42(1): 39−50.
  110. Van Blerkom J. (1991). Microtubule mediation of cytoplasmic and nuclear maturation during the early stages of resumed mitosis in cultured mouse oocytes. Proc Natl Acad Sci USA 88, 5031−5035.
  111. Van Aelst L., D’Souza-Schorey C. (1997). Rho GTPases and signaling networks. Genes Dev. Sep 15- 11(18): 2295−322. Review.
  112. Wade R.H., Chretien D., Job D. (1990). Characterization of microtubule protofilament numbers. How does the surface lattice accommodate? J. Mol. Biol., 212, 775−786.
  113. O.I., Lifshitz J., Janmey P.A., Linden M., Mcintosh Π’.К., Leterrier J.F. (2003). Mechanisms of mitochondria-neurofilament interactions. J Neurosci 23, 9046−9058.
  114. S. (1998). FH proteins as cytoskeletal organizers. Trends Cell Biol. 8, 111−115.
  115. N., Kato Π’., Fujita A., Ishizaki Π’., Narumiya S. (1999). Cooperation between mDial and ROCK in Rho-induced actin reorganization. Nat Cell Biol. Jul- 1(3): 136−43
  116. A. (1976). Head to tail polymerization of actin. J Mol Biol Nov 108: 1 139−50
  117. M.D., Iwamatsu A., Mitchison T.J. (1997a). Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature, 385: 265−269.
  118. Welch M.D., DePace A.H., Verma S., Iwamatsu A., Mitchison T.J. (19 976). The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actinfilament assembly. J Cell Biol, 138:375−384.
  119. M.D., Rosenblatt J., Skoble J., Portnoy D.A., Mitchison T.J. (1998). Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105−108.
  120. Wells A.L., Lin A.W., Chen L.Q., Safer D., Cain S.M., Hasson Π’., Carragher B.O., Milligan R.A., Sweeney H.L. (1999). Myosin VI is an actin-based motor that moves backwards. Nature 401, 505−508.
  121. Wittmann Π’., Bokoch G.M., Waterman-Storer C.M. (2003). Regulation of leading edge microtubule and actin dynamics downstream of Racl. J Cell Biol 161,845−851.
  122. Wittmann Π’., Waterman-Storer C.M. (2001). Cell motility: Can Rho GTPases and microtubules point the way? J Cell Sci. Nov 114: Pt 21 3795−803.
  123. Wu X., Bowers Π’., Rao K., Wei Q., Hammer J.A. (1998). Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function In vivo. J Cell Biol. Dec 28 143: 7 1899−918.
  124. M.P., Harata D., Verde F., Edison M., Toda Π’., Nurse P. (1996). Microtubules mediate mitochondrial distribution in fission yeast. Proc. Natl. Acad. Sci. USA. 93: 11 664−11 668.
  125. M.P. (1999). The machinery of mitochondrial inheritance and behavior. Science. Mar 5- 283 (5407): 1493−7. Review.
  126. Yi M., Weaver D., Hajnoczky G. (2004). Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol. Nov 22- 167(4): 661−72. Epub 2004 Nov 15.
  127. Zeller R., Haramis A.G., Zuniga A., McGuigan C., Dono R., Davidson G., Chabanis S., Gibson T. (1999). Formin defines a large family of morphoregulatory genes and functions in establishment of the polarising region. Cell Tissue Res. 296, 85−93.
  128. S.H. (1998). Actin cytoskeleton: the Arp2/3 complex gets to the point. Curr Biol. Sep 10−8(18):R654−7. Review.
  129. B.S., Getchell M.L., Getchell T.V. (1988). Ultrastructural characterisitics of sustentacular cells in control and odoranttreated olfactory mucosae of the salamander. Anat Rec 221, 769−779.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ