Помощь в учёбе, очень быстро...
Работаем вместе до победы

Влияние генетического нокаута МАО на метаболизм серотонина и стрессорную реактивность мышей

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Серотониновая система фронтальной коры, где сохранено 54% окислительного дезаминирования серотонина, более устойчива по сравнению с другими структурами к отсутствию МАО А. Теоретическая и научно-практическая ценность работы.10. Положения, выносимые на защиту.11 V. Цели и задачи исследования.9. Структура и объем работы.12. Научная новизна работы.10. Апробация результатов.12. Благодарности.12… Читать ещё >

Содержание

  • 10. СОДЕРЖАНИЕ
  • СПИСОК СОКРАЩЕНИЙ

Влияние генетического нокаута МАО на метаболизм серотонина и стрессорную реактивность мышей (реферат, курсовая, диплом, контрольная)

Цели и задачи исследования.9.

Научная новизна работы.10.

Теоретическая и научно-практическая ценность работы.10.

Положения, выносимые на защиту.11 V.

Апробация результатов.12.

Публикации.12.

Структура и объем работы.12.

Благодарности.12.

ВЫВОДЫ.

• 1. Генетический нокаут МАО, А ведет к повышению уровня серотонина и снижению уровня его основного метаболита — 5-ГИУК в гипоталамусе, среднем мозге, миндалине, гиппокампе и стриатуме, т. е. во всех исследованных структурах головного мозга, за исключением фронтальной коры.

2. Коэффициент катаболизма серотонина (5-ГИУК/серотонин) у мышей с отсутствием МАО, А (линии Tg8) снижен во всех исследованных структурах, и его величина в среднем составляет 45% от значений контрольной линии, что говорит о частичном сохранении окислительного дезаминирования серотонина у МАО А-нокаутных мышей.

3. Серотониновая система фронтальной коры, где сохранено 54% окислительного дезаминирования серотонина, более устойчива по сравнению с другими структурами к отсутствию МАО А.

4. Активность триптофангидроксилазы — фермента, лимитирующего скорость биосинтеза серотонина, у взрослых мышей линии Tg8 повышена во фронтальной коре, миндалине и гиппокампе, и существенно не изменена в среднем мозге, гипоталамусе и стриатуме.

5. Активность триптофангидроксилазы в стволе мозга у мышей с генетическим нокаутом МАО, А увеличена также в течение всего периода раннего постнатального онтогенеза. Максимальное повышение выявлено у новорожденных, а далее в процессе постнатального развития эта разница в активности триптофангидроксилазы между линией с нокаутом МАО, А и контрольной линией уменьшается.

6. Генетический нокаут МАО, А ведет к понижению стрессорной реактивности. Реакция гипоталамо-гипофизарно-надпочечниковой системы мышей с генетическим нокаутом МАО, А снижена на острые виды стресса — холодовой, эмоциональный и водную депривацию, и снижена на хронический непредсказуемый стресс.

Сниженная стрессорная реактивность МАО А-нокаутных мышей обусловлена центральными механизмами регуляции гипоталамо-гипофизарно-надпочечниковой системы, поскольку разницы в чувствительности надпочечников к адренокортикотропному гормону между мышами контрольной линии и линии Tg8 не выявлено.

Показать весь текст

Список литературы

  1. Е.А. Влияние генетического нокаута МАО, А на устойчивость мышей к этанолу: участие 5-НТ1А и 5-НТЗ рецепторов. // Автореф. дисс.. канд. биол. наук, Новосибирск, 2002, 16с.
  2. Н.Н., Осадчук А. В. Влияние генотипа на содержание серотонина и 5-гидроксииндолуксусной кислоты в различных отделах головного мозга мышей. // Генетика, 1982, Т.18, (9), С. 1476−1480.
  3. А.В., Воронова И. П., Жанаева Е. Ю. Чувствительный флюориметрический метод определения активности триптофангидроксилазы в структурах мозга. // Вопр. мед. химии, 1988, Т.34 (2), С.120−123.
  4. А.В., Попова Н. К. Генетический контроль активности триптофангидроксилазы в головном мозге мышей. // Генетика, 1983, Т. 19 (5), С.784−788.
  5. И.И. Катаболизм серотонина мозга и реактивность гипофизарно-надпочечниковой системы при разных видах стресса. // Изв. Сиб. Отд. АН СССР, 1980, Вып.2, С.131−135.
  6. И.И. Серотонин и реакция коры надпочечников на охлаждение в раннем постнатальном онтогенезе крыс. // Изв. Сиб. Отд. АН СССР, 1982, Вып.2, С. 160−164.
  7. Л.Н. Влияние серотонинреактивных структур гипофизотрофной зоны гипоталамуса на гипофизарно-надпочечниковую систему крыс. // Изв. Сиб. Отд. АН СССР, 1973, Вып. З, С.136−138.
  8. JI.H., Старыгин А. Г. Об отсутствии прямого стимулирующего действия 5-окситриптофана и серотонина на кору надпочечников крыс. // Изв. Сиб. Отд. АН СССР, 1972, № 10, вып.2, С.112−114.
  9. Ю.Науменко Е. В. Участие адрено-, холино- и серотонинреактивных структур в регуляции деятельности гипоталамо-гипофизарно-надпочечниковой системы. // Физиология и патофизиология гипоталамуса, 1966, М., «Наука», С.150−152.
  10. П.Науменко Е. В. Центральная регуляция гипофизарно-надпочечникового комплекса. // JI. «Наука», 1971, 162с.
  11. Н.К. Генетический нокаут первые шаги и перспективы для нейрофизиологии поведения. // Успехи физиол. наук, 2000, Т.31 (2), С.3−13.
  12. М.Попова Н. К., Жанаева Е. Ю. Свойства, регуляция активности и функциональная роль триптофангидроксилазы мозга. // Нейрохимия, 1988, Т.7, Вып.2, С.274−287.
  13. Н.К., Корякина JI.A., Колокольцев А. А. Генетическая детерминированность реакции гипоталамо-гипофизарно-надпочечниковой системы мышей на холодовой и иммобилизационный стресс. // Генетика, 1979, Т.15 (4), С.715−720.
  14. Н.К., Лобачева И. И. Участие серотонергической системы мозга в формировании стрессорной реактивности гипофизарно-надпочечникового комплекса. // Онтогенез, 1981, Т. 12 (4), С.
  15. Н.К., Науменко Е. В., Колпаков В. Г. Серотонин и поведение. // Новосибирск, «Наука», 1978, 304 с.
  16. Н.К., Скринская Ю. А., Амстиславская Т. Г., Вишнивецкая Г. Б., Сейф И., Де Майер Е. Особенности поведения мышей с генетическим нокаутом моноаминоксидазы типа А. // Журн. высш. нервн. деят., 2000, Т.50, (6), С.991−998.
  17. А.Г. Методы определения гормонов. // Киев, «Наукова думка», 1980, С.277−280.
  18. Г. Концепция стресса, как мы ее представляем в 1976 году. // 1976, С.27−51.
  19. А.А., Бажан Н. М. Определение глюкокортикоидов в плазме крови и инкубатах надпочечников методом конкурентного связывания гормонов белками без предварительной экстракции. // Лаб. дело, 1984, Т. 12, С.709−713.
  20. Adell A., Casanovas J.M., Artigas F. Comparative study in the rat od the actions of different types of stress on the release of 5-HT in raphe nuclei and forebrain areas. //Neuropharmacology, 1997, V.36, P.735−741.
  21. Aldegunde M., Soegas J.L., Rozas G. Acute effect of L-tryptophan on tryptophan hydroxylation rate in brain regions (hypothalamus and medulla) of rainbow trout (Oncorhynchus mykiss). // J Exp Zool, 2000, V.286 (2), P. 131−135.
  22. Amara S.G., Kuhar M. Neurotransmitter transporters: recent progress. // Annu Rev Neurosci, 1993, V.16, P.73−93.
  23. Amara S.G., Sonders M.S. Neurotransmitter transporters as molecular targets for addictive drugs. //Drug Alcohol Depend, 1998, V.51 (1−2), P.87−96.
  24. Antoni F.A. Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin releasing factor. // Endocr Rev, 1986, V.7, P.351−378.
  25. Aulakh C.S., Hill J.L., Murphy D.L. Attenuation of hypercortisolemia in fawn-hooded rats by antidepressant drugs. // Eur J Pharmacol, 1993, V.240 (1), P.85−88.
  26. Aulakh C.S., Zohar J., Wozniak K.M., Hill J.L., Murphy D.L. Clorgyline treatment differentially affects m-chlorophenylpiperazine-induced neuroendocrineft changes. // Eur J Pharmacol, 1988, V.150 (3), P.239−246.
  27. Azmitia E.C., Liao В., Chen Y.S. Increase of tryptophan hydroxylase enzyme protein by dexamethasone in adrenalectomized rat midbrain. // J Neurosci, 1993, V.13, P.5041−5055.
  28. Azmitia E.C., Segal M. An autoradiographic analysis of the different ascending projection of the dorsal and median raphe nuclei in rat. // J. Сотр. Neurol., 1978, V.179, P.641−668.
  29. Bagdy G. Role of the hypothalamic paraventricular nucleus in 5-HTiA, 5-HT2a and 5-HT2c receptor-mediated oxytocin, prolactin and ACTH/corticosterone responses. // Behav Brain Res, 1996, V.73, P.277−280.
  30. Bagdy G., Calogero A.E., Murphy D.L., Szemeredi K. Serotonin agonists cause parallel activation of the sympathoadrenomedullary system and the hypothalamo11pituitary-adrenocortical axis in conscious rats. // Endocrinology, 1989, V.125 (5), P.2664−2669.
  31. Bennett P.J., McMahon W.M., Watable J., Achilles J., Bacon M., Coon H., Grey Т., Keller Т., Tate D., Tcaciuc I., Workman J., Gray D. Tryptophan hydroxylase polymorphism in suicide victims. // Psychiatr Genet, 2000, V. IO (l), P.13−17.
  32. Berry M.D., Juorio A.V., Paterson I.A. The functional role of monoamine oxidase A and В in the mammalian central nervous system. // Prog Neurobiol, 1994a, V.42, P.375−391.
  33. Berry M.D., Scarr E., Zhu M.Y., Paterson I.A., Juorio A.V. The effects of administration of monoamine oxidase-B inhibitors on rat striatal neuroneresponses to dopamine. // Br J Pharmacol, 1994b, V. 113 (4), P. 1159−1166.
  34. Bethea C.L., Mirkes S.J., Shively C.A., Adams M.R. Steroid regulation of tryptophan hydroxylase protein in the dorsal raphe of macaques. // Biol Psychiatry, 2000, V.47 (6), P.562−576.
  35. Blakely R.D., Berson H.E., Fremeau R.T.J., Caron M.G., Peek M.M., Prince H.K., Bradley C.C. Cloning and expression of a functional serotonin transporter from rat brain. // Nature, 1991, V.354, P.66−70.
  36. Bliss E.L., Ailion J., Zwanziger J. Metabolism of norepinephrine, serotonin and dopamine in rat brain with stress. // J Pharmacol Exp Ther, 1968, V.164, P. 122 134.
  37. Bluet Pajot M.T., Mounier F., Di Sciullo A., Schmidt В., Kordon C. Differential sites of action of 8-OH-DPAT, a 5-HTiA agonist, on ACTH and PRL secretion in the rat.//Neuroendocrinology, 1995, V.61 (2), P. 159−166.
  38. Boadle-Biber M.C. Blockade by haloperidol of the increase in tryptophan hydroxylase activity induced by incubation of slices of brain stem with dibutyryl cyclic AMP. // Biochem Pharmac, 1982, V.31 (1), P.2203−2206.
  39. Boadle-Biber M.C. Regulation of serotonin synthesis. // Prog. Biophys. molec. Biol., 1993, V.60, P. l-15.
  40. Boadle-Biber M.C., Johannessen G.N., Narasimhachari N., Phan Т.Н. Activation of tryptophan hydroxylase by stimulation of central serotonergic neurons. // Biochem Pharmac, 1983, V.32 (1), P.185−188.
  41. Bogdanski D.F., Weissbach H., Udenfriend S. Pharmacological studies with the serotonin precursor, 5- hydroxytryptamine. // J Pharmacol Exp Ther, 1958, V.16, P.7−8., цит. по Попова с соавт., 1978. ь
  42. Booij L., Van der Does A.J.W. Monoamine depletion in psychiatric and healthy populations: review. //Mol Psychiatry, 2003, V.8 (12), P.951−973.
  43. Bouwknecht J.A., van der Gugten J., Hijzen Т.Н., Maes R.A., Hen R., Olivier B. Corticosterone responses in 5-HT1B receptor knockout mice to stress or 5-HT1Areceptor activation are normal. // Psychopharmacology (Berl), 2001, V.153 (4), P.484−490.
  44. Bowsher R.R., Henry D.P., Decarboxylation of p-tyrosine: a potential source of ptyramine in mammalian tissues. // J Neurochem, 1983, V.40(4), P.992−1002.
  45. Brunner H.G. Monoamine oxidase and behavior. // Annals of Medicine, 1995, V.27 (4), P.431−432.
  46. Brunner H.G., Nelen M.R., Breakefield X.O., Ropers H.H., van Oost B.A. Abnormal behavior associated with point mutation in the structural gene for monoamine oxidase A. // Science, 1993a, V.262, P.578−580.
  47. Brunner H.G., Nelen M.R., van Zandvoort P., Abeling N.G.G.M., van Gennip
  48. Cases O., Vitalis Т., Seif I., De Mayer E., Soleto C., Gaspar P. Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin exess during the critical period. // Neuron, 1996, V.16, P.297−307.
  49. Chalmers D.T., Kwak S.P., Mansour A., Akil H., Watson S.J. Corticosteroidsregulate brain hippocampal 5HT1A receptor mRNA expression. // J Neurosci, 1993, V.13, P.914−923.
  50. Chaouloff F. Physiopharmacological interactions between stress hormones and central serotonergic systems. // Brain Res Rev, 1993, V.18, P. l-32.
  51. Chaouloff F. Regulation of 5-HT receptors by corticosteroids: where do we stand? I I Fundam Clin Pharmacol, 1995, V.9, P.219−233.• 59. Chaouloff F. Serotonin, stress and corticoids. // J Psychopharmacol, 2000, V.142., P.139−151.
  52. Chaouloff F., Berton O., Mormede P. Serotonin and stress. // Neuropsychopharmacology, 1999, V.21, No.2S, P.28S-32S.
  53. Chou-Green J.M., Holscher T.D., Dallman M.F., Akana S.F. Repeated stress in young and old 5-HT (2C) receptor knockout mice. // Physiol Behav, 2003, V.79 (2), P.217−226.
  54. Clark M.S., Russo A.F. Tissue-specific glucocorticoid regulation of tryptophanhydroxylase mRNA levels. // Brain Res Mol Brain Res, 1997, V.48 (2), P.346−354.
  55. Contesse V., Lefebvre H., Lenglet S., Kuhn J., Delarue C., Vaudry H. Role of 5-HT in the regulation of the brain-pituitary-adrenal axis: effects of 5-HT on adrenocortical cells. // 2000, Can J Physiol Pharmacol, 2000, V.78 (12), P.967−983.
  56. Corley K.C., Singh V.B., Phan T.-H., Boadle-Biber M.C. Effect of gepirone on increases in tryptophan hydroxylase in response to sound stress. // Eur J
  57. Pharmacol, 1992, V.213, P.417−425.
  58. Craig S.P., Boularand S., Darmon M.C., Mallet J., Craig I.W. Localization of human tryptophan hydroxylase (TPH) to chromosome Ilpl5.3~pl4 by in situ hybridization. // Cytogenet Cell Genet, 1991, V.56 (3−4), P. 157−159.
  59. Curzon G. Influence of plasma tryptophan on brain 5HT synthesis and serotonergic activity. // Adv Exp Med Biol. 1981, V.133, P.207−19.
  60. Cvijic G., Radojicic R., Djordjevic J., Davidovic V. The effect of glucocorticoids on the activity of monoamine oxidase, copper-zinc superoxide dismutase and catalase in the rat hypothalamus. // Funct Neurol, 1995, V.10 (4−5), P. 175−181.
  61. Dallman M.F., Akana S.F., Cascio C.S., Darlington D.N., Jacobson L., Levin N. Regulation of ACTH secretion: Variations on a theme of B. // Recent Prog Horm Res, 1987, V.43, P. l 13−173.
  62. Daugherty W.P., Corley K.C., Phan T.-H., Boadle-Biber M.C. Further studies on the activation of rat madian raphe serotonergic neurons by inescapable sound stress. // Brain Research, 2001, V.923, P.103−111.
  63. L.C., Gould G.G., Teicher S.D., Gerhardt G.A., Frazer А. 5-НТш receptor-mediated regulation of serotonin clearance in rat hippocampus in vivo. // J Neurochem, 2000, V.75, P.2113−2122.
  64. De Kloet E.R. Brain corticosteroid receptor balance and homeostatic control. // Front Neuroendocrinol, 1991, V. 12, P.95−164.
  65. Devor E.J., Cloninger C.R., Hoffman P.L., Tabakoff B. Association of monoamine oxidase (MAO) activity with alcoholism and alcoholic subjects. // Am J Med Genet, 1993, V.48 (4), P.209−213.
  66. Di Sciullo A., Bluet-Pajot M.T., Mounier F., Oliver C., Schmidt В., Kordon C. Changes in anterior pituitary hormon levels after serotonin 1A receptort*stimulation. // Endocrinology, 1990, V.127 (2), P.567−572.
  67. Donnely C.H., Murphy D.L. Substrate- and inhibitor-related characteristics of human platelet monoamine oxidase. // Biochem Pharmac, 1977, V.26, P.853−858.
  68. Dunn A .J., Welch J. Stress- and endotoxin-induced increases in brain tryptophan and serotonin metabolism depend on sympathetic nervous system activity. // J
  69. Neurochem, 1991, V.57, P. 1615−1622.
  70. Erspamer V. Pharmacologische studien uber enteramin III. Uber das vorhand eines enteraminahnlichen stoffes in milzextrakten. // Arch Exptl Pathol Pharmacol, 1940, V.120, P.343., цит. по Науменко, Попова, 1975.
  71. Evrard A., Malagie I., Laporte A-M., Boni C., Hanoun N., Trillat A-C., Seif I., De Maeyer E., Gardier A., Hamon M., Adrien J. Altered regulation of the 5-HT system in the brain of MAO-A knock-out mice. // Eur J Neurosci, 2002, V.15,1. P.841−851.
  72. J., Hery F., Barden N., Негу M., Boulenguez P. Central 5-HTj and 5-HT2 binding sites in transgenic mice with reduced glucocorticoid receptor number. // Brain Res, 2000, V.862, P.145−153.
  73. Fernandez F, Durand M, Coomans V, Mormede P, Chaouloff F. Effects of corticosterone ingestion on hippocampal 3H. serotonin reuptake in inbred rat strains. // Endocrine Regulations, 2001, V.35, P. 119−126.
  74. Fernstrom J.D. Role of precursor availability in control of monoamine biosynthesis in brain. // Physiol Rev, 1983, V.63, P.484−546.
  75. Flugge G. Dynamics of central nervous 5-HTlA-receptors under psychosocial stress. //J Neurosci, 1995, V.15, P.7132−7140.
  76. Fowler C.J., Tipton K.F. Deamination of 5-hydroxytryptamine by both forms of monoamine oxidase in the rat brain. // J Neurochem, 1982, V.38 (3), P.733−736.
  77. Fowler J.S., Volkow N.D., Wang G.J., Pappas N., Logan J., Shea C., Alexoff D., MacGregor R.R., Schlyer D.J., Zezulkova I., Wolf A.P. Brain monoaminoxidase A inhibition in cigarette smokes. // Proc Natl Acad Sci USA, 1996, V.93, P. l4065−14 069.
  78. Friedman E., Kneger D.T., Mezey E., Leranth C., Brownstein M.J., Palkovits M. Serotonergic innervation of the rat pituitary intermediate lobe: decrease after stalk section. // Endocrinology, 1983, V. l 12 (6), P.1943−1947.
  79. Friedman P.A., Kappelman H.A., Kaufman S.J. Partial purification and characterization of tryptophan hydroxylase from rabbit hindbrain. // J Biol Chem, 1972- V.247 (13), P.4165−4173.
  80. Fuller R.W. The involvement of serotonin in regulation of pituitary-adrenocortical function. // Front Neuroendocrinol, 1992, V.13 (3), P.250−270.
  81. Fuxe K., Jonsson J. Further mapping of central 5-HT neurons: studies with the neurotoxic dihydroxytryptamines // Advan Biochem Psychopharm, 1974, V.10, P. l-12., цит. по Попова с соавт., 1978.
  82. Graeff F.G., Guimaraes F.S., De Andrade T.G., Deakin J.F. Role of 5-HT in stress, anxiety, and depression. // Pharmacol Biochem Behav, 1996, V.54 (1), РЛ 29−141.
  83. Greenwalt J.W., Schnaitman C. An appraisal of the use of monoamine oxidase as an enzyme marker for the outer mitochondrial membrane. // J Cell Biol, 1970, V.46, P.173−179.
  84. Grenett H.E., Ledley F.D., Reed L.L., Woo' S.L. Full-length cDNA for rabbit tryptophan hydroxylase: functional domains and evolution of aromatic amino acid hydroxylases. // Proc Natl Acad Sci USA, 1987, V.84, P.5530−5534.
  85. Grimsby J., Chen K., Wang L.J., Lan N.C., Shih J.C. Human monoamine oxidase A and В genes exhibit identical exon-intron organisation. // Proc Natl Acad Sci USA, 1991, V.88, P.3637−3641.
  86. Grimsby J., Toth M., Chen K., Kumazawa Т., Klaidmen L., Adams J.D., Karoun F., Gal J., Shih J.C. Increased stress response and р-phenylethylamin in MAOB-deficient mice. //Nature Genet, 1997, V.17, P. l-5.
  87. Gumulka W., Samanin R., Valzelli L. Effect of chlorpromazine on 5-hydroxytryptamine metabolism in hippocampal stimulated rats. // Eur J Pharmacol, 1970, V.12, 216−219.
  88. Gur E., Dremencov E., Lerer В., Newman M.E. Functional effects of corticosterone on 5-HT.A and 5-HT]B receptor activity in rat brain: in vivo microdialysis studies. // Eur J Pharmacol, 2001, V.411, P. 115−122.
  89. Hamon M., Bourgoin S., Artaud F., Mestikawy S.E. The respective roles of tryptophan uptake and tryptophan hydroxylase in the regulation of serotonin synthesis in the central nervous system. // J Physiol, 1981, V.77 (2−3), P.269−279.
  90. Hausler A., Hauser K., Meeker J.B. Effects of subchronic administration of psychoactive substances on the circadian rhythm of urinary corticosterone excretion in rat. // Psychoneuroendocrinology, 1985, V.10 (4), P.421−429.
  91. Hegde S.S., Eglen R.M. Peripheral 5-HT4 receptors. // FASEB J, 1996, V.10 (12), P.1398−1407.
  92. Herman J.P., Cullman W.E. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. // Trends Neurosci, 1997, V.20 (2), P.78−84.
  93. Hery M., Semont A., Fache M.-P., Faudon M., Hery F. The effect of serotonin on glucocorticoid receptor binding in rat raphe nuclei and hippocampal cells in culture. // J Neurochem, 2000, V.74, P.406−413.
  94. Holmes A., Yang R.J., Murphy D.L., Crawley J.N. Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. // Neuropsychopharmacology, 2002, V.27 (6), P.914−923.
  95. Holschneider D.P., Chen К., Seif I., Shih J.C. Biochemical, behavioral, physiologic, and neurodevelopmental changes in mice deficient in monoamine oxidase A or B. // Brain Res Bull, 2001, V.56 (5), P.453−462.
  96. Hotamisligil G.S., Girmen A.S., Fink J.S., Tivol E., Shalish C., et al. Hereditary variations in monoamine oxidase as a risk factor for Parkinson’s disease. // Mov Disord, 1994, V.9 (3), P.305−310.
  97. Ishiguro H., Saito Т., Shibuya H., Torn M., Arinami T. The 5' region of the tryptophan hydroxylase gene: mutation search and association study with alcoholism. // J Neural Transm, 1999, V.106 (9−10), P.1017−1025.
  98. Jacobs B.L., Azmitia E.C. Structure and function of the brain serotonin system. // Physiol Rev, 1992, V.72 (1), P. l65−229.
  99. Joh Т.Н., Hwang O., Abate C. Phenylalanin hydroxylase, tyrosine hydroxylase and tryptophan hydroxylase. //Ann NY Acad Sci, 1987, V.493, P.342−350.
  100. Johnston J.P. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. // Biochem Pharmac, 1968, V.17, P. l285−1297., цит. no Shih et al., 1997.
  101. Jones M.T., Gillham В., Nicholson S.A., Campbell E.A., Altaher A.R.H. Role of neurotransmitters in the control of ACTH secretion. // Progress in Neuroendocrinology, 1985, V. l, P. 1−16.
  102. Karten Y.J.G., Nair S.M., van Essen L., Siburg R., Joels M. Long-term exposure to high corticosterone levels attenuates serotonin responses in rat hippocampal CA1 neurons. // Proc Natl Acad Sci USA, 1999, V.96 (23), P. 13 456−13 461.
  103. Kennett G.A., Dickinson S.L., Curzon G. Central serotonergic responses and behavioural adaptation to repeated immobilisation: the effect of the corticosteroneHsynthesis inhibitor metyrapone. // Eur J Pharmacol, 1985, V. l 19 (3), P.143−152.
  104. Kim D.H., Jung J.S., Kim H.S., Suh H.W., Son B.K., Kim Y.H., Song D.K. Inhibition of brain protein kinase С attenuates immobilization stress-induced plasma corticosterone levels in mice. //Neurosci Lett, 2000, V.291, P.69−72.
  105. Kirby L.G., Chou-Green J.M., Davis K., Lucki I. The effects of different stressors on extracellular 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. // Brain Res, 1997, V.760 (1−2), P.218−230.
  106. Knapp S., Mandell A.J., Russo P.V., Vitto A., Stewart K.D. Strain differences in kinetic and thermal stability of two mouse brain tryptophan hydroxylase activities. // Brain Res, 1981, V.230 (1−2), P.317−336.
  107. Knowles R.G., Pogson C.I. Tryptophan uptake and hydroxylation in rat forebrain synaptosomes. // J Neurochem, 1984, V.42 (3), P.677−684.
  108. Kochersperger L.M., Parker E.L., Siciliano M., Darlington G.J., Denney R.M. Assignment of genes for human monoamine oxidases A and В to the X-chromosome. // J Neurosci Res, 1986, V. 16 (4), P.601−616. ,
  109. Kolpakov V.G., Kulikov A.V., Barykina N.N., Alekhina T.A., Popova N.K. Catalepsy and increased tryptophan hydroxilase activity in rat neostriatum. // Biogenic Amines, 1985, V.2, P. l31−136.
  110. Kopin I.J. Catecholamine metabolism: basic aspects and clinical significance. // Pharmacol Rev, 1985, V.37, P.333−364.
  111. Korte-Bouws G.A., Korte S.M., De Kloet E.R., Bohus B. Blockade of corticosterone synthesis reduces serotonin turnover in the dorsal hippocampus of the rat as measured by microdialysis. // J Neuroendocrine, 1996, V.8, P.877−881.
  112. Krieger H., Krieger D. Chemical stimulation of the brain: effect on adrenal corticoid release. //Am J Physiol, 1970, V.218, P. 1632−1641.
  113. Kuhar M.J., Roth R.H., Aghajanian G.K. Selective reduction of tryptophan hydroxylase activity in rat forebrain after midbrain raphe lesions. // Brain Res., 1971, V.35,P.167−176.
  114. Kuhn D.M. Tryptopnan hydroxylase regulation. Drug-induced modifications that alter neuronal function. // Adv Exp Med Biol, 1999, V.467, P. 19−27.
  115. Lanfumey L., Mannoury La Cour C., Froger N, Hamon M. 5-HT-HPA interactions in two models of transgenic mice relevant to major depression. // Neurochem Res, 2000, V.25 (9−10), P. l 199−1206.
  116. Lefebvre H., Contesse V., Delarue C., Vaudry H., Kuhn J.M. Serotonergic regulation of adrenocortical function. // Horm Metab Res, 1998, V.30 (6−7), P.398−403.
  117. Lenders J.W.M., Brunner H.G., Murphy D.L., Eisenhofer G. Genetic deficiencies of monoamine oxidase enzymes: a key to understanding the function of the enzymes in human. // Advan Pharmacol, 1998, V.42, P.297−301.
  118. Lesch K.P., Aulakh C.S., Wolozin B.L., Tolliver T.J., Hill J.L., Murphy D.L. Regional brain expression of serotonin transporter mRNA and its regulation by reuptake inhibiting antidepressants. // Mol Brain Res, 1993, V.17, P.31−35.
  119. Lim L.C., Powell J., Sham P., Castle D., Hunt N., Murray R., Gill M. Evidence for a genetic association between alleles of monoamine oxidase A gene and bipolar affective disorder. // Am J Med Genet, 1995, V.60 (4), P.325−331.
  120. Lopez J.F., Chalmers D.T., Little K.Y., WatsonS.J. Regulation of serotonin 1 A, glucocorticoid and mineralocorticoid receptor in rat and human hippocampus: Implication for the neurobiology of depression. // Biol Psychiatry, 1998, V.43 (8), P.547−573.
  121. Lopez J.F., Liberzon I., Vazquez D.M., Young E.A., Watson S.J. Serotonin 1A receptor messenger RNA regulation in the hippocampus after acute stress. // Biol Psychiatry, 1999, V.45, P.934−937.
  122. Lopez J.F., Vazquez D.M., Chalmers D.T., Watson S.J. Regulation of 5-HT receptors and the hypothalamic-pituitary-adrenal axis. Implications for the neurobiology of suicide. // Annals of the NY Academy of Sciences, 1997, V.836 (1), P.106−134.
  123. Lovenberg W., Jeqier E., Sjoerdsma A. Tryptophan hydroxylation: measurement in pineal gland, brainstem and carcinoid tumor. // Science, 1967, V.155, P.217−219., цит. no Sumi-Ichinose et al., 2001.
  124. Lucki I. The spectrum of behaviors influenced by serotonin. // Biol Psychiatry, 1998, V.44, P.151−162.
  125. Manuck S.B., Flory J.D., Ferrell R. E, Dont K.M., Mann J.J., Muldoon M.F. Aggression and anger-related traits associated with a polymorphism of the• tryptophan hydroxylase gene. // Biol Psychiatry, 1999, V.45 (5), P.603−614.
  126. Marti O., Armario A. Anterior pituitary response to stress: time-related changes and adaptation // Int J Devi Neuriscience, 1998, V.16 (2−3), P.241−260.
  127. Maswood S. Exposure to inecapable but not escapable shock increases extracellular levels of 5-HT in the dorsal raphe nucleus of the rat. // Brain Res, 1998, V.783 (1), P.115−120.
  128. McCann S.M., Antunes-Rodrigues J., Franci C.R., Anselmo-Franci J.A., Karanth
  129. S., Rettori V. Role of the hypothalamic pituitary adrenal axis in the control of the response to stress and infection. // Braz J Med Biol Res, 2000, V.33, P. l 121−1131.
  130. McEwen B.S. Stress and hippocampus. An update on current knowledge. // Presse Med, 1991, V.20 (37), P. 1801−1806.
  131. McGiven R.F., Rittenhouse P., Aird F., Van de Kar L.D., Redei E. Inhibition of stress-induced neuroendocrine and behavioral responses in the rat by prepro-thyrotropin-releasing hormone 178−199. // J Neurosci, 1997, V. 17(12), P.4886−4894.
  132. McKittrick C.R., Blanchard D.C., Blanchard R.J., McEwen B.S., Sakai R.R. Serotonin receptor binding in a colony model of chronic social stress. // Biol Psychiatry, 1995, V.37 (6), P.383−396.
  133. Mendelson S.D., McEwen B.S. Autoradiographic analyses of the effects of adrenalectomy and corticosterone on 5-HT1A and 5-HT1B reseptors in the dorsal hippocampus and cortex of the rat. // Neuroendocrinology, 1992, V.55, P.444−450.
  134. Mockus S.M., Vrana K.E. Advances in the molecular characterization of «tryptophan hydroxylase. // J Mol Neurosci, 1998, V. 10 (3), P. 163−179.
  135. Molliver M.E. Serotonergic neuronal systems: What their anatomic organisation tells us about function. //J Clin Psychopharmacol, 1987, V.7 (6 Suppl), P.3S-23S.
  136. Nagatsu Т. Studies on tyrosine hydroxylase system in rat brain slices using high-performance liquid chromatography with electrochemical detection. // J
  137. Neurochem, 1983, V. 41, P.1585−1589.
  138. Nagatsu Т., Ichinose H. Regulation of pteridine-requiring enzymes by the cofactor tetrahydrobiopterin. // Mol Neurobiol, 1999, V.19 (1), P.79−96.
  139. Neckers L., Bertilsson L., Koslow S., Meek J. Reduction of tryptophan hydroxylase activity and 5-HT concentration in certain rat brain nuclei after p-chloroamphetamine //J. Pharmacol, and Therap., 1976, V. l 96, P.333−338.
  140. Nielsen D.A., Goldman D., Virkkunen M., Tokola R., Rawlings R., Linnoila M. Suicidality and 5-hydroxyindoleacetic acid concentration associated with a tryptophan hydroxylase polymorphism. // Arch Gen Psychiatry, 1994, V.51, P.34−38.
  141. Pacak K., Palkovits M. Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. // Endocrine Reviews, 2001, V.22 (4), P.502−548.
  142. Paik I., Toh K., Kim J., Lee С. TPH gene may be associated with suicidal behavior, but not with schizophrenia in the korean population. // Hum Hered, 2000, V.50 (6), P.365−369.
  143. Palkovits M., Mezey E., Chiueh C.G., Krieger D.T., Gallatz K., Brownstein M.J. Serotonin-containing elements of the rat pituitary intermediate lobe. // Neuroendocrinology, 1986, V.42, P.522−525.
  144. Parsian A., Suarez B.K., Tabakoff В., Hoffman P., Ovchinnikova L., Fisher L., Cloninger C.R. Monoamine oxidases and alcoholism. I. Studies in unrelated alcoholics and normal controls. // Am J Med. Genet, 1995, V.60, P.409−416.
  145. Parvez H., Parvez S. The regulation of monoamine oxidase activity by adrenal cortical steroids. // Acta Endocrinol, 1973, V.73, P.509−517.
  146. Pattij Т., Hijzen Т.Н., Groenink L., Oosting R.S., van der Gugten J., Maes R.A., Hen R., Olivier B. Stress-induced hyperthermia in the 5-HT (lA) receptor knockout mouse is normal. // Biol Psychiatry, 2001, V.49 (7), P.569−574.
  147. Pecins-Thompson M., Brown N.A., Kohama S.G., Bethea C.L. Ovarian steroid regulation of tryptophan hydroxylase mRNA expression in rhesus macaques. // J Neurosci, 1996, V.16 (21), P.7021−7029.
  148. Petrov Т., Krukoff T.L., Jhamandas J.H. Chemically defined collateral rpojections from the pons to the central nucleus of the amygdala and hypothalamic paraventricular nucleus in the rat. // Cell Tissue Res, 1994, V.277 (2), P.289−295.
  149. Picciotto M.R., Wickman K. Using knockout and transgenic mice to study neurophysiology and behavior. // Physiol Rev, 1998, V.78 (4), P. l 131−1163.
  150. Pinilla J., Montilla P., Clavero R. Effect of clorgyline and alpha-methyl-p-tyrosine on plasma levels of corticosterone in the rat. // Rev Esp Fisiol, 1985, V.41 (4), P.411−416.
  151. Popova N.K., Koryakina L.A. Some genetical aspects on pituitary-adrenal response to stress in mice. // Endocrinol Exp, 1981, V. l5, P.45−54.
  152. Popova N.K., Lobacheva I.I. Serotonin in the development of pituitary-adrenocortical response to stress. // Brain Res, 1982, V.246, P.217−223.
  153. Popova N.K., Maslova L.N., Naumenko E.V. Serotonin and the regulation of the pituitary-adrenal system after deafferentation of the hypothalamus. // Brain Res, 1972, V.47, P.61−67.
  154. Popova N.K., Naumenko E.V., Lobacheva I.I., Maslova L.N. Serotonin in different kinds of stress. // Progress Neuroendocrinol, 1985, V. l, P.235−260.
  155. Raghupathi R.K., McGonigle P. Differential effects of three acute stressors on the serotonin 5-HTiA receptor system in rat brain. // Neuroendocrinology, 1997, V.65 (4), P.246−258.
  156. Rapport M.M., Green A.A., Page I. Crystalline serotonin. // Science, 1948, V.108, P.329−329., цит. по Науменко, Попова, 1978.
  157. Reul J.M., De Kloet E.R. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. // Endocrinology, 1985, V.117, P.2505−2511.
  158. Reul J.M.H.M., De Kloet E.R., Van Sluijs F.J., Rijnberk A., Rothuizen J. Binding characteristics of mineralocorticoid and glucocorticoid recptors in dog brain and pituitary. // Endocrinology, 1990, V.127, P.907−915.
  159. Rudnick G., Clark J. From synapse to vesicle: the reuptake and storage of biogenic amine neurotransmitters. // Biochem Biophys Acta, 1993, V.1144, P.249−263.
  160. Rueter L.E., Jacobs B.L. A microdialysis examination of serotonin release in the rat forebrain induced by behavioral environmental manipulations. // Brain Res, 1996, V.739, P.57−69.
  161. Sandler M., Youdim M.B. Multiple forms of monoamine oxidase: functional significance. // Pharmacol Rev, 1972, V.24, P.331−349.
  162. Saphier D., Farrar G.E., Welch J.E. Differetial inhibition of stress-induced adrenocortical responses by 5-HTIA agonists and by 5-HT2 and 5-HT3 antagonists. // Psychoneuroendocrinology, 1995, V.20 (3), P.239−257.
  163. J., Richards J.G., Mahy N. // Differential age-related changes of MAO-A and MAO-B in mouse brain and peripheral organs. // Neurobiol Aging, 1994, V.15, P.399−408.
  164. Sawada M., Nagatsu T. Stimulation of the serotonin autoreceptor prevents the calcium-calmodulin-dependent increase of serotonin biosynthesis in rat raphe slices. //J Neurochem, 1986, V.46, P.963−967.
  165. Seckle J.R., Dickson K.L., Fink G. Central 5,7-dihydroxytryptamine lesions decrease hippocampal glucocorticoid and mineralocorticoid receptor messengerribonucleic acid expression. // J Neuroendocririol, 1990, V.2, P.911−916.
  166. Serretti A., Zanardi R., Cusin C., Rossini D., Lorenzi C., Smeraldi E. Tryptophanhydroxilase gene associated with paroxetine antidepressant activity. // Eur Neuropsychopharmacol, 2001, V. l 1, P.375−380.
  167. Shih J.C. Molecular basis of human MAO A and B. // Neuropsyhopharmacology, 1991, V.4, P. 1−7.
  168. Shih J.C., Chen К. MAO-A and -B gene knock-out exhibit distinctly differentbehavior. // Neurobiology, 1999, V.7, P.235−246.
  169. Shih J.C., Chen K., Ridd M.J. Monoamine oxidase: from genes to behavior. // Annu Rev Neurosci, 1999a, V.22, P. 197−217. '
  170. Shih J.C., Chen K., Ridd M.J. Role of MAO A and В in neurotransmitter metabolism and behavior. // Pol J Pharmacol, 1999b, V.51, P.25−29.
  171. Soubrie P. Reconciling the role of central serotonin neurons in human and animalbehavior. // Behav Brain Sci, 1986, V.9, P.319−335.
  172. Spinedi E., Negro-Vilar A. Serotonin and adrenocorticotropin (ACTH) release: direct effects at the anterior pituitary level and potentiation of arginine vasopressin-induced ACTH release. // Endocrinology, 1983, V. l 12, P.1217−1223.
  173. Stoll J., Kozak C. A, Goldman D. Characterization and chromosomal mapping of a cDNA encoding tryptophan hydroxylase from a mouse mastocytoma cell line. // Genomics, 1990, V.7 (1), P.88−96.m
  174. Sze P.Y., Glucocorticoids as a regulatory factor for brain tryptophan hydroxylase during development. // Devi Neurosci, 1980, V.3, P.217−223.
  175. Tamir H., Gershon M.D. Serotonin-storing secretory vesicles. // Ann NY Acad Sci, 1990, V.600, P.53−66.
  176. Thierry A.-M., Fekete M., Glowinski J. Effects of stress on the metabolism of noradrenaline, dopamine and serotonin (5-HT) in the central nervous system of the rat. II Modification of serotonin metabolism. // Eur J Pharmacol, 1968, V.4, P.384−389.
  177. Thorpe L.W., Westlund K.N., Kochersperger L.M., Abell C.W., Denney R.M.Immunocytochemical localization of monoamine oxidases A and В in human peripheral tissues and brain.// J Histochem Cytochem, 1987, V.35 (1), P.23−32.
  178. Tipton K.F., O’Carroll A.M., McCrodden J.M. The catalytic behaviour of monoamine oxidase. // J Neural Transm Suppl, 1987, V.23, P.25−35.
  179. Tjurmina O.A., Armando I., Saavedra J.M., Goldstein D.S., Murphy D.L. Exaggerated adrenomedullary response to immibilization in mice with targeted disruption of the serotonin transporter gene. // Endocrinology, 2002, V.143 (12), P.4520−4526.
  180. Trulson M.E., MacKenzie R.G. Increased tryptophan hydroxylase activity may compensate for decreased brain tryptophan levels in streptozotocin- diabetic rats. // J Pharm Exp Ther, 1980, V.212, P.269−273.
  181. Twarog B.M., Page J.H. Serotonin content of some mammalian tissues and urine, and method for its determination. // Am J Physiol, 1953, V.175, P. 157−161.
  182. Udenfriend S. Metabolism of 5-hydroxytryptamine. // In: 5-Hydroxytryptamine, London, Pergamon Press, 1958, P.43−49., цит. по Попова с соавт., 1978.
  183. Van Eekelen J.A., De Kloet E.R. Co-localization of brain corticosteroid receptors in the rat hippocampus. // Prig Histochem Cytochem, 1992, V.26, P.250−258.
  184. Van Loon G.R., Shum A., Sole M.J. Decreased brain serotonin turnover after short term (two hour) adrenalectony in rats: A comparison of four turnover methods. // Endocrinology, 1981, V.108, P. 1392−1402.
  185. Ventura M.A. Effects of clorgyline and deprenil on corticosterone levels in rats. // Eur J Pharmacol, 1982, V.81 (3), P.349−355.
  186. Vogt M., Wilson G. Concentration of 5-hydroxytriptamine and its acid metabolite in ventricle-near regions of the rat brain. // J Neurochem, 1972, V.19, P.1599−1600.
  187. Weyler W., Hsu Y.P., Breakefield X.O. Biochemistry and genetics of monoamine oxidase. // Pharmacol Ther, 1990, V.47, P.391−417.
  188. Wolkowitz O.M., Reus V.I. Treatment of depression with antiglucocorticoid drugs. // Psychosomatic Medicine, 1999, V.61, P.698−711.
  189. Watanabe Y., Sakai R.R., McEwen B.S., Mendelson S. Stress and antidepressant effects on hippocampal and cortical 5-HT1A and 5-HT2 receptors and transport sites for serotonin. // Brain Res, 1993, V.615 (1), P.87−94.
  190. Yehuda R., Meyer J.S. A role for serotonin in the hypothalamic-pituitary-adrenal response to insulin stress. // Neuroendocrinology, 1984, V.38, P.25−32.
  191. Youdim M.B. Heterogeneity of rat brain mitochondrial monoamine oxidase. // Adv Biochem Psychopharmacol, 1974, V. l 1, P.59−63.
Заполнить форму текущей работой