Помощь в учёбе, очень быстро...
Работаем вместе до победы

Цитокины, общая характеристика, свойства, классификация, механизмы действия

РефератПомощь в написанииУзнать стоимостьмоей работы

Понятие «цитокины» достаточно трудно отграничить от понятия «ростовые факторы». Более точному пониманию понятия «интерлейкин» (фактически совпадающего с понятием «цитокин») способствовало введение Номенклатурным комитетом Международного союза иммунологических обществ в 1992 г. критериев, регламентирующих присвоение новым интерлейкинам очередного номера: для этого требуется молекулярное… Читать ещё >

Цитокины, общая характеристика, свойства, классификация, механизмы действия (реферат, курсовая, диплом, контрольная)

Общая характеристика цитокинов. Цитокины — самая многочисленная, наиболее важная и универсальная в функциональном отношении группа гуморальных факторов системы иммунитета, в равной степени важная для реализации врожденного и адаптивного иммунитета. Цитокины участвуют во многих процессах; их нельзя назвать факторами, относящимися исключительно к иммунной системе, поскольку они играют важную роль в кроветворении, тканевом гомеостазе, межсистемной передаче сигналов.

Цитокины можно определить, как белковые или полипептидные факторы, лишенные специфичности в отношении антигенов, продуцируемые преимущественно активированными клетками кроветворной и иммунной систем и опосредующие межклеточные взаимодействия при кроветворении, воспалении, иммунных процессах и межсистемных коммуникациях.

Цитокины различаются по строению, биологической активности и другим свойствам. Однако наряду с различиями цитокины обладают общими свойствами, характерными для данного класса биорегуляторных молекул:

  • · Цитокины — это, как правило, гликозилированные полипептиды средней молекулярной массы (менее 30 кD).
  • · Цитокины вырабатываются клетками иммунной системы и другими клетками (например, эндотелием, фибробластами и др.) в ответ на активирующий стимул (патогенассоциированные молекулярные структуры, антигены, цитокины и др.) и участвуют в реакциях врожденного и адаптивного иммунитета, регулируя их силу и продолжительность. Некоторые цитокины синтезируются конститутивно.
  • · Секреция цитокинов — короткий по времени процесс. Цитокины не сохраняются как преформированные молекулы, а их синтез начинается всегда с транскрипции генов. Клетки вырабатывают цитокины в низкой концентрации (пикограммы на миллилитр).
  • · В большинстве случаев цитокины продуцируются и действуют на клетки-мишени, находящиеся в непосредственной близости (короткодистантное действие). Основное место действия цитокинов — межклеточный синапс.
  • · Избыточность системы цитокинов проявляется в том, что каждый тип клеток способен продуцировать несколько цитокинов, а каждый цитокин может секретироваться различными клетками.
  • · Для всех цитокинов характерна плейотропность, или полифункциональность действия. Так, проявление признаков воспаления обусловлено влиянием ИЛ-1, ФНОб, ИЛ-6, ИЛ-8. Дублирование функций обеспечивает надежность работы системы цитокинов.
  • · Действие цитокинов на клетки-мишени опосредуется высокоспецифичными высокоаффинными мембранными рецепторами, представляющими собой трансмембранные гликопротеины, состоящие, как правило, более чем из одной субъединицы. Внеклеточная часть рецепторов ответственна за связывание цитокина. Существуют рецепторы, устраняющие избыток цитокинов в патологическом очаге. Это так называемые рецепторы-ловушки. Растворимые рецепторы представляют собой внеклеточный домен мембранного рецептора, отделенный с помощью фермента. Растворимые рецепторы способны нейтрализовывать цитокины, участвовать в транспорте их в очаг воспаления и в выведении из организма.
  • · Цитокины работают по принципу сети. Они могут действовать согласованно. Многие функции, приписываемые первоначально одному цитокину, как оказалось, обусловлены согласованным действием нескольких цитокинов (синергизм действия). Примерами синергического взаимодействия цитокинов являются стимуляция воспалительных реакций (ИЛ-1, ИЛ-6 и ФНОа), а также синтеза IgE (ИЛ-4, ИЛ-5 и ИЛ-13).

Классификация цитокинов. Существует несколько классификаций цитокинов, основанных на разных принципах. Традиционная классификация отражает историю изучения цитокинов. Идея о том, что цитокины играют роль факторов, опосредующих функциональную активность клеток иммунной системы, возникла после открытия гетерогенности популяции лимфоцитов и осмысления факта, что только некоторые из них — В-лимфоциты — ответственны за образование антител. Пытаясь выяснить, не играют ли гуморальные продукты Т-клеток роль в реализации их функций, начали изучать биологическую активность факторов, содержащихся в культуральной среде Т-лимфоцитов (особенно активированных). Решение этой задачи, а также возникшего вскоре вопроса о гуморальных продуктах моноцитов/макрофагов, привело к открытию цитокинов. Вначале их называли лимфокинами и монокинами, в зависимости от того, какие клетки их продуцировали — Т-лимфоциты или моноциты. Вскоре выяснилось, что четко разграничить лимфокины и монокины нельзя, и был введен общий термин — «цитокины». В 1979 г. На симпозиуме по лимфокинам в Интерлакене (Швейцария) установили правила идентификации факторов этой группы, которым присвоили групповое название «интерлейкины» (IL). Тогда же свои названия получили два первых члена этой группы молекул — IL-1 и IL-2. С тех пор все новые цитокины (кроме хемокинов — см. далее) получали обозначение IL и порядковый номер.

Традиционно, в соответствии с биологическими эффектами, принято выделять следующие группы цитокинов:

  • · Интерлейкины (ИЛ-1-ИЛ-33) — секреторные регуляторные белки иммунной системы, обеспечивающие медиаторные взаимодействия в иммунной системе и связь ее с другими системами организма. Интерлейкины разделяют по функциональной активности на прои противовоспалительные цитокины, ростовые факторы лимфоцитов, регуляторные цитокины и др.
  • · Интерфероны (ИФН) — цитокины, участвующие в противовирусной защите, с выраженным иммунорегуляторным действием (ИФН типа 1 — ИФН б, в, д, к, ?, ф; группы ИФНподобных цитокинов — ИЛ-28А, ИЛ-28 В и ИЛ-29; ИФН типа 2 — ИФНг).
  • · Факторы некроза опухоли (ФНО) — цитокины с цитотоксическим и регуляторным действиями: ФНОа и лимфотоксины (ЛТ).
  • · Факторы роста гемопоэтических клеток — фактор роста стволовых клеток (Kit-ligand), ИЛ-3, ИЛ-7, ИЛ-11, эритропоэтин, тробопоэтин, гранулоцитарно-макрофагальный колониестимулирующий фактор — ГМ-КСФ, гранулоцитарный КСФ — Г-КСФ, макрофагальный КСФ — М-КСФ).
  • · Хемокины — С, СС, СХС (ИЛ-8), СХ3С — регуляторы хемотаксиса различных типов клеток.
  • · Факторы роста нелимфоидных клеток — регуляторы роста, дифференцировки и функциональной активности клеток различной тканевой принадлежности (фактор роста фибробластов — ФРФ, фактор роста эндотелиальных клеток, эпидермальный фактор роста — ЭФР эпидермиса) и трансформирующие факторы роста (ТФРв, ТФРб).

Понятие «цитокины» достаточно трудно отграничить от понятия «ростовые факторы». Более точному пониманию понятия «интерлейкин» (фактически совпадающего с понятием «цитокин») способствовало введение Номенклатурным комитетом Международного союза иммунологических обществ в 1992 г. критериев, регламентирующих присвоение новым интерлейкинам очередного номера: для этого требуется молекулярное клонирование, секвенирование и экспрессия гена интерлейкина, удостоверяющие уникальность его нуклеотидной последовательности, а также получение нейтрализующих моноклональных антител. Для установления отличий между интерлейкинами и сходными факторами важны данные о выработке этой молекулы клетками иммунной системы (лейкоцитами) и доказательство ее роли в регуляции иммунных процессов. Таким образом, подчеркивается обязательное участие интерлейкинов в функционировании иммунной системы. Если считать, что интерлейкинами называют все открытые после 1979 г. цитокины (кроме хемокинов) и, следовательно, эти понятия фактически тождественны, то можно считать, что такие ростовые факторы, как эпидермальный, фибробластный, тромбоцитарный не являются цитокинами, а из трансформирующих факторов роста (TGF) по признаку функциональной причастности к иммунной системе лишь TGFв может быть отнесен к цитокинам. Однако этот вопрос в международных научных документах строго не регламентирован.

Четкая структурная классификация цитокинов отсутствует. Тем не менее по особенностям их вторичной структуры выделяют несколько групп:

  • · Молекулы с преобладанием б-спирализованных тяжей. Они содержат 4 б-спиральных домена (2 пары б-спиралей, расположенных под углом друг к другу). Выделяют короткий и длинный (по протяженности б-спиралей) варианты. К первому относят большинство цитокинов-гемопоэтинов — IL-2, IL-3, IL-4, IL-5, IL-7, IL-9, IL-13, IL-21, IL-27, IFNг и M-CSF; ко второму — IL-6, IL-10, IL-11 и GM-CSF.
  • · Молекулы с преобладанием в-складчатых структур. К ним относят цитокины семейства фактора некроза опухоли и лимфотоксины («в-трилистник»), семейство IL-1 (в-сендвич), семейство TGF (цитокиновый узел).
  • · Короткая б/в-цепь (в-пласт с прилежащими б-спиралями) — хемокины.
  • · Смешанные мозаичные структуры, например, IL-12.

В последние годы в связи с идентификацией большого числа новых цитокинов, иногда родственных ранее описанным, и образующих с ними единые группы, стали широко использовать классификацию, основанную на принадлежности цитокинов к структурно-функциональным семействам.

Еще одна классификация цитокинов основана на структурных особенностях их рецепторов. Как известно, через рецепторы и осуществляется действие цитокинов. По особенностям структуры полипептидных цепей выделяют несколько групп цитокиновых рецепторов. Приводимую классификацию применяют именно к полипептидным цепям. В состав одного рецептора могут входить цепи, относящиеся к разным семействам. Важность этой классификации обусловлена тем, что для разных типов полипептидных цепей рецепторов характерен определенный сигнальный аппарат, состоящий из тирозинкиназ, адапторных белков и транскрипционных факторов.

Наиболее многочисленный тип — цитокиновые гемопоэтиновые рецепторы. Для их внеклеточных доменов характерно наличие 4 остатков цистеина и присутствие последовательности, содержащей остатки триптофана и серина — WSXWS. Домены семейства фибронектина, содержащие 4 остатка цистеина, составляют основу рецепторов интерферонов. Характерная черта доменов, образующих внеклеточную часть рецепторов семейства TNFR, — высокое содержание остатков цистеина («богатые цистеином домены»). Эти домены содержат 6 остатков цистеина. Группа рецепторов, внеклеточные домены которых относят к суперсемейству иммуноглобулинов, включает две группы — рецепторы для IL-1 и несколько рецепторов, цитоплазматическая часть которых обладает тирозинкиназной активностью. Тирозинкиназная активность свойственна цитоплазматической части практически всех ростовых факторов (EGF, PDGF, FGF и т. д.). Наконец, особую группу образуют родопсиноподобные рецепторы хемокинов, 7-кратно пронизывающие мембрану. Однако не все полипептидные цепи рецепторов соответствуют этой классификации. Так, ни б-, ни в-цепи рецептора IL-2 не относят к семействам, представленным в таблице 3 (б-цепь содержит домены контроля комплемента). В основные группы также не входят рецепторы IL-12, общая в-цепь рецепторов IL-3, IL-5, GMCSF и некоторые другие полипептидные цепи рецепторов.

Практически все цитокиновые рецепторы (кроме иммуноглобулиноподобных, обладающих киназной активностью) состоят из нескольких полипептидных цепей. Нередко разные рецепторы содержат общие цепи. Наиболее яркий пример — г-цепь, общая для рецепторов IL-2, IL-4, IL-7, IL-9, IL-15, IL-21, обозначаемая как г©. Дефекты этой цепи играют важную роль в развитии иммунодефицитной патологии. Общая в-цепь входит в состав рецепторов GM-CSF, IL-3 и IL-5. Общие цепи имеют IL-7 и TSLP (б-цепь), а также IL-2 и IL-15, IL-4 и IL-13 (в обоих случаях — в-цепь).

Как правило, рецепторы представлены на поверхности покоящихся клеток в небольшом количестве и нередко в неполном субъединичном составе. Обычно в таком состоянии рецепторы обеспечивают адекватный ответ только при действии очень высоких доз цитокинов. При активации клеток число мембранных рецепторов цитокинов увеличивается на порядки, более того, эти рецепторы «доукомплектовываются» полипептидными цепями, как это было показано выше на примере рецептора для IL-2. Под влиянием активации число молекул этого рецептора значительно возрастает и в их составе появляется б-цепь, ген которой экспрессируется в процессе активации. Благодаря таким изменениям лимфоцит приобретает способность пролиферировать в ответ на действие IL-2.

Механизмы действия цитокинов Внутриклеточная передача сигнала при действии цитокинов. В состав С-концевой цитоплазматической части некоторых цитокиновых рецепторов (относящихся к суперсемейству иммуноглобулинов) входит домен, обладающий активностью тирозинкиназы. Все эти киназы относятся к разряду протоонкогенов, т. е. при изменении генетического окружения становятся онкогенами, обеспечивая бесконтрольную пролиферацию клетки. Эти киназы имеют собственное название. Так, киназу, входящую в состав рецептора M-CSF, обозначают как c-Fms; киназу SCF — c-Kit; известна киназа гемопоэтического фактора — Flt-3 (Fms-like thyrosine kinase 3). Рецепторы, обладающие собственной киназной активностью, запускают передачу сигнала непосредственно, поскольку их киназа обусловливает фосфорилирование как самого рецептора, так и прилежащих к нему молекул.

Наиболее типичный вариант проявления активности характерен для рецепторов гемопоэтинового (цитокинового) типа, содержащих 4 б-спиральных домена. К цитоплазматической части таких рецепторов примыкают молекулы тирозинкиназ группы Jak-киназ (Janus-associated family kinases). В цитоплазматической части цепей рецепторов есть специальные участки для связывания этих киназ (проксимальный и дистальный боксы). Всего известно 5 Janus-киназ — Jak1, Jak2, Jak3, Tyk1 и Tyk2. Они в различных комбинациях кооперируются с разными цитокиновыми рецепторами, обладая сродством к конкретным полипептидным цепям. Так, киназа Jak3 взаимодействует с г (с)-цепью; при дефектах гена, кодирующего эту киназу, развивается комплекс нарушений в иммунной системе сходный с наблюдаемым при дефектах гена полипептидной цепи рецептора.

При взаимодействии цитокина с рецептором происходит генерация сигнала, приводящего к формированию транскрипционных факторов и активации генов, определяющих реакцию клетки на действие цитокина. Одновременно происходит поглощение клеткой комплекса цитокина с рецептором и расщепление его в эндосомах. Сама по себе интернализация этого комплекса к передаче сигнала отношения не имеет. Она необходима для утилизации цитокина, предотвращающей его накопление в месте активации клеток-продуцентов. Большую роль в регуляции этих процессов играет сродство рецептора к цитокину. Только при достаточно высокой степени сродства (порядка 10−10 М) генерируется сигнал и происходит поглощение комплекса цитокина с рецептором.

Индукция сигнала начинается с аутокаталитического фосфорилирования связанных с рецептором Jak-киназ, запускаемого конформационными измененями рецептора, которые происходят в результате его взаимодействия с цитокином. Активированные Jak-киназы фосфорилируют цитоплазматические факторы STAT (Signal transducers and activators of transcription), присутствующие в цитоплазме в неактивной мономерной форме.

Фосфорилированные мономеры приобретают сродство друг к другу и димеризуются. Димеры STAT перемещаются в ядро и выступают в качестве транскрипционных факторов, связываясь с промоторными участками генов-мишеней. При действии провоспалительных цитокинов активируются гены молекул адгезии, самих цитокинов, ферментов окислительного метаболизма и др. При действии факторов, вызывающих пролиферацию клеток, происходит индукция генов, ответственных за прохождение клеточного цикла и т. д.

Jak/STAT-опосредованный путь передачи сигналов от цитокинов — основной, но не единственный. С рецептором связаны не только Jak-киназы, но и киназы семейства Src, а также PI3K. Их активация запускает дополнительные сигнальные пути, приводящие к активации АР-1 и других транскрипционных факторов. Активируемые транскрипционные факторы участвуют не только в передаче сигнала от цитокинов, но и в других сигнальных путях.

Существуют сигнальные пути, участвующие в контроле биологических эффектов цитокинов. Такие пути связаны с факторами группы SOCS (Suppressors of cytokine signaling), содержащей фактор SIC и 7 факторов SOCS (SOCS-1 — SOCS-7). Включение этих факторов происходит при активации цитокиновых сигнальных путей, что приводит к образованию петли отрицательной обратной связи. Факторы SOCS содержат домен SH2, участвующий в реализации одного из следующих процессов:

  • · прямого ингибирования Jak-киназ в результате связывания с ними и индукции их дефосфорилирования;
  • · конкуренции с факторами STAT за связывание с цитоплазматической частью цитокиновых рецепторов;
  • · ускорения деградации сигнальных белков по убиквитиновому пути.

Выключение генов SOCS приводит к нарушению баланса цитокинов с преобладанием синтеза IFNг и сопутствующей этому лимфопенией и усилением апоптоза.

Особенности функционирования системы цитокинов. Цитокиновая сеть.

Из сказанного выше следует, что при активации клеток чужеродными агентами (носителями PAMP при активации миелоидных клеток и антигенами при активации лимфоцитов) индуцируется (или усиливается до функционально значимого уровня) как синтез цитокинов, так и экспрессия их рецепторов. Это создает условия для локального проявления эффектов цитокинов. Действительно, если один и тот же фактор активирует и клетки-продуценты цитокинов, и клетки-мишени, создаются оптимальные условия для локального проявления функций этих факторов.

Обычно цитокины связываются, подвергаются интернализации и расщеплению клеткой-мишенью, практически не диффундируя от секретируемых клеток-продуцентов. Нередко цитокины бывают трансмембранными молекулами (например, IL-1б и TNFб) или представляются клеткам-мишеням в связанном с пептидогликанами межклеточного матрикса состоянии (IL-7 и ряд других цитокинов), что также способствует локальному характеру их действия.

В норме цитокины если и содержатся в сыворотке крови, то в концентрациях, недостаточных для проявления их биологических эффектов. Далее на примере воспаления мы рассмотрим ситуации, в которых цитокины оказывают системное действие. Однако эти случаи всегда являются проявлением патологии, иногда очень серьезной. По-видимому, локальный характер действия цитокинов имеет для нормального функционирования организма принципиальное значение. Об этом свидетельствует высокая скорость их выведения через почки. Обычно кривая выведения цитокинов состоит из двух компонент — быстрой и медленной. Т½ быстрой компоненты для IL-1 В составляет 1,9 мин, для IL-2 — 5 мин (Т½ медленной составляет 30−120 мин). Свойство близкодействия отличает цитокины от гормонов — дальнодействующих факторов (поэтому утверждение «цитокины — это гормоны иммунной системы» принципиально неверно).

Для системы цитокинов характерна избыточность. Это означает, что практически любую выполняемую конкретным цитокином функцию дублируют другие цитокины. Именно поэтому выключение отдельного цитокина, например, вследствие мутации его гена, не вызывает фатальных последствий для организма. Действительно, мутация гена конкретного цитокина практически никогда не приводит к развитию иммунодефицита.

Например, IL-2 известен как фактор роста Т-клеток; при искусственном удалении (путем генетического нокаута) кодирующего его гена существенного нарушения пролиферации Т-клеток не выявляют, однако регистрируют изменения, обусловленные дефицитом регуляторных Т-клеток. Это связано с тем, что пролиферацию Т-клеток в отсутствие IL-2 обеспечивают IL-15, IL-7, IL-4, а также комбинации нескольких цитокинов (IL-1 В, IL-6, IL-12, TNFб). Точно так же дефект гена IL4 не приводит к значительным нарушениям в системе В-клеток и переключении изотипов иммуноглобулинов, поскольку сходные эффекты проявляет IL-13. В то же время некоторые цитокины не имеют функциональных аналогов. Наиболее известный пример незаменимого цитокина — IL-7, лимфопоэтическое действие которого, по крайней мере на определенных этапах Т-лимфопоэза уникально, в связи с чем дефекты генов самого IL-7 или его рецептора приводят к развитию тяжелой комбинированной иммунной недостаточности (ТКИН).

Помимо избыточности, в системе цитокинов проявляется и другая закономерность: цитокины плейотропны (действуют на различные мишени) и полифункциональны (вызывают различные эффекты). Так, число клеток-мишеней IL-1 В и TNFб с трудом поддается учету. Столь же разнообразны вызываемые ими эффекты, участвующие в формировании комплексных реакций: воспаления, некоторых этапов гемопоэза, нейротропных и других реакций.

Еще одна важная черта, свойственная системе цитокинов, — взаимосвязь и взаимодействие цитокинов. С одной стороны, это взаимодействие заключается в том, что одни цитокины, действуя на фоне индукторов или самостоятельно, вызывают или усиливают (реже подавляют) выработку других цитокинов. Наиболее яркие примеры усиливающего действия — активность провоспалительных цитокинов IL-1 В и TNFб, усиливающих собственную выработку и образование других провоспалительных цитокинов (IL-6, IL-8, других хемокинов). IL-12 и IL-18 являются индукторами IFNг. TGFв и IL-10, наоборот, подавляют выработку различных цитокинов. IL-6 проявляет ингибирующую активность в отношении провоспалительных цитокинов, а IFNг и IL-4 взаимно подавляют выработку друг друга и цитокинов соответствующих (Th1 и Th2) групп. Взаимодействие между цитокинами проявляется и на функциональном уровне: одни цитокины усиливают или подавляют действие других цитокинов. Описаны синергизм (например, внутри группы провоспалительных цитокинов) и антагонизм цитокинов (например, между Th1- и Th2-цитокинами).

Cуммируя полученные данные, можно заключить, что ни один из цитокинов не существует и не проявляет своей активности изолированно — на всех уровнях цитокины испытывают влияние других представителей этого класса молекул. Результат такого многообразного взаимодействия иногда может быть неожиданным. Так, при использовании в лечебных целях высоких доз IL-2 возникают опасные для жизни побочные эффекты, некоторые из которых (например, шок, подобный токсическому, без бактериемии) удается снять антителами, направленными не против IL-2, а против TNFб.

Наличие множественных перекрестных взаимодействий в системе цитокинов послужило причиной создания понятия «цитокиновая сеть», достаточно четко отражающего суть явления.

Для цитокиновой сети характерны следующие свойства:

  • · индуцибельность синтеза цитокинов и экспрессии их рецепторов;
  • · локальность действия, обусловленная скоординированной экспрессией цитокинов и их рецепторов под влиянием одного и того же индуктора;
  • · избыточность, объясняющаяся перекрыванием спектров действия разных цитокинов;
  • · взаимосвязи и взаимодействие, проявляющиеся на уровне синтеза и реализации функций цитокинов.

Цитокиновая регуляция функций клеток-мишеней осуществляется с помощью аутокринного, паракринного или эндокринного механизмов. Некоторые цитокины (ИЛ-1, ИЛ-6, ФНОб и др.) способны участвовать в реализации всех перечисленных механизмов.

Ответ клетки на влияние цитокина зависит от нескольких факторов:

  • · от типа клеток и их исходной функциональной активности;
  • · от локальной концентрации цитокина;
  • · от присутствия других медиаторных молекул.

Таким образом, клетки-продуценты, цитокины и специфические для них рецепторы на клетках мишенях формируют единую медиаторную сеть. Именно набор регуляторных пептидов, а не индивидуальные цитокины, определяют окончательный ответ клетки. В настоящее время система цитокинов рассматривается как универсальная система регуляции на уровне целостного организма, обеспечивающая развитие защитных реакций (например, при инфекции).

В последние годы сложилось представление о системе цитокинов, объединяющей:

  • 1) клетки-продуценты;
  • 2) растворимые цитокины и их антагонисты;
  • 3) клетки-мишени и их рецепторы.

Нарушения различных компонентов системы цитокинов приводят к развитию многочисленных патологических процессов, а потому выявление дефектов в этой регуляторной системе имеет важное значение для правильной постановки диагноза и назначения адекватной терапии.

Основные компоненты системы цитокинов.

Клетки-продуценты цитокинов.

I. Основную группу клеток-продуцентов цитокинов в адаптивном иммунном ответе представляют лимфоциты. Покоящиеся клетки не секретируют цитокины. При распознавании антигена и при участии рецепторных взаимодействий (CD28-CD80/86 для Т-лимфоцитов и СD40-CD40L для В-лимфоцитов) происходит активация клеток, приводящая к транскрипции генов цитокинов, трансляции и секреции гликозилированных пептидов в межклеточное пространство.

CD4 Т-хелперы представлены субпопуляциями: Тh0, Тh1, Тh2, Тh17, Tfh, которые различаются между собой спектром секретируемых цитокинов в ответ на различные антигены.

Тh0 вырабатывают широкий спектр цитокинов в очень низких концентрациях.

Направление дифференцировки Th0 определяет развитие двух форм иммунного ответа с преобладанием гуморальных или клеточных механизмов.

Природа антигена, его концентрация, локализация в клетке, тип антигенпрезентирующих клеток и определенный набор цитокинов регулируют направление дифференцировки Тh0.

Дендритные клетки после захвата и процессинга антигена представляют антигенные пептиды Th0 клеткам и вырабатывают цитокины, регулирующие направление их дифференцировки в эффекторные клетки. ИЛ-12 индуцирует синтез ИФНг Т-лимфоцитами и ]ЧГК. ИФНу обеспечивает дифференцировку ТЫ1, которые начинают секретировать цитокины (ИЛ-2, ИФНу, ИЛ-3, ФНОа, лимфотоксины), регулирующие развитие реакций на внутриклеточные патогены (гиперчувствительности замедленного типа (ГЗТ) и различные типы клеточной цитотоксичности).

ИЛ-4 обеспечивает дифференцировку Тh0 в Тh2. Активированные Тh2 вырабатывают цитокины (ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-13 и др.), определяющие пролиферацию В-лимфоцитов, их дальнейшую дифференцировку в плазматические клетки и развитие реакций антителогенеза, преимущественно на внеклеточные патогены.

ИФНг негативно регулирует функцию Тh2-клеток и, наоборот, ИЛ-4, ИЛ-10, секретируемые Тh2, угнетают функцию Тh1. Молекулярный механизм этой регуляции связан с транскрипционными факторами. Экспрессия Т-bet и STAT4, детерминированная ИФНу, направляет дифференцировку Т-клеток по пути Тh1 и супрессирует развитие Тh2. ИЛ-4 индуцирует экспрессию GATA-3 и STAT6, что соответственно обеспечивает превращение наивных Тh0 в Тh2-клетки.

В последние годы описана особая субпопуляция Т-клеток хелперов (Тh17), продуцирующих ИЛ-17. Члены семейства ИЛ-17 могут экспрессироваться активированными клетками памяти (CD4CD45RO), у5Т-клетками, NKT клетками, нейтрофилами, моноцитами под влиянием ИЛ-23, ИЛ-6, ТФРв, вырабатываемых макрофагами и дендритными клетками. Основным дифференцировочным фактором у человека является ROR-C, у мышей — ROR-гl. Показана кардинальная роль ИЛ-17 в развитии хронического воспаления и аутоиммунной патологии.

Кроме того, Т-лимфоциты в тимусе могут дифференцироваться в естественные клетки-регуляторы (Treg), экспрессирующие поверхностные маркеры CD4+ CD25+ и транскрипционный фактор FOXP3. Эти клетки способны подавлять иммунный ответ, опосредуемый Тh1 и Тh2-клетками, путем прямого межклеточного контакта и синтеза ТФРв и ИЛ-10.

Т-цитотоксические клетки (CD8+), естественные киллеры — слабые продуценты цитокинов, таких, как интерфероны, ФНОа и лимфотоксины.

Избыточная активация одной из субпопуляций Тh может определить развитие одного из вариантов иммунного ответа. Хроническая несбалансированность активации Тh способна привести к формированию иммунопатологических состояний, связанных с проявлениями аллергии, аутоиммунной патологии, хронических воспалительных процессов и др.

II. В системе врожденного иммунитета основными продуцентами цитокинов являются клетки миелоидного ряда. С помощью Toll-подобных рецепторов (TLRs) они распознают сходные молекулярные структуры различных патогенов, так называемые патогенассоциированные молекулярные патерны (РАМП), например, липополисахарид (ЛПС) грамотрицательных бактерий, липотейхоевые кислоты, пептидогликаны грамположительных микроорганизмов, флагеллин, ДНК, богатую неметилированными СрG повторами, и др. В результате такого взаимодействия с TLR запускается внутриклеточный каскад передачи сигнала, приводящий к экспрессии генов двух основных групп цитокинов: провоспалительных и ИФН типа 1. Главным образом эти цитокины (ИЛ-1, -6, -8, -12, ФНОа, ГМ-КСФ, ИФН, хемокины и др.) индуцируют развитие воспаления и участвуют в защите организма от бактериальных и вирусных инфекций.

III. Клетки, не относящиеся к иммунной системе (клетки соединительной ткани, эпителия, эндотелия), конститутивно секретируют аутокринные факторы роста (ФРФ, ЕФР, ТФРр и др.). и цитокины, поддерживающие пролиферацию гемопоэтических клеток.

Избыточная экспрессия цитокинов небезопасна для организма и может привести к развитию чрезмерной воспалительной реакции, острофазового ответа. В регуляции выработки провоспалительных цитокинов принимают участие различные ингибиторы. Так, описан ряд веществ, которые неспецифически связывают цитокин ИЛ-1 и препятствуют проявлению его биологического действия (а2-макроглобулин, С3-компонент комплемента, уромодулин). Специфическими ингибиторами ИЛ-1 могут быть растворимые рецепторы-ловушки, антитела и рецепторный антагонист ИЛ-1 (ИЛ-1RA). При развитии воспаления происходит усиление экспрессии гена ИЛ-1RA. Но и в норме этот антагонист присутствует в крови в высокой концентрации (до 1 нг/мл и более), блокируя действие эндогенного ИЛ-1.

Клетки-мишени Действие цитокинов на клетки-мишени опосредуются через специфические рецепторы, связывающие цитокины с очень высокой аффинностью, причем отдельные цитокины могут использовать общие субъединицы рецепторов. Каждый цитокин связывается со своим специфическим рецептором.

Рецепторы цитокинов представляют собой трансмембранные белки и делятся на 5 основных типов. Наиболее распространен так называемый гемопоэтиновый тип рецепторов, имеющих два экстраклеточных домена, один из которых содержит общую последовательность аминокислотных остатков двух повторов триптофана и серина, разделенных любой аминокислотой (WSXWS-мотив). Второй тип рецепторов может иметь два внеклеточных домена с большим количеством консервативных цистеинов. Это рецепторы семейства ИЛ-10 и ИФН. Tретий тип представлен рецепторами цитокинов, относящихся к группе ФНО. Четвертый тип рецепторов цитокинов принадлежит к суперсемейству иммуноглобулиновых рецепторов, имеющих внеклеточные домены, напоминающие по строению домены молекул иммуноглобулинов. Пятый тип рецепторов, связывающих молекулы семейства хемокинов, представлен трансмембранными белками, пересекающими клеточную мембрану в 7 местах. Рецепторы цитокинов могут существовать в растворимой форме, сохраняя способность связывать лиганды.

Цитокины способны влиять на пролиферацию, дифференцировку, функциональную активность и апоптоз клеток-мишеней. Проявление биологической активности цитокинов в клетках-мишенях зависит от участия различных внутриклеточных систем в передаче сигнала от рецептора, что связано с особенностями клеток-мишеней. Сигнал к апоптозу проводится в том числе с помощью специфического участка семейства рецепторов ФНО, так называемого домена «смерти». Дифференцировочный и активирующий сигналы передаются посредством внутриклеточных белков Jak-STAT — сигнальных трансдукторов и активаторов транскрипции. G-белки участвуют в передаче сигнала от хемокинов, что приводит к усилению миграции и адгезии клеток.

Последний компонент — цитокины и их антагонисты, были описаны выше.

Показать весь текст
Заполнить форму текущей работой