Помощь в учёбе, очень быстро...
Работаем вместе до победы

Эндогенная серия полезных ископаемых

РефератПомощь в написанииУзнать стоимостьмоей работы

Еще большей сенсацией было открытие коренных месторождений алмазов в Австралии в 1979 г. Первое из этих месторождений Аргайл — кимберлитовая трубка, площадью — около 45 га и рядом россыпное месторождение, протягивающееся на 35 км. Это месторождение находится в 100 км от бывшего поселка, теперь города, Кимберли на плато Кимберли. Самое интересное, что в силу исторической случайности или… Читать ещё >

Эндогенная серия полезных ископаемых (реферат, курсовая, диплом, контрольная)

Комплексная цель модуля: изучение генетических моделей эндогенных месторождений, прямо или косвенно связанных с глубинными магматическими очагами — собственно магматических, карбонатитовых, пегматитовых, альбититовых, грейзеновых, скарновых, гидротермальных, колчеданных.

Лекции 4, 5 (4 часа). Магматические месторождения

Общая характеристика, способы дифференциации магмы при образовании магматических месторождений. Модели формирования ликвационных и раннемагматических месторождений. Особенности образования раннемагматических месторождений алмазов. Модели формирования позднемагматических месторождений.

Вопрос 1. Общая характеристика, способы дифференциации магмы. К магматическим месторождениям относятся месторождения, полезные ископаемые которых образуются из магмы. Из нерудных полезных ископаемых — это могут быть магматические горные породы (граниты, габбро и др.), которые при определенных требованиях используются как строительный, облицовочный материал. Кроме того, это могут быть полезные нерудные минералы — прежде всего алмазы, апатит. Из рудных полезных ископаемых магматического генезиса важное значение имеют руды хрома, железа, меди и никеля, платины. Полезные минералы магматического происхождения, как рудные, так и нерудные, образуются в процессе дифференциации (т.е. разделения) магмы ультраосновного, основного или щелочного состава при высокой температуре (1500−700С), высоком давлении и на значительных глубинах (3−5 км и более). Основным источником рудообразующих элементов является, вероятно, вещество верхней мантии. Об этом свидетельствует постоянная пространственная приуроченность как месторождений, так и вмещающих их пород к глубинным разломам.

В ходе становления интрузивных массивов происходила дифференциация вещества двух типов: ликвационная и кристаллизационная.

Дифференциация за счет ликвации магмы. Рудносиликатная магма при охлаждении разделяется на две несмешивающиеся жидкости — силикатную и рудную, кристаллизация которых происходит раздельно и приводит к образованию ликвационных месторождений.

Кристаллизационная дифференциация. В первичной магме не происходит л…

Рудоносные массивы представлены лополитами, пластовыми и сложными залежами, а их размещение контролируется глубинными разломами и синклинальными структурами осадочного чехла платформ. Интрузивы, несущие оруденение расслоены. Более основные разности (пироксениты, перидотиты) слагают нижние части массивов, менее основные (габбро, долериты) — верхние.

Характерной особенностью всех медно-никелевых месторождений является простой состав руд. К главным минералам принадлежат пирротин, пентландит и халькопирит, реже магнетит. Второстепенные и редкие весьма разнообразны — это минералы золота, серебра и металлов платиновой группы, меди (борнит, халькозин), никеля и кобальта (миллерит, никелин) и др. Руды имеют массивную, брекчиевую и вкрапленную текстуры, средне-крупнозернистые структуры.

Раннемагматические месторождения формируются в результате более ранней или одновременной с силикатами кристаллизации рудных минералов, т. е. благодаря обособлению твердой фазы в магматическом расплаве. первичная кристаллизация типична для некоторых рудных минералов, к числу которых относятся хромит, металлы платиновой группы, алмаз, редкометальные (циркон) и редкоземельные (монацит) минералы. Выкристаллизовавшиеся рудные минералы благодаря высокой плотности опускаются в жидком силикатном расплаве на дно магматической камеры. Здесь они перемещаются под действием гравитации и конвекционных токов, образуя обогащенные участки (кумуляты). Эти участки по составу близки к вмещающей породе, отличаются только повышенным содержанием рудных компонентов. Для раннемагматических месторождений, образующихся в ранний период кристаллизации магмы, характерны следующие особенности:

  • 1) постепенные контакты между рудой и вмещающими породами (поэтому их оконтуривание проводится по данным опробования);
  • 2) преимущественно неправильная форма рудных тел — гнезда, линзы, сложные плитообразные залежи, трубообразные тела;
  • 3) преимущественно вкрапленные текстуры и кристаллическизернистые структуры руд.

К этому классу принадлежат зоны вкрапленности и шлирообразные скопления хромитов в перидотитовых и дунитовых расслоенных интрузиях (Бушвельд и Великая Дайка в Южной Африке), рудный прослой (кумулят) минералов платины в Критической зоне расслоенного Бушвельдского массива (месторождение платины Риф Меренского). Раннемагматическими являются также титаномагнетитовые руды в габброидах и графитовые месторождения в щелочных породах (Ботогольское в Восточном Саяне, месторождения Канады, Испании, Австралии). Однако главным представителем промышленных раннемагматических месторождений следует считать коренные месторождения алмазов.

Вопрос 3. Особенности образования раннемагматических месторождений алмазов (Модели образования месторождений алмазов кимберлитового и лампроитового типов).

Наибольшее практическое значение среди раннемагматических месторождений имеют месторождения алмазов. Они связаны с ультраосновными или основными магматическими телами — кимберлитами или лампроитами, приурочены к разломам тектонически активизированных древних платформ. Выделяют несколько главных эпох таких активизаций:

протерозойская (Африканская и Индийская платформы),.

раннепалеозойская (Русская),.

позднепалеозойская и раннемезозойская (Сибирская, Африканская, Австралийская).

Часто процессы активизации на одной и той же платформе протекают в несколько этапов. Например, на Сибирской платформе это девонский, триасовый, юрско-меловой этапы.

Алмазоносные кимберлитовые магматические тела сложены ультраосновной порфировой породой. Кимберлиты очень редко встречаются на нашей планете. Внешне эта порода очень невзрачна и напоминает бетон, в котором сцементированы обломки разнообразных пород. Названы они по названию города Кимберли на юге Африки. Он возник на месте богатейшего россыпного месторождения алмазов недалеко от реки Оранжевой и был назван по фамилии британского министра колоний того времени. Кимберлиты образуются из магм самого глубинного происхождения, которые зарождаются на глубинах 100−200 км. Кимберлитовые магмы являются результатом частичной выплавки мантийного вещества, и обогащены летучими компонентами (СО2, Н2О, N2).

Алмазоносные кимберлиты выполняют крутопадающие трубообразные тела, приуроченные к глубинным расколам, по которым мантийная магма поднимается в верхние части земной коры. Кимберлитовые трубки в сечении составляют от нескольких метров до нескольких сотен и даже тысяч метров. Они прослежены на глубины свыше 1 км. При этом их поперечные сечения резко сокращаются. Например, трубка Мира в Якутии на глубине 600 м уменьшается в 5 раз. Часто трубки на глубине переходят в дайки.

Кимберлит в трубках цементирует эруптивные брекчии (в обломках которых глубинные породы фундамента или мантии). Среди обломков (или ксенолитов) присутствуют родственные породы — оливиновые ультраосновные породы, перидотиты, эклогитовые сланцы, а также чуждые породы — это обломки осадочных, метаморфических, комагматических комплексов, которые захватываются по пути следования магмы. Образование брекчий связывается с неоднократным взрывообразным прорывом расплава и газов по узким магмоподводящим каналам. Поэтому подобные тела иначе называют кимберлитовыми трубками взрыва.

К магматическим минералам кимберлитов относят алмаз, оливин, пироп, хромит, диопсид, ильменит, магнетит, флогопит, апатит, графит. К наиболее алмазоносным относятся кимберлиты с низким содержанием окислов титана, калия, уменьшением концентраций глинозема, но повышенной хромистостью пиропа и диопсида.

На нашей планете известно более 4000 кимберлитовых трубок, но алмазоносными являются не более 1−2%.

Есть множество гипотез образования алмазов в кимберлитовых трубках. Одна из наиболее принятой — раннемагматическое образование алмазов еще в верхней мантии при температурах 1400 -1900С при очень высоких давлениях (5−9 ГПа) при устойчивом подтоке к местам кристаллизации алмазов углерода и его соединений. Затем такая магма, с некоторым количеством выделившихся из неё кристаллов, поднималась вдоль разломов в период тектонической активизации платформ. При этом образовывались кимберлитовые дайки. Когда давление газов в кимберлитовой магме превосходило внешнее давление — происходил газовый прорыв, сопровождавшийся дроблением горных пород. Таким образом, полости заполнялись обломками и несущей их магмой. На сибирских месторождениях такой прорыв мог начинаться с глубины в 1 км и даже 3−4 км.

Другие гипотезы отличаются местом кристаллизации алмазов и источником в магме углерода. Так, алмазы, или их часть могли кристаллизоваться при высоких давлениях непосредственно в самой трубке. Высокие давления возникали в момент прорыва газов. Углерод в кимберлитовой магме мог быть не мантийный, а попадать при ассимиляции кимберлитовой магмой углеродсодержащих пород. Есть точки зрения о происхождении алмазов в связи с пневматолитовыми и другими процессами. Но самой распространенной точкой зрения является гипотеза о раннемагматическом происхождении алмазов в кимберлитовых трубках.

Примером месторождений в России являются, прежде всего, месторождения Якутии, открытые в 50-х годах 20 века. А в последней четверти 20 века было сенсационное обнаружение новой Архангельской алмазоносной провинции. Сечение алмазоносных трубок здесь достигает 300×400м.

Еще большей сенсацией было открытие коренных месторождений алмазов в Австралии в 1979 г. Первое из этих месторождений Аргайл — кимберлитовая трубка, площадью — около 45 га и рядом россыпное месторождение, протягивающееся на 35 км. Это месторождение находится в 100 км от бывшего поселка, теперь города, Кимберли на плато Кимберли. Самое интересное, что в силу исторической случайности или пророчества они были названы задолго до открытия коренных алмазов. Несмотря на редкие находки алмазов в россыпях, этот регион относился к неперспективным, так как в отличие от известных типов алмазоносных провинций, он приурочен не к древним платформам, а к складчатой области. Здесь не были найдены типичные для алмазов кимберлитовые трубки взрыва.

Новый, неизвестный до этого тип алмазов был назван лампроитовым типом. Лампроит — это богатая магнием основная или ультраосновная лампрофировая порода, но в отличие от кимберлита обогащенная также калием. Лампроиты относят к особой группе меланократовых пород — лампрофирам (гипабиссальным интрузивным или субвулканическим породы, которые никогда не образуют обособленных крупных масс — это малые интрузии, некки, трубки взрыва — пространственно всегда связаны с трещинной тектоникой).

Лампроитовые тела, по сравнению с кимберлитовыми трубками, имеют большие размеры. Их формы — трубки в виде бокала шампанского, штоки, силлы и дайки. По сравнению с кимберлитами они бедны глубинными ксенолитами. Лампроитовые расплавы зародились на меньших глубинах по сравнению с кимберлитовыми магмами. Лампроитовые магмы возникали также в результате частичного плавления верхней мантии ультраосновного состава, но несколько отличного от кимберлитовых магм. Для лампроитовых магм характерны низкие концентрации Al, Fe, Ca, Na, В отличие от кимберлитов в лампроитах редки гранаты и ильменит, преобладают хромшпинелиды, а в основной массе имеется амфибол. Лампроиты отличаются повышенным содержанием Rb, Sr, Ba, Ti, Zr, Pb, Th, U, легких редкоземельных элементов. Многие из этих элементов, включая калий, относят к коровым.

Есть точки зрения, что лампроитовые магмы зарождались в глубинных промежуточных магматических очагах, где мантийные ультраосновные магмы насыщались коровыми элементами. Но механизм формирования алмазов в лампроитах сходен с кимберлитовыми телами. То есть это также раннемагматический минерал.

При поверхностном разрушении алмазоносных трубок образуются россыпи алмазов.

Вопрос 4. Позднемагматические месторождения. Месторождения формируются из остаточного рудного расплава, в котором концентрируется основная масса ценных компонентов. В месторождениях данного типа масса первыми кристаллизуются породообразующие силикатные минералы. Остаточный расплав под влиянием тектонических движений, внутренних напряжений и летучих компонентов заполняет в почти затвердевшей интрузии ослабленные зоны (трещины), различные пустоты и промежутки между зернами силикатных минералов. При этом развивается сидеронитовая структура, когда рудный минерал как бы цементирует зерна силикатов.

Позднемагматическим месторождениям присущи следующие черты:

  • 1) преимущественно эпигенетический характер рудных тел, имеющих форму секущих жил, линз, труб;
  • 2) сидеронитовые структуры, преобладание массивных руд над вкрапленными;
  • 3) крупные размеры рудных тел, значительные масштабы месторождений достаточно богатых руд.

К позднемагматическим относятся следующие типы месторождений:

  • 1) хромитовые в серпентинизированных дунитах и перидотитах на Урале (Кемпирсайское);
  • 2) титаномагнетитовые в массивах габбро-перидотит-дунитового состава — на Урале (Качканарское), в Карелии (Пудожгорское), в Норвегии Телнесс), Швеции (Таберг);
  • 3) платиновые в дунитах, перидотитах и пироксенитах — на Урале (Нижне-Тагильское), на Алдане (Кондёрское);
  • 4) апатит-нефелиновые в щелочных породах — на Кольском полуострове (Хибины), в Восточной Сибири (Горячегорское, Кия-Шалтырское).

Промышленное значение особенно высоко для хромита, титаномагнетита и апатита, почти вся мировая добыча которых обеспечивается за счет месторождений позднемагматического генезиса.

Месторождения хромитов приурочены к массивам ультраосновных пород, в той или иной степени дифференцированных по составу и серпентинизированных. Массивы имеют форму лакколитов. Обычно их основание сложено серпентинизированными дунитами, в которых и располагаются рудные тела, представленные жилами, линзами, трубами, гнездами и полосами массивных и вкрапленных руд. Текстуры руд полосчатые, пятнистые, нодулярные, брекчиевые и вкрапленные. Структуры мелкои среднезернистые. Руды сложены хромшпинелидами, магнетитом, тальком, карбонатами, иногда оливином и пироксеном.

Месторождения титаномагнетитов чаще всего генетически связаны с габбро-пироксенит-дунитовыми массивами. Рудные тела, размещение которых контролируется элементами протомагматической тектоники и более поздними разрывными нарушениями, имеют форму жил, линз, гнезд, шлиров. Текстуры руд массивные, полосчатые, пятнистые. Наиболее типична сидеронитовая структура. Основные минералы руд — титаномагнетит, ильменит, рутил. Нерудные минералы представлены пироксеном, амфиболом, основными плагиоклазами, хлоритом, реже биотитом, гранатом.

Апатит-нефелиновые месторождения генетически связаны с массивами щелочных пород. Уникальными среди них считаются месторождения Хибинского щелочного массива на Кольском полуострове. Массив имеет форму лополита конического строения, залегает среди гнейсов и кристаллических сланцев. Он сформировался в результате последовательного внедрения хибинитов, нефелиновых сиенитов и пород ийолит-уртитового ряда. С последними генетически и пространственно связаны наиболее крупные залежи апатитовых руд, создающие в плане кольцо крупных линз. Руды состоят из апатита, нефелина, магнетита, ильменита, сфена, пироксена, лопарита. Они являются комплексными, содержащими промышленные концентрации фосфора, алюминия, титана и редких элементов.

Литература

: [1], с. 59−81; [2] с. 51−66; [3], с. 83−95; [9], с. 345 — 402, [10].

Проектные задания студентам по самостоятельной работе по темам 4,5.

Собрать литературные сведения по формированию ликвационных месторождений.

Вопросы для самоконтроля знаний:

  • 1. Что такое ликвация?
  • 2. С какими формациями магматических пород связаны ликвационные месторождения?
  • 3. Какие формы и внутреннее строение имеют интрузивные тела с ликвационными медно-никелевыми месторождениями?
  • 4. При каких геологических и физико-химических условиях образуются ликвационные медно-никелевые руды?

Изучить особенности формирования расслоенных магматических массивов и связанных с ними раннемагматических полезных ископаемых.

Вопросы для самоконтроля знаний:

  • 1. Какие магматические породы слагают рудоносные расслоенные массивы?;
  • 2. Какова форма и внутренняя структура расслоенных массивов?;
  • 3. Что такое кумуляты и как они формируются?
  • 4. Привести примеры рудных кумулятов в расслоенных магматических массивах.

Подобрать материалы (интернет, публикации) по особенности формирования магматических месторождений алмазов. Назвать характерные особенности условий залегания, строения и состава позднемагматических месторождений.

Вопросы для самоконтроля знаний:

  • 1. С какими магматическими образованиями связаны месторождения алмазов?
  • 2. Что такое кимберлиты — состав, строение кимберлитовых трубок
  • 3. На какой глубине рождаются кимберлитовые магмы?
  • 4. При каких температурах и давлениях образуются алмазы?
  • 5. Где происходит кристаллизация алмазов?
  • 6. Чем отличаются лампроиты от кимберлитов?
  • 7. Какие типы позднемагматических месторождений имеют промышленное значение?
Показать весь текст
Заполнить форму текущей работой