ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² ΡƒΡ‡Ρ‘Π±Π΅, ΠΎΡ‡Π΅Π½ΡŒ быстро...
Π Π°Π±ΠΎΡ‚Π°Π΅ΠΌ вмСстС Π΄ΠΎ ΠΏΠΎΠ±Π΅Π΄Ρ‹

Бвойства 4/1-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² растСний β€” Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π²Π½ΡƒΡ‚Ρ€ΠΈ-ΠΈ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ транспорта

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π Π°Π½Π΅Π΅ ΡΡ‡ΠΈΡ‚Π°Π»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ вирусы растСний ΠΈΠΌΠ΅ΡŽΡ‚ Π±Π΅Π»ΠΊΠΈ, способныС Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ с ΠΏΠ»Π°Π·ΠΌΠΎΠ΄Π΅ΡΠΌΠ°ΠΌΠΈ ΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°Ρ‚ΡŒ транспорт Π΄Ρ€ΡƒΠ³ΠΈΡ… Π±Π΅Π»ΠΊΠΎΠ² ΠΈ Π½ΡƒΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²Ρ‹Ρ… кислот ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ. ИмСнно поэтому, Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Π΅ транспортныС Π±Π΅Π»ΠΊΠΈ вирусов Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ использовались для изучСния ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ транспорта Π² Ρ€Π°ΡΡ‚Сниях (Ding et. al., 1992). ПозднСС Π±Ρ‹Π»ΠΎ установлСно, Ρ‡Ρ‚ΠΎ транспорт Π² Ρ€Π°ΡΡ‚Π΅Π½ΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠ΄Ρ‚ΠΈ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • БПИБОК Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™ ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
  • 1. Π’Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ транспорт
    • 1. 1. Π­ΠΊΠ·ΠΎΡ†ΠΈΡ‚ΠΎΠ·
    • 1. 2. Π­Π½Π΄ΠΎΡ†ΠΈΠΎΠ·
    • 1. 3. РСгуляция Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ транспорта
    • 1. 4. Π’Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ транспорт ΠΊ ΠΏΠ»Π°Π·ΠΌΠΎΠ΄Π΅ΡΠΌΠ°ΠΌ
  • 2. ΠœΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ транспорт
    • 2. 1. Π’ΠΈΠΏΡ‹ плазмодСсм
    • 2. 2. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° плазмодСсм
    • 2. 3. Вранспорт Ρ‡Π΅Ρ€Π΅Π· плазмодСсмы
      • 2. 3. 1. ЗаякориваниС ΠΎΠΊΠΎΠ»ΠΎ ΠŸΠ”
      • 2. 3. 2. Вранслокация Ρ‡Π΅Ρ€Π΅Π· плазмодСсмы
      • 2. 3. 3. ВысвобоТдСниС ΠΈΠ· ΠΏΠ»Π°Π·ΠΌΠΎΠ΄Π΅ΡΠΌΡ‹ Π² ΡΠΎΡΠ΅Π΄Π½Π΅ΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠ΅
    • 2. 4. РСгуляция ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ транспорта
      • 2. 4. 1. ΠŸΡ€Π΅Π΄Π΅Π»ΡŒΠ½Π°Ρ пропускная ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ плазмодСсм
      • 2. 4. 2. Роль цитоскСлСта Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ 45 транспорта
      • 2. 4. 3. Роль посттранскрипционных ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΉ Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ 46 транспорта Π±Π΅Π»ΠΊΠΎΠ²
    • 2. 5. Π‘ΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ транспорта ΠΌΠ°ΠΊΡ€ΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π² Ρ€Π°ΡΡ‚Сниях ΠΈ 48 Π΅Π³ΠΎ рСгуляция
  • 3. Π‘Π΅Π»ΠΎΠΊ 4/1 ΠΠ³Π°Π«ΠΉΠΎΡ€ΡŒΠΊ /АаИапа. 50 ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π« 51 РЕЗУЛЬВАВЫ
  • 1. Поиск Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΎΠ² Π±Π΅Π»ΠΊΠ° 4/1 АгаЫс1ΠΎΡ€$ 1 $ 1каИапа Ρ‚ $Шсо
  • 2. Π˜ΠΌΠΌΡƒΠ½ΠΎΠ΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΡ Π±Π΅Π»ΠΊΠ° 4/1 АгаЫс1ΠΎΡ€$ 1 $ 1каИапа ΠΈ Π΅Π³ΠΎ 74 Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΎΠ²
  • 3. ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ”ΠΠš Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΎΠ² Π±Π΅Π»ΠΊΠ° 4/1 ΠΈΠ· Ρ€Π°ΡΡ‚Π΅Π½ΠΈΠΉ 76 ШсоИапа Π¬Π΅ΠΏΠ¨Π°Ρ‚1Π°ΠΏΠ° ΠΈ Π¨ΡΠΎΠΠ°ΠΏΠ° ΡˆΠ¬Π°ΡΠΈΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ
  • ЛАБЕ-Π Π‘Π―
  • 4. ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½Ρ‹Ρ… ΠΊΠΎΠΏΠΈΠΉ Π³Π΅Π½ΠΎΠ² Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΎΠ² Π±Π΅Π»ΠΊΠ° 4/1 78 ΠΈΠ· Ρ€Π°ΡΡ‚Π΅Π½ΠΈΠΉ ШсоНапа Π¬Π΅Π¨ΠΊΠ°Ρ‚1Π°ΠΏΠ° ΠΈ Π¨ΡΠΎΠ˜Π°ΠΏΠ° /аЬасит
  • 5. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠ° 4/1 82 5.1 ВнутриклСточная локализация Π±Π΅Π»ΠΊΠ° 4/1, слитого с Π²Π Π 
    • 5. 2. Ко-локализация Π±Π΅Π»ΠΊΠ° 4/1 с ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠΌ ЭПР
    • 5. 3. Ко-локалзация Π±Π΅Π»ΠΊΠ° 4/1 с Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²Ρ‹ΠΌΠΈ Ρ„ΠΈΠ»Π°ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ
    • 5. 4. Ко-локализация Π±Π΅Π»ΠΊΠ° 4/1 с ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠΌ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° Π“ΠΎΠ»ΡŒΠ΄ΠΆΠΈ
    • 5. 5. ΠœΡƒΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΊΠ°Ρ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ участков Π±Π΅Π»ΠΊΠ° 4/1, отвСтствСнных Π·Π° Π΅Π³ΠΎ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΡƒΡŽ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ
  • 6. Поиск Π±Π΅Π»ΠΊΠΎΠ²-ΠΏΠ°Ρ€Ρ‚Π½Π΅Ρ€ΠΎΠ² Π±Π΅Π»ΠΊΠ° 4/1 с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²ΠΎΠΉ Π΄Π²ΡƒΠ³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ систСмы
  • ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π• Π Π•Π—Π£Π›Π¬Π’ΠΠ’ΠžΠ’
  • Π’Π«Π’ΠžΠ”Π«

Бвойства 4/1-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² растСний β€” Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π²Π½ΡƒΡ‚Ρ€ΠΈ-ΠΈ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ транспорта (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ молСкулярных ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΈ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ транспорта Π² Ρ€Π°ΡΡ‚Сниях являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ молСкулярной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ растСний.

Π€ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ любого ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ тСсного ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ. Π’ Ρ€Π°ΡΡ‚Сниях ΠΊΠ»Π΅Ρ‚ΠΊΠΈ соСдинСны ΠΌΠ΅ΠΆΠ΄Ρƒ собой спСциализированными ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌΠΈ контактамиплазмодСсмами (ΠŸΠ”), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой ΠΏΠΎΡ€Ρ‹, ΠΏΡ€ΠΎΠ½ΠΈΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ стСнки сосСдних ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. Π§Π΅Ρ€Π΅Π· плазмодСсмы осущСствляСтся транспорт ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… вСщСств, Π³ΠΎΡ€ΠΌΠΎΠ½ΠΎΠ², ΠΏΡ€ΠΈ участии этих ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΎΠ² происходит распространСниС сигналов Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΈ, посттранскрипционпого умолкания Π³Π΅Π½ΠΎΠ², Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π° (Lucas et al., 1993). Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅, Ρ‡Ρ‚ΠΎ Ρ‡Π΅Ρ€Π΅Π· плазмодСсмы происходит распространСниС вирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ ΠΈΠ· ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎ Π·Π°Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ (Atabekov and Dorokhov, 1984).

НСобходимой стадиСй, ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΡΡŽΡ‰Π΅ΠΉ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ транспорт, являСтся доставка транспортируСмых частиц Π½Π° ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΊ ΠΏΠ»Π°Π·ΠΌΠΎΠ΄Π΅ΡΠΌΠ°ΠΌ. (Ding et al., 1998; Lazarowitz and Beachy, 1999). НСсмотря Π½Π° ΠΎΠ±Ρ‰ΠΈΠ΅ Ρ‡Π΅Ρ€Ρ‚Ρ‹ Π² ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ транспортных систСм, ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ транспорта Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈΠΌΠ΅Π΅Ρ‚ ряд сущСствСнных ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠΉ. На Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚, выявлСны Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡƒΡ‚ΠΈ рСгуляции Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ транспорта растСний, ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Ρ€ΠΎΠ»ΡŒ Π² ΡΡ‚ΠΎΠΌ процСссС цитоскСлСта ΠΈ ΡΠ½Π΄ΠΎΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Ρ… структур, Π½ΠΎ Π΄Π»Ρ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ понимания функционирования систСмы Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ΡΡ дальнСйшиС исслСдования.

Π£Π΄ΠΎΠ±Π½ΠΎΠΉ модСлью для изучСния молСкулярных ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΈ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ транспорта Π² Ρ€Π°ΡΡ‚Сниях ΡΠ²Π»ΡΡŽΡ‚ΡΡ транспортныС Π±Π΅Π»ΠΊΠΈ вирусов растСний (Π’Π‘). ВранспортныС Π±Π΅Π»ΠΊΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠΌΠ° вируса Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, пСрСнос Π΅Π³ΠΎ Π² ΡΠΎΡΠ΅Π΄Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΈ Ρ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½Π΅Π½ΠΈΠ΅ вирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ ΠΏΠΎ Π²ΡΠ΅ΠΌΡƒ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΡƒ растСния (Atabekov and Dorokhov, 1984). Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π’Π‘ вирусов растСний ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ систСму транспорта ΠΊΠ»Π΅Ρ‚ΠΎΠΊ хозяина (Lucas et al, 1995; Carrington et al., 1996; Ghoshroy et al., 1997). Π‘ΠΎΠ»ΡŒΡˆΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅ транспортных Π±Π΅Π»ΠΊΠΎΠ² Π΄Π΅Π»Π°Π΅Ρ‚ ΠΈΡ… ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΌΠΈ модСлями для изучСния молСкулярных ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΈ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ транспорта растСний (Mushegian et al., 1993; Lazarowitz and Beachy, 1999).

Π‘Π΅Π»ΠΎΠΊ 4/1 A. thaliana Π±Ρ‹Π» ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ ΠΊΠ°ΠΊ Ρ„Π°ΠΊΡ‚ΠΎΡ€, способный Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ с Ρ‚ранспортным Π±Π΅Π»ΠΊΠΎΠΌ вируса бронзовости Ρ‚ΠΎΠΌΠ°Ρ‚Π°, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ Π΅Π³ΠΎ участиС Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΈ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ транспорта Π² Ρ€Π°ΡΡ‚Сниях. Данная Ρ€Π°Π±ΠΎΡ‚Π° посвящСна ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ свойств Π±Π΅Π»ΠΊΠ° 4/1 ΠΈ Π΅Π³ΠΎ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΎΠ² ΠΈΠ· Π΄Ρ€ΡƒΠ³ΠΈΡ… растСний.

ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«.

Π’ 1879 Π³ΠΎΠ΄Ρƒ Eduard Tangle Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ стСнки сосСдних ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² Ρ€Π°ΡΡ‚Сниях ΠΏΡ€ΠΎΠ½ΠΈΠ·Π°Π½Ρ‹ Ρ‚ΠΎΠ½ΠΊΠΈΠΌΠΈ тяТами Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΡ‹, ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π² Π±ΠΎΠ»Π΅Π΅ ΡΠ»ΠΎΠΆΠ½ΡƒΡŽ структуру, симпласт. Π’ Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅ΠΌ, эти ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Ρ‹ Π±Ρ‹Π»ΠΈ Π½Π°Π·Π²Π°Π½Ρ‹ плазмодСсмами (ΠŸΠ”), Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ спСцифичным для растСний Π²ΠΈΠ΄ΠΎΠΌ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΎΠ² (Π‘Π°Π³Π³, 1976).

ΠŸΡ€ΠΎΡΡ‚Π°Ρ плазмодСсма прСдставляСт собой Π·Π°ΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹ΠΉ Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠΎΠΉ ΠΊΠ°Π½Π°Π», ΠΏΡ€ΠΎΠ½ΠΈΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΉ стСнки сосСдних ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. Π˜Π·Π½ΡƒΡ‚Ρ€ΠΈ ΠΊΠ°Π½Π°Π» выстлан ΠΏΠ»Π°Π·ΠΌΠ°Π»Π΅ΠΌΠΌΠΎΠΉ, Π² Π΅Π³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π΅ располагаСтся дСсмотрубочка, образованная спрСссованной ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ΠΎΠΉ эндоплазматичСского Ρ€Π΅Ρ‚ΠΈΠΊΡƒΠ»ΡƒΠΌΠ° Π΄Π²ΡƒΡ… сосСдних ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (Robaras et al, 1990). ДСсмотрубочка соСдинСна с ΠΏΠ»Π°Π·ΠΌΠ°Π»Π΅ΠΌΠΌΠΎΠΉ ΠΊΠ°Π½Π°Π»Π° Π±Π΅Π»ΠΊΠΎΠ²Ρ‹ΠΌΠΈ «ΠΌΠΎΡΡ‚ΠΈΠΊΠ°ΠΌΠΈ», Ρ€Π°Π·Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠΌΠΈ ΠΏΠΎΠ»ΠΎΡΡ‚ΡŒ плазмодСсмы Π½Π° 10−20 ΠΌΠΈΠΊΡ€ΠΎΠΊΠ°Π½Π°Π»ΡŒΡ†Π΅Π² Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ 1,5−3,0 Π½ΠΌ (Ding et al., 1992). ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ транспорт ΠΈΠ΄Π΅Ρ‚ ΠΏΠΎ ΠΌΠΈΠΊΡ€ΠΎΠΊΠ°Π½Π°Π»ΡŒΡ†Π°ΠΌ (Radford et al, 1998) ΠΈ Π²Π½ΡƒΡ‚Ρ€ΠΈ дСсмотрубочки (Grabski et al, 1993; Gamalei et al, 1994).

Π”ΠΎΠ»Π³ΠΎΠ΅ врСмя ΡΡ‡ΠΈΡ‚Π°Π»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ плазмодСсмы слуТат для транспортировки ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… вСщСств ΠΈ Π³ΠΎΡ€ΠΌΠΎΠ½ΠΎΠ². Π—Π°Ρ‚Π΅ΠΌ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΎΠΏΡ‹Ρ‚ΠΎΠ² ΠΏΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² распространСния вирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ ΠΏΠΎ Ρ€Π°ΡΡ‚Π΅Π½ΠΈΡŽ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ с ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ΠΌ плазмодСсм происходит Ρ‚Π°ΠΊΠΆΠ΅ ΠΈ Ρ‚ранспорт ΠΌΠ°ΠΊΡ€ΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ»: Π±Π΅Π»ΠΊΠΎΠ² ΠΈ Π½ΡƒΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²Ρ‹Ρ… кислот. Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅Π΅ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ транспорта Π² Ρ€Π°ΡΡ‚Сниях ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ ряд Π±Π΅Π»ΠΊΠΎΠ² растСний, способных ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°Ρ‚ΡŒΡΡ ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π² ΠΊΠ»Π΅Ρ‚ΠΊΡƒ, ΠΈ Ρ‚Π°ΠΊΠΆΠ΅ Ρ‚Ρ€Π°Π½ΡΠΏΠΎΡ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΡΠΎΠ±ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ мРНК.

На Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ установлСно, Ρ‡Ρ‚ΠΎ плазмодСсмы ΠΈΠ³Ρ€Π°ΡŽΡ‚ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Ρ€ΠΎΡΡ‚Π΅ ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ растСний (Lucas et al, 1993). Π’ Ρ…ΠΎΠ΄Π΅ дСлСния ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ мСристСмы происходит Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ плазмодСсм Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½Π΅Π·Π°, Ρ‚Π΅ΠΌ самым обСспСчиваСтся Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΡΡ‚ΡŒ Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΡ‹ ΠΈ ΡΠ½Π΄ΠΎΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Ρ… структур ΠΌΠ΅ΠΆΠ΄Ρƒ Π΄ΠΎΡ‡Π΅Ρ€Π½ΠΈΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Π²ΠΎ Π²ΡΠ΅ΠΉ Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰Π΅ΠΉΡΡ Ρ‚ΠΊΠ°Π½ΠΈ растСния (Mezitt and Lucas, 1996). Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π½Π° Ρ€Π°Π½Π½ΠΈΡ… стадиях развития растСниС прСдставляСт собой симпласт ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, соСдинСнных плазмодСсмамив процСссС развития, Ρ‡Π°ΡΡ‚ΡŒ плазмодСсм ΠΎΡ‚ΠΌΠΈΡ€Π°Π΅Ρ‚ ΠΈΠ»ΠΈ модифицируСтся ΠΈ ΡΠΈΠΌΠΏΠ»Π°ΡΡ‚ раздСляСтся Π½Π° «Π΄ΠΎΠΌΠ΅Π½Ρ‹» (Esau and Thorsch, 1985). БчитаСтся, Ρ‡Ρ‚ΠΎ Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Ρ‚Π°ΠΊΠΎΠ³ΠΎ симпластного Π΄ΠΎΠΌΠ΅Π½Π° ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ синхронизировано (Goodwin, 1983).

Π Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‚ Π΄Π²Π° основных Ρ‚ΠΈΠΏΠ° транспорта Ρƒ Ρ€Π°ΡΡ‚Π΅Π½ΠΈΠΉ: Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ (транспорт ΠΌΠ΅ΠΆΠ΄Ρƒ сосСдними ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ) ΠΈ ΡΠΈΡΡ‚Π΅ΠΌΠ½Ρ‹ΠΉ (транспорт ΠΏΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΡΡ‰Π΅ΠΉ систСмС). И Π² Ρ‚ΠΎΠΌ ΠΈ Π² Π΄Ρ€ΡƒΠ³ΠΎΠΌ процСссС задСйствованы спСциализированныС ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Ρ‹ — плазмодСсмы. основноС ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² локального транспорта ΠΎΡ‚ ΡΠΈΡΡ‚Π΅ΠΌΠ½ΠΎΠ³ΠΎ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π² ΠΊΠ»Π΅Ρ‚ΠΊΡƒ ΠΏΡ€ΠΈ локальном транспортС прСдставляСт собой Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ процСсс, Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‰ΠΈΠΉ участия ассоциированных с ΠΏΠ»Π°Π·ΠΌΠΎΠ΄Π΅ΡΠΌΠ°ΠΌΠΈ Π±Π΅Π»ΠΊΠΎΠ² ΠΈ Π·Π°Ρ‚Ρ€Π°Ρ‚Ρ‹ энСргии (Wolf et al, 1989; Maule, 199l-Deom et al., 1990), Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Ρ†ΠΈΡ€ΠΊΡƒΠ»ΡΡ†ΠΈΡŽ ΠΏΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΡΡ‰Π΅ΠΉ систСмС принято ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ пассивным процСссом (Leisner et al, 199Π—Π°, b).

Π›ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ транспорт ΠΌΠΎΠΆΠ½ΠΎ Π² ΡΠ²ΠΎΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΏΠΎΠ΄Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° Π΄Π²Π° основных этапа: Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ транспорт Π½Π° ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΡŽ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΈ ΡΠΎΠ±ΡΡ‚Π²Π΅Π½Π½ΠΎ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ транспорт.

Π£Π΄ΠΎΠ±Π½ΠΎΠΉ модСлью для изучСния ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² доставки ΠΌΠ°ΠΊΡ€ΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π½Π° ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ ΠΈΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡ Ρ‡Π΅Ρ€Π΅Π· плазмодСсмы ΡΠ²Π»ΡΡŽΡ‚ΡΡ вирусы растСний. Вирусы растСний ΠΏΠΎΠΏΠ°Π΄Π°ΡŽΡ‚ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠΈ хозяина Ρ‡Π΅Ρ€Π΅Π· мСханичСскиС поврСТдСния ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ стСнки. Из ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎ ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ происходит распространСниС вирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ Π² Π±Π»ΠΈΠ·Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, ΠΏΠΎΠΊΠ° вирус Π½Π΅ Π΄ΠΎΡΡ‚ΠΈΠ³Π½Π΅Ρ‚ элСмСнтов проводящСй систСмы, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ происходит распространСниС вируса ΠΏΠΎ Π²ΡΠ΅ΠΌΡƒ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΡƒ растСния. ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ вируса ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π² ΠΊΠ»Π΅Ρ‚ΠΊΡƒ ΠΈ Π΅Π³ΠΎ систСмный транспорт происходит Π² Π²ΠΈΠ΄Π΅ транспортной частицы. На Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ считаСтся, Ρ‡Ρ‚ΠΎ Π³Π΅Π½ΠΎΠΌ вируса транспортируСтся Π² ΡΠΎΡΡ‚Π°Π²Π΅ Ρ€ΠΈΠ±ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ комплСкса (РНП). Π’ Ρ…ΠΎΠ΄Π΅ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ фитовирусы Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚Π°Π»ΠΈ ΠΏΡƒΡ‚ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ использования систСмы Π²Π½ΡƒΡ‚Ρ€ΠΈΠΈ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ транспорта растСний. Π“Π΅Π½ΠΎΠΌ вирусов растСний ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅Ρ‚ спСцифичСскиС транспортныС Π±Π΅Π»ΠΊΠΈ (Π’Π‘), Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ для распространСниС вирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ ΠΈΠ· ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎ Π·Π°Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ.

ΠžΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΈΠΌΠΈΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π³Π΅Π½ΠΎΠΌΠΎΠ² вирусов растСний ΠΎΠ±Π»Π΅Π³Ρ‡Π°Π΅Ρ‚ Π·Π°Π΄Π°Ρ‡Ρƒ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈΡ… Π’Π‘ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ изучСния свойств этих Π±Π΅Π»ΠΊΠΎΠ².

Π Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅ транспортных Π±Π΅Π»ΠΊΠΎΠ² вирусов растСний ΠΎΡ‡Π΅Π½ΡŒ Π²Π΅Π»ΠΈΠΊΠΎ. Π˜Π·Π²Π΅ΡΡ‚Π½Ρ‹ ΠΎΠ΄Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Π΅ ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Π΅ транспортныС систСмы вирусов, ΠΊΠΎΠ³Π΄Π° ΠΏΡ€ΠΈ транспортС Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½ Π’Π‘ ΠΈΠ»ΠΈ нСсколько, соотвСтствСнно. К ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ относится транспортная систСма вируса Ρ‚Π°Π±Π°Ρ‡Π½ΠΎΠΉ ΠΌΠΎΠ·Π°ΠΈΠΊΠΈ (Π’Π’Πœ), ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ происходит ΠΏΡ€ΠΈ участии Π±Π΅Π»ΠΊΠ° Π—ΠžΠš (Deom et al., 1987), Π° Ρ‚Π°ΠΊΠΆΠ΅ систСмы Π΄Ρ€ΡƒΠ³ΠΈΡ… вирусов, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π—ΠžΠš-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, прСдставитСлСй Ρ€ΠΎΠ΄ΠΎΠ² Bromovirus, Cucumovirus, Tombusvirus, Tobamovirus, Tobravirus, Umbravirus, Begomovirus, Comovirus, Nepovirus, Tospovirus ΠΈ Π΄Ρ€. (Koonin et al., 1991; Melcher, 1990, 1993; Mushegian and Koonin, 1993; Mushegian, 1994).

К ΠΌΠ½ΠΎΠ³ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹ΠΌ транспортным систСмам, относятся систСмы вирусов, прСдставитСлСй Ρ€ΠΎΠ΄ΠΎΠ² Potexvirus, Carlavirus, Allexivirus, Foveavirus, Hordeivirus, Benyvirus, Pomovirus, Pecluvirus, Π³Π΅Π½ΠΎΠΌ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… содСрТит Ρ‚Ρ€ΠΎΠΉΠ½ΠΎΠΉ Π±Π»ΠΎΠΊ Π³Π΅Π½ΠΎΠ² (Π’Π‘Π“). Π’Π‘Π“ содСрТит Π³Π΅Π½Ρ‹ с ΠΏΠ΅Ρ€Π΅ΠΊΡ€Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΌΠΈΡΡ Ρ€Π°ΠΌΠΊΠ°ΠΌΠΈ считывания, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ 3 Π±Π΅Π»ΠΊΠ°, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌΠΈ для транспорта ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ вируса (Morozov et al., 1989, Solovyev et al., 1996).

Вранспорт вирусного Π³Π΅Π½ΠΎΠΌΠ° Π² ΡΠΎΡΡ‚Π°Π²Π΅ РНП ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Ρ‚ΡŒΡΡ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ΠΌ структуры ΠŸΠ”, Ρ‚Π°ΠΊΠΎΠΉ Π²ΠΈΠ΄ транспорта Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π΅Π½ вирусов, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… ΠΊ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌ Comovirus, Nepovirus, Caulimovirus, Tospovirus, Alfamovirus, Bromovirus (van Lent ei. al., 1990; Wieczoreck and Sanfacon, 1993; Storms et. al., 1995; Kasteel et. al., 1997; Zheng et. al., 1997) — ΠΈΠ»ΠΈ ΠΆΠ΅ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΠΌΡ‹ΠΌΠΈ измСнСниями структуры ΠŸΠ”, этот способ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ вирусы Π³Ρ€ΡƒΠΏΠΏ Tobamovirus, Tobravirus, Diantovirus, Hordeivirus ΠΈ Π΄Ρ€. (Dawson et. al., 1988; Saito et. al., 1990; Xiong et. al., 1993; Hamilton and Baulcombe, 1989; Petty and Jackson, 1989). Π‘ΠΎΠ»ΡŒΡˆΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅ Π’Π‘ позволяСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ… Π΄Π»Ρ многостороннСго исслСдования ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² транспорта Π² Ρ€Π°ΡΡ‚Сниях.

ΠžΠ±Ρ‰ΠΈΠΌ свойством всСх транспортных Π±Π΅Π»ΠΊΠΎΠ² вирусов растСний являСтся Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ способны Ρ€Π΅ΠΊΡ€ΡƒΠΈΡ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚Ρ€Π°Π½ΡΠΏΠΎΡ€Ρ‚Π½ΡƒΡŽ систСму ΠΊΠ»Π΅Ρ‚ΠΎΠΊ растСний. Π’Π°ΠΊ Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, прСдполагаСтся, Ρ‡Ρ‚ΠΎ Π’Π‘ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ с Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°ΠΌΠΈ плазмодСсм, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ систСму ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ транспорта растСний для пСрСноса своСго гСнСтичСского ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° (Lucas et al., 1995). ВзаимодСйствиС вирусного Π±Π΅Π»ΠΊΠ° с Ρ…озяйскими Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ Π½Π΅ΠΊΠΎΠ³ΠΎ сродства, ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ этого сродства ΠΌΠΎΠΆΠ΅Ρ‚ Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΉ вируса ΠΈ Ρ…озяинатСм самым опрСдСляСтся ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ вируса ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Ρ€Π°ΡΡ‚Π΅Π½ΠΈΡŽ ΠΈ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ растСния ΠΊ Π΄Π°Π½Π½ΠΎΠΉ вирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ (Morozov et al., 1997).

Π Π°Π½Π΅Π΅ ΡΡ‡ΠΈΡ‚Π°Π»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ вирусы растСний ΠΈΠΌΠ΅ΡŽΡ‚ Π±Π΅Π»ΠΊΠΈ, способныС Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ с ΠΏΠ»Π°Π·ΠΌΠΎΠ΄Π΅ΡΠΌΠ°ΠΌΠΈ ΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°Ρ‚ΡŒ транспорт Π΄Ρ€ΡƒΠ³ΠΈΡ… Π±Π΅Π»ΠΊΠΎΠ² ΠΈ Π½ΡƒΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²Ρ‹Ρ… кислот ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ. ИмСнно поэтому, Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Π΅ транспортныС Π±Π΅Π»ΠΊΠΈ вирусов Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ использовались для изучСния ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ транспорта Π² Ρ€Π°ΡΡ‚Сниях (Ding et. al., 1992). ПозднСС Π±Ρ‹Π»ΠΎ установлСно, Ρ‡Ρ‚ΠΎ транспорт Π² Ρ€Π°ΡΡ‚Π΅Π½ΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠ΄Ρ‚ΠΈ ΠΈ Π² ΠΎΡ‚сутствии вирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ, ΠΈ Π²ΠΈΡ€ΡƒΡΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ. ΠžΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡΡΡŒ Π½Π° ΡΡ‚ΠΈΡ… Π΄Π°Π½Π½Ρ‹Ρ…, Π±Ρ‹Π»Π° Π²Ρ‹Π΄Π²ΠΈΠ½ΡƒΡ‚Π° Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π° ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ вирусныС Π’Π‘ ΠΈΠ·Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ ΠΈΠΌΠ΅ΡŽΡ‚ Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ происхоТдСниС ΠΈ Π±Ρ‹Π»ΠΈ «Π·Π°Ρ…Π²Π°Ρ‡Π΅Π½Ρ‹» вирусным Π³Π΅Π½ΠΎΠΌΠΎΠΌ для обСспСчСния транспортных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ (Mezitt and Lucas, J996).

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. Анализ доступных Π±Π°Π· Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ΡŒ ряд Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΎΠ² Ρ€Π°Π½Π΅Π΅ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° 4/1 АгаЫс1ΠΎΡ€$ 1 $ ЛаНапа. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΎΠ±Ρ‰ΠΈΠ΅ Ρ‡Π΅Ρ€Ρ‚Ρ‹ Π² ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π΅ Π³Π΅Π½ΠΎΠ² Π±Π΅Π»ΠΊΠΎΠ² 4/1, Π½Π°ΠΉΠ΄Π΅Π½Ρ‹ консСрвативныС Ρ€Π°ΠΉΠΎΠ½Ρ‹ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π±Π΅Π»ΠΊΠΎΠ² 4/1.

2. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΏΠΎΠ»ΠΈΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»Π½Ρ‹Π΅ Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π° ΠΊ 4/1 Π±Π΅Π»ΠΊΡƒ ΠΈ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ Π΅Π³ΠΎ экспрСссия ΠΈ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ Π² ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ΠΎ-ассоциированных фракциях ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρƒ Ρ€Π°ΡΡ‚Π΅Π½ΠΈΠΉ сСмСйства паслСновых, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Ρ‚Π°Π±Π°ΠΊ ΠΈ ΠΊΠ°Ρ€Ρ‚ΠΎΡ„Π΅Π»ΡŒ.

3. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΊΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΊΠ”ΠΠš ΠΈ Ρ…ромосомныС Π³Π΅Π½Ρ‹ 4/1 Π±Π΅Π»ΠΊΠ° Ρ‚Π°Π±Π°ΠΊΠ°.

4. Π‘Ρ‹Π»Π° ΠΏΠΎΠΊΠ°Π·Π°Π½Π° внутриклСточная локализация Π±Π΅Π»ΠΊΠ° 4/1, ΡΡˆΠΈΡ‚ΠΎΠ³ΠΎ с Ρ„Π»ΡƒΠΎΡ€Π΅ΡΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ-ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π°ΠΌΠΈ, Π² ΡΠΎΡΡ‚Π°Π²Π΅ структур вСзикулярного Ρ‚ΠΈΠΏΠ°, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π°ΠΌΠΈ ЭПР ΠΈ Π°ΡΡΠΎΡ†ΠΈΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… с ΠΏΠ»Π°Π·ΠΌΠΎΠ΄Π΅ΡΠΌΠ°ΠΌΠΈ.

5. ВыявлСна полярная локализация Π±Π΅Π»ΠΊΠ° 4/1 Π² Ρ€Π°Π·Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠ°Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ растСния ΠΈ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π΅Π³ΠΎ Ρ‚Ρ€Π°Π½ΡΠΏΠΎΡ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΏΠΎ ΠΊΠ»Π΅Ρ‚ΠΊΠ΅ с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ цитоскСлСта.

6. Π”ΠΎΠΊΠ°Π·Π°Π½Π° ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π±Π΅Π»ΠΊΠ° Ρ‚Ρ€Π°Π½ΡΠΏΠΎΡ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ‡Π΅Ρ€Π΅Π· плазмодСсмы.

7. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²ΠΎΠΉ Π΄Π²ΡƒΠ³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ систСмы Π±Ρ‹Π»ΠΈ выявлСны ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ-ΠΏΠ°Ρ€Ρ‚Π½Π΅Ρ€Ρ‹, Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ с Π±Π΅Π»ΠΊΠΎΠΌ 4/1 АгаЫс1ΠΎΡ€Π·15 МаИапа ΠΈ Π΅Π³ΠΎ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³Π°ΠΌΠΈ ΠΈΠ· Ρ‚Π°Π±Π°ΠΊΠ°.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Allan, B. B" Moyer, B. D. and Balch, W. E. (2000). Rabl recruitment of pi 15 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289,444−8.
  2. Alvarez, C., Garcia-Mata, R., Hauri, H. P. and Sztul, E. (2001). The pll5-interactive proteins GM130 and giantin participate in endoplasmic reticulum-Golgi traffic. J Biol Chem 276,2693−700.
  3. Andreeva, A. V., Kutuzov, M. A., Evans, D. E. and Hawes, C. R. (1998). Proteins involved in membrane transport between the ER and the Golgi apparatus: 21 putative plant homologues revealed by dbEST searching. Cell Biol Int 22,145−60.
  4. Andreeva, A. V., Zheng, H., Saint-Jore, C. M., Kutuzov, M. A., Evans, D. E. and Hawes, C. R. (2000). Organization of transport from endoplasmic reticulum to Golgi in higher plants. Biochem Soc Trans 28,505−12.
  5. Aniento, F. and Robinson, D. G. (2005). Testing for endocytosis in plants. Protoplasma 226,3−11
  6. Antonny, B., Gounon, P., Schekman, R. and Orci, L. (2003). Self-assembly of minimal COPII cages. EMBO Rep 4, 419−24.
  7. Atabekov, J. G. and Dorokhov Yu, L. (1984). Plant virus-specific transport function and resistance of plants to viruses. Adv Virus Res 29,313−64.
  8. S., Xiang Y., Shobert C., Thompson G.A., Lucas W.J. (1997) Phloem sap proteins from Cucurbita maxima and Ricinus communis have capacity to traffic cell to cell through plasmodesmata. Proc. Natl. Acad. Sci. USA 94: 14 150−14 155
  9. Baluska F, Samaj J, Napier R, VolkmannD (1999)Maize calreticulin localizes preferentially to plasmodesmata in root apex. Plant J 19: 48M88
  10. Baluska, F., Cvrckova, F., Kendrick-Jones, J. and Volkmann, D. (2001). Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiol 126,39−46.
  11. Baluska, F., Samaj, J., Hlavacka, A., Kendrick-Jones, J. and Volkmann, D. (2004). Actin-dependent fluid-phase endocytosis in inner cortex cells of maize root apices. J Exp Bot 55,463−73.
  12. , C. (2003). Molecular recognition of cargo by the COPII complex: a most accommodating coat. Cell 114,395−7.
  13. Bednarek, S. Y. and Falbel, T. G. (2002). Membrane trafficking during plant cytokinesis. Traffic 3,621−9.
  14. Ben-Tekaya, H., Miura, K., Pepperkok, R. and Hauri, H. P. (2005). Live imaging of bidirectional traffic from the ERGIC. J Cell Sci 118, 357−67.
  15. Bi, X., Corpina, R. A. and Goldberg, J. (2002). Structure of the Sec23/24-Sarl pre-budding complex of the COPII vesicle coat. Nature 419, 2717.
  16. Bielli, P., Casavola, E. C., Biroccio, A., Urbani, A. and Ragnini
  17. , A. (2006). GTP drives myosin light chain 1 interaction with the class V107myosin Myo2 IQ motifs via a Sec2 RabGEF-mediated pathway. Mol Microbiol 59,1576−90.
  18. Blackman L.M., Harper J.D.I, and Overall R.L. (1999) Localization of a. centrin-like protein to higher plant plasmodesmata. Eur J Cell. Biol 78:297−304
  19. Blackman L.M. and Overall R.L. (2001) Structure and function of plasmodesmata. Aust. J. Plant Physiol. 28:709−727.
  20. Boehm, M., Aguilar, R. C. and Bonifacino, J. S. (2001). Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs). Embo J 20, 6265−76.
  21. Boevink P. and Oparka K.J.(2005) Virus-Host Interactions during Movement Processes. Plant Physiol, 138:1815−1821.
  22. Boevink, P., Oparka, K., Santa-Cruz, S., Martin, B., Betteridge, A., Hawes, C. (1998). Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J, 15,441−447.
  23. Boevink, P., Martin, B., Oparka, K., Santa-Cruz, S., Hawes, C. (1999). Transport of virally expressed green fuorescent protein through the secretory pathway in tobacco leaves is inhibited by cold shock and brefeldin A. Planta, 208,392−400.
  24. Bolte, S., Talbot, C., Boutte, Y., Catrice, O., Read, N. D. and Satiat-Jeunemaitre, B. (2004). FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214,159−73.
  25. Bonifacino JS, Lippincott-Schwartz J (2003) Coat proteins: shaping membranetransport. Nat Rev Genet 4:409−414
  26. Brandizzi, F., Frangne, N., Marc-Martin, S., Hawes, C., Neuhaus, J. M. and Paris, N. (2002a). The destination for single-pass membrane proteins is influenced markedly by the length of the hydrophobic domain. Plant Cell 14, 1077−92.
  27. Brandizzi, F., Irons, S. L., Johansen, J., Kotzer, A. and Neumann, U. (2004). GFP is the way to glow: bioimaging of the plant endomembrane system. J Microsc 214,138−58.
  28. Brummell, D.A., Lashbrook, C.C. and Bennett, A.B. (1994) Plant endo-l, 4-b-D-glucanases. Structure, properties and physiological function. In Himmel, M.E., Baker, J.O. and Overend, R.P. (eds), EnzymaticConversion of Biomass for Fuels Production.: 100−129.
  29. Cantrill L.C., Overall R.L., Goodwin P.B.(1999) Cell-to-cell communication via plant endomembranes. Cell Biol Int 23:653−661.
  30. , D.J. (1976) Historical perspectives on plasmodesmata. In Intercellular Communication in Plants: Studies on Plasmodesmata (Gunning, B.E.S. and Robards, A.W. eds), pp. 291−295, Springer-Verlag
  31. Carrington J. C, Kasschau K.D., Mahajan S.K., and Schaad M.C. (1996) Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8: 1669−1681.
  32. Caumont, A. S., Galas, M. C., Vitale, N., Aunis, D. and Bader, M. F. (1998). Regulated exocytosis in chromaffin cells. Translocation of ARF6stimulates a plasma membrane-associated phospholipase D. J Biol Chem 273, 1373−9.
  33. Chen, Y. A. and Scheller, R. H. (2001). SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2,98−106.
  34. Chen, X., Goodwin, S.M., Boroff, V.L., Liu, X. and Jenks, M.A. (2003) Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell, 15:1170−1185.
  35. Chen MH, Tian GW, Gafni Y, Citovsky V (2005) Effects of calreticulin on viral cell-to-cell movement. Plant Physiol doi/10.1104/pp.l05.64 386
  36. Cheong, Y.H., Chang, H.S., Gupta, R., Wang, X., Zhu, T. and Luan, S. (2002) Transcriptional Profiling Reveals Novel Interactions between Wounding, Pathogen, Abiotic Stress, and Hormonal Responses in Arabidopsis. Plant Physiol., 129:661−677.
  37. Cilia, M.L., Jackson, D., 2004. Plasmodesmata form and function. Curr. Opin. Cell Biol. 16, 500−506.
  38. Citovsky V, Mclean BG, Zupan JR, Zambryski P (1993) Phosphoiylation of tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated protein kinase. Genes Dev 7:904−910
  39. Cleland, R.E., Fujiwara, T., Lucas, W.J., 1994. Plasmodesmal-mediated cell-tocell transport in wheat roots is modulated by anaerobic stress. Protoplasma 178, 81−85.
  40. Clary, D. O. and Rothman, J. E. (1990). Purification of three related peripheral membrane proteins needed for vesicular transport. J Biol Chem 265,10 109−17.
  41. Cook, M.E., Graham, L.E., Botha, C.E.J., Lavin, C.A. (1997). Comparativeultrastructure of plasmodesmata of Chara and selectedbryophytes: toward an elucidation of the evolutionary origin ofplant plasmodesmata. American Journal of Botany. 84: 1169−1178.
  42. Coppolino MG, Woodside MJ, Demaurex N, Grinstein S, StArnaud R, Dedhar S (1997) Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 386: 843−847
  43. Dawson W.O., Bubrick P., and Grantham G.L. (1988) Modifications of the tobacco mosaic virus coat protein gene affecting replication movement and symptomatology. Phytopathology 78: 783−789.
  44. Denecke, J., Botterman, J. and Deblaere, R. (1990). Protein secretion in plant cells can occur via a default pathway. Plant Cell 2,51−9.
  45. Denecke J, Carlsson LE, Vidal S, Hoglund AS, Ek B, van Zeijl MJ, Sinjorgo KMC, Palva ET (1995) The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell 7: 391−406
  46. Deom, C.M., Oliver, M.J., Beachy, R.N., 1987. The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237, 389−394.
  47. Deom C.M., Schubert K.R., Wolf S., Holt C.A., Lucas W.J., and Beachy R.N.(1990) Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants. Proc.Natl.Acad.Sci.USA87: 3284−3288.
  48. Derrick PM, Barker H, Oparka KJ (1992) Increase in plasmodesmatal permeability during cell-to-cell spread of tobacco rattle virus from individually inoculated cells. Plant Cell 4:1405−1412
  49. B. (1998) Intercellular protein trafficking through plasmodesmata. Plant Molecular Biology 38:79−310.
  50. Ding, B., Turgeon, R., Parthasarathy, M.V. (1991). Routine cryofixation of plant tissue by propane jet freezing for freeze substitution. J Electron Microsc Tech, 19,107−17.
  51. Ding B, Haudenshield JS, Hull RJ, Wolf S, Beachy RN, Lucas WJ (1992) Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4: 915−928
  52. Ping B., Kwon M.O., and Warnberg L. (1996) Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll. Plant J.10: 157−164 .
  53. Ding, X.S., Carter, S.A., Deom, C.M., Nelson, R.S. (1998). Tobamovirus and potyvirus accumulation in minor veins of inoculated leaves from representatives of the Solanaceae and Fabaceae. Plant Physiol, 116, 125 136.
  54. Edeling, M. A., Smith, C. and Owen, D. (2006). Life of a clathrin coat: insights from clathrin and AP structures. Nat Rev Mol Cell Biol 7, 32−44.
  55. Ehlers, K., and Kollmann, R. (2001). Primary and secondary plasmodesmata: Structure, origin, and functioning. Protoplasma 216:1−30.
  56. Ehlers K, Schultz M, Kollmann R (1996) Subcellular localization of ubiquitin in plant protoplasts and the function of ubiquitin in selective degradation of outer-wall plasmodesmata in regenerating protoplasts. Planta 199: 139−151.
  57. K., Thorsch J. (1985) Sieve plate pores and plasmodesmata, the communication channels of the symplast: ultrastructural aspects and developmental relations. Am J.Bot. 72:1641−1653 .
  58. Eulgem, T., Rushton, P.J., Schmelzer, E., Hahlbrock, K., and Somssich, I.E. (1999). Early nuclear events in plant defence signaling: Rapid gene activation by WRKY transcription factors. EMBO J. 18:4689−4699.
  59. Fridborg, I., Grainger, J., Page, A., Coleman, M., Findlay, K., Angeli, S. (2003). TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. Mol Plant Microbe Interact, 16, 132 140.
  60. Fulnecek J. K. Y. Lim A. R. Leitch A. Kovarik R. Matyasek (2002) Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity 88: 19−25
  61. , Y.V. (1989). Structure and function of leaf minor veins intrees and herbs. Trees, 3: 96−110.
  62. Gamalei Y.V., Van Bel A., J., E., Pakhomova M.V., and Sjutkina A. (1994) Effects of temperature on the conformation of the endoplasmatic reticulum and on starch accumulation in leaves with the symplastic minor-vein configuration. Planta 194:443−453
  63. S., Lartley R., Sheng J., Citovsky V. (1997) Transport of proteins and nucleic acids through plasmodesmata. Annu.Rev.Plant. Physiol. Plant.Mol.Biol. 48:27−50
  64. Gilliland, L.U., Pawloski, L.C., Kandasamy, M.K. and Meagher, R.B. 2003. Arabidopsis actin gene ACT7 plays an essential role in germination and root growth. The Plant Journal 33 (2), 319−328.
  65. Gillingham, A. K. and Munro, S. (2003). Long coiled-coil proteins and membrane traffic. Biochim Biophys Acta 1641, 71−85.
  66. Gillingham, A. K., Tong, A. H., Boone, C. and Munro, S. (2004). The GTPase Arflp and the ER to Golgi cargo receptor Ervl4p cooperate to recruit the golgin Rud3p to the cis-Golgi. J Cell Biol 167,281−92.
  67. Glushka JN, Terrell M, York WS, O’Neill MA, Gucwa A, Darvill AG, Albersheim P, Prestegard JH (2003) Primary structure of the 2-O-methyl-alpha-L-fucose-containing side chain of the pectic polysaccharide, rhamnogalacturonan II. Carbohydr Res 338:341−352
  68. P.B. (1983) Molecular size limit for movement in the symplast of the Elodea leaf. Planta 157:124−130.
  69. Gorbalenya, A. E., Koonin, E.V. (1993). Helicases. Amino acid sequence comparisons and beyond. Curr. Opin. Struct. Biol., 3,419−429.
  70. P.B. (1983) Molecular size limit for movement in the symplast of the Elodea leaf. Planta 157:124−130.
  71. Grabski, S., de Feijter, A.W., Schindler, M. (1993). Endoplasmic reticulum forms a dynamic continuum for lipid diffusion between contiguous soybean root cells. Plant Cell, 5,25−38.
  72. Guan Y. and Nothnagel E.A.(2004) Binding of Arabinogalactan Proteins by Yariv Phenylglycoside Triggers Wound-Like Responses in Arabidopsis Cell Cultures. Plant Physiol. 135:1346−1366,
  73. Gunning, B. E. S. and Overall R. L., 1983: Plasmodesmata and cell-, to-cell transport in plants. Bioscience 33,260—265
  74. Hake, S. and Char, B.R. (1997) Cell-Cell Interactions during Plant. Development, Genes Devel., vol. 11,1087−1097.
  75. Hadlington, J. L. and Denecke, J. (2000). Sorting of soluble proteins in the secretory pathway of plants. Curr Opin Plant Biol 3,461−8.
  76. Hamilton, W.D.O., and Baulcombe, D.C. (1989). Infectious RNA produced by in vitro transcription of a full-length tobacco rattle virus RNA-1 cDNA. Gen. Virol. 70,963−968.
  77. Hanton, S. L., Bortolotti, L. E., Renna, L., Stefano, G. and Brandizzi, F. (2005). Crossing the divide-transport between the endoplasmic reticulum and Golgi apparatus in plants. Traffic 6, 267−77.
  78. Haupt S., Cowan G.H., Ziegler A., Roberts A.G., Oparka K.J., Torrance L (2005) Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17:164−181
  79. Hawes, C. and Satiat-Jeunemaitre, B. (2005). The plant Golgi apparatus—going with the flow. Biochim Biophys Acta 1744, 93−107.
  80. , C. (2005). Cell biology of the plant Golgi apparatus. New Phytologist 165,29−44.
  81. Haywood, V., Kragler, F., Lucas, W.J., 2002. Plasmodesmata: pathways for protein and ribonucleoprotein signaling. Plant Cell 14, S303-S325.
  82. Heinlein, M., Epel, B.L., Padgett, H.S., Beachy, R.N., 1995. Interaction oftobamovirus movement proteins with the plant cytoskeleton. Science 270,1983−1985
  83. Helariutta, Y., Fukaki, H., Wysocka-Diller, J., Nakajima, K., Jung, J., Sena, G., Hauser, M.T., and Benfey, P.N. (2000). The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101,555−567.
  84. Henrissat, B., Claeyssens, M., Tomme, P., Lemesle, L. and Mornon, J.-P.(1989) Cellulase families revealed by hydrophobic cluster analysis. Gene, 81: 83−95.
  85. Hirst, J., Miller, S. E., Taylor, M. J., von Mollard, G. F. and Robinson, M. S. (2004). EpsinR is an adaptor for the SNARE protein Vtilb. Mol Biol Cell 15,5593−602.
  86. Hohl, I., Robinson, D. G., Chrispeels, M. J. and Hinz, G. (1996). Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J Cell Sci 109 (Pt 10), 2539−50.
  87. , W. (2005). SNAREs and traffic. Biochim Biophys Acta 1744,120−44.
  88. Huang Z, Andrianov VM, Han Y, Howell SH (2001) Identification of Arabidopsis proteins that interact with the cauliflower mosaic virus (CaMV) movement protein. Plant Mol Biol 47: 663−675
  89. Itaya A., Hickman H., Bao Y., Nelson R., and Ding B. (1997)Cell-to-cell trafficking of cucumber mosaic virus movement protein: GFP fusion produced by biolistic gene bombardment in tobacco. Plant J. 12: 1223−1230
  90. Itaya A., Woo Y.M., Masuta C., Bao Y., NelsonR.S., and Ding B.(1998) Developmental Regulation of Intercellular Protein Trafficking through Plasmodesmata in Tobacco Leaf Epidermis Plant Physiol. 118: 373−385.
  91. , D., 2002. Double labeling of KNOTTED 1 mRNA and protein reveals multiple potential sites of protein trafficking in the shoot apex. Plant Physiol. 129,1423- 1429.
  92. Jackson, D., Hake, S., 1997. Morphogenesis on the move: cell-to-cell trafficking of plant regulatory proteins. Curr. Opin. Genet. Dev. 7,495−500.
  93. Jauh, G. Y., Phillips, T. E. and Rogers, J. C. (1999). Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11, 186 782.
  94. Jahn, R., Lang, T. and Sudhof, T. C. (2003). Membrane fusion. Cell 112,519−33.
  95. Jia, J.H., Tong, C., Wang, B., Luo, L.P., Jiang, J., 2004. Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature 432,1045- 1050.
  96. Jiang, R., Gao, B., Prasad, K., Greene, L. E. and Eisenberg, E. (2000). Hsc70 chaperones clathrin and primes it to interact with vesicle membranes. J Biol Chem 275, 8439−47.
  97. Jones, M.G.K. (1976). The origin and development of plasmodesmata. In Intercellular Communication in Plants: Studies on Plasmodesmatapp. Springer-Verlag, Berlin, Germany, 81−105.
  98. Kalinina, N.A., Fedorkin, O.N., Samuilova, O.V., Maiss, E., Korpela, T., Morozov, S.Yu., Atabekov, J.G. (1996). Expression and biochemical analysis of recombinant potato virus X 25K movement protein. FEBS Lett, 397,75−78.
  99. Karasev A. V, Kashinab A. S, Gelfandb V.I. and DoljaV.V.(1992) HSP70-related 65 kDa protein of beet yellows closterovirus is a microtubule-binding protein. FEBS 304: 12−14.
  100. Karpova, O.V., Ivanov, K.I., Rodionova, N.P., Dorokhov, Y.L., Atabekov, J.G., 1997. Nontranslatability and dissimilar behavior in plants and protoplasts of viral RNA and movement protein complexes formed in vitro. Virology 230,11−21.
  101. Karpova, O.V., Rodionova, N.P., Ivanov, K.I., Kozlovsky, S.V., Dorokhov, Y.L., Atabekov, J.G., 1999. Phosphorylation of tobacco mosaic virus movement protein abolishes its translation repressing ability. Virology 261, 2024.
  102. Kasteel J. W., Goldbach R. W. and van Lent J. W. M.(1997) Isolation and characterization of tubular structures of cowpea mosaic virus. J. of Gen.Vir. (1997), 78,3167−3170
  103. Kim JY, Rim Y, Wang L, Jackson D (2005) A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev 19: 788— 793
  104. Kim, J.Y., Yuan, Z., Jackson, D., 2003. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development 130, 4351−4362.
  105. Kim JY, Yuan ZA, Cilia M, Khalfan-Jagani Z, Jackson D (2002) Intercellular trafficking of a KNOTTED 1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proc Natl Acad Sei USA 99: 4103108
  106. Kim, S-J., Kim, M-R, Bedgar, D.L., Moinuddin, S.G.A., Cardenas, C.L., Davin, L.B., Kang, C. and Lewis, N.G. (2003b) Functional reclassification of the putative cinnamyl. alcohol dehydrogenase multigene family in Arabidopsis. PNAS. 101 (6): 1455−1460
  107. , T. (2002). Clathrin adaptors really adapt. Cell 109,413.6.
  108. Kollmann, R., and Glockmann, C. (1985). Studies on graft unions.I. Plasmodesmata between cells of plants belonging to different unrelated taxa. Protoplasma 124,224−235.
  109. Kollmann, R., and Glockmann, C. (1991). Studies on graft unions.III. On the mechanism of secondary formation of plasmodesmata at the graft interface. Protoplasma 165, 71−85,
  110. Koonin, E. V. and Dolja, V. V. (1993). Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28,375−430.
  111. Kost B, Spielhofer P, Chua N-H (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J. 1998 Nov-16(3):393−401.
  112. Kotlizky G., Shurtz S., Yahalom A., Malik Z., Traub O., and Epel B.L.(1992)An improved procedure for the isolation of plasmodesmata embedded in clean maize cell walls. Plant J. 2:623−630.
  113. Kragler F, Curin M, Trutnyeva K, Gansch A, Waigmann E (2003) MPB2C, a microtubule-associated plant protein binds to and interferes with cellto-cell transport of tobacco mosaic virus movement protein. PlantPhysiol 132:1870−1883
  114. Kragler, F., Monzer, J., Shash, K., Xoconostle-Ca'zares, B., Lucas, W.J., (1998). Cell-to-cell transport of proteins: requirement for unfolding and characterization of binding to a putative plasmodesmal receptor. Plant J. 15, 367−381.
  115. Kragler, F., Monzer, J., Xoconostle-Ca'zares, B., Lucas, W.J., 2000. Peptide antagonists of the plasmodesmal macromolecular trafficking pathway. EMBO J. 19,2856- 2868.
  116. , U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227,680−5.
  117. S.G., Beachy R.N. (1999) Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11: 535 548
  118. Lederkremer, G. Z., Cheng, Y., Petre, B. M., Vogan, E., Springer, S., Schekman, R., Walz, T. and Kirchhausen, T. (2001). Structure of the Sec23p/24p and Secl3p/31p complexes of COPII. Proc Natl Acad Sei U S A 98, 10 704−9.
  119. Lee, J.Y., Yoo, B.C., Rojas, M.R., Gomez-Ospina, N., Staehelin, L.A., Lucas, W.J., 2003. Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPPl. Science 299,392−396.
  120. Lee, J.Y. and Lucas, W.J.(2001). Phosphorylation of viral movement proteins— Regulation of cell-to-cell trafficking. Trends Microbiol. 9, 5−8.
  121. Lee, Y. R. and Liu, B. (2004). Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol 136,387 783.
  122. Leisner, S.M., Howell, S.H. (1993 a). Long distance movement of viruses in plants. Trends Microbiol., 1:314−317.
  123. Leisner, S.M., Turgeon, R., Howell, S.H. (1993 b). Effects of host plant development on the long-distance movement of cauliflower mosaic virus in Arabidopsis. Plant Cell, 5: 191−202.
  124. Li, B. and Fields, S. (1993) Identification of mutations in p53 that affect its binding to SV40 T antigen by using the yeast two-hybrid system. FASEB J. 7:957−963.
  125. Loh, E. and Hong, W. (2004). The binary interacting network of the conserved oligomeric Golgi tethering complex. J Biol Chem 279,24 640−8.
  126. Lucas, W.J. and Lee, J.-Y. (2004) Cell-to-cell communication in plants: plasmodesmata as a supracellular control network. Nat. Rev. Mol. Cell Biol. 5:712−726.
  127. Lucas WJ, Bouchepillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED 1 homeodomain protein and its messenger-RNA through pl^sfjjodesmata. Science 270:1980−1983
  128. Lucas, W.J., Ding, B., van Der SchoQt, Q" JP93. PJasmqcje^^ and the supracellular nature of plants. New Phytol. 125,435−476.
  129. , W. J. 1993 Process of virus systemic infection studied using microinjection procedures. In: Genetic Engineering, Molecular Biology and Tissue
  130. , A. (1997). Predicting coiled-coil regions in proteins. Curr Opin Struct Biol 7,388−93.
  131. Lupas, A., Van Dyke, M., and Stock, J. (1991) Predicting Coled Coils from Protein Sequences, Science 252:1162−1164.
  132. Macia, E., Luton, F., Partisani, M., Cherfils, J., Chardin, P. and Franco, M. (2004). The GDP-bound form of Arf6 is located at the plasma membrane. J Cell Sci 117,2389−98.
  133. Matsushita, Y., Hanazawa, K., Yoshioka, K., Oguchi, T., Kawakami, S., Watanabe, Y., Nishiguchi, M., Nyunoya, H.(2000). In vitro phosphorylation of the movement protein of tomato mosaic tobamovirus by a cellular kinase. J. Gen. Virol. 81,2095−2102.
  134. Matsushita, Y., Ohshima, M., Yoshioka, K., Nishiguchi, M., Nyunoya, H. (2003). The catalytic subunit of protein kinase CK2 phosphorylates in vitro the movement protein of Tomato mosaic virus. J. Gen. Virol. 84, 497 505.
  135. , A.J. (1991). Virus movement in infected plants. Cri. Rev. Plant Sci., 9:457−473.
  136. McDowell, J. M., An, Y.-Q., McKinney, E. C., Huang, S., and Meagher, R. B. (1996). T The arabidopsis ACT7 actin gene is expressed in rapidly developing tissues and responds to several external stimuli. Plant physiol. 111(3): 699−712.
  137. Mclean BG, Zupan J, Zambryski PC (1995) Tobacco mosaic virus movement protein
  138. McMahon HT, Mills IG. COP and clathrin-coated vesicle budding: different pathways, common approaches. Current Opinion in Cell Biology 2004- 16(4): 379−391.
  139. Meckel, T., Hurst, A. C., Thiel, G. and Homann, U. (2004). Endocytosis against high turgor: intact guard cells of Vicia faba constitutively endocytose fluorescently labelled plasma membrane and GFP-tagged K-channel KAT1. Plant J 39, 182−93.
  140. , U. (1990). Similarities between putative transport proteins of plant viruses. J. of Gen. Virology 71,1009−1018.
  141. , U. (1993). HIV-1 proteinase as structural model of intercellular transport proteins of plant viruses. J. of Theoretical Biology 162, 6174.
  142. , A. R. (2004). The role of ADP-ribosylation factor and SARI in vesicular trafficking in plants. Biochim Biophys Acta 1664, 9−30.
  143. Mernaugh R. and Mernaugh G., (1995) Methods for the production of mouse monoclonal antibodies. In «Molecular methods in plant pathology», ed by Rudra P. Singh and UmaN. Singh,"LEWIS Publisher", 343−358.
  144. Mezitt, L.A., Lucas, W.J. (1996). Plasmodesmal cell-to-cell transport of proteins and nucleic acids. Plant Mol Biol, 32,251−273.
  145. Minic Z, Rihouey C, Do CT, Lerouge P, Jouanin L (2004) Purification and characterization of enzymes exhibiting beta-D-xylosidase activities in stem tissues of Arabidopsis. Plant Physiol, 2004,135(2):78−867.
  146. Morozov, S., Dolja, V. V. and Atabekov, J. G. (1989). Probable reassortment of genomic elements among elongated RNA-containing plant viruses. J Mol Evol 29, 52−62.
  147. Movafeghi, A., Happel, N., Pimpl, P., Tai, G. H. and Robinson, D. G. (1999). Arabidopsis Sec21p and Sec23p homologs. Probable coat proteins of plant COP-coated vesicles. Plant Physiol 119,1437−46.
  148. , A. R. (1994). The putative movement domain encoded by nepovirus RNA-2 is conserved in all sequenced nepoviruses. Archives of Virology 135,437−441.
  149. Mushegian, A. R. and Koonin, E. V. (1993). Cell-to-cell movement of plant viruses. Insights from amino acid sequence comparisons of movement proteins and from analogies with cellular transport systems. Archives of Virology 133,239−257.
  150. Nakajima, K., Sena, G., Nawy, T., and Benfey, P.N. (2001). Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413,307−311.
  151. Nakano T, Suzuki K, Fujimura T, Shinshi H: Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140(2):411−432.
  152. , A. (2002). Vesicle traffic in the endomembrane system: a tale of COPs, Rabs and SNAREs. Cuit Opin Plant Biol 5, 507−12.
  153. Nebenfuhr, A., Gallagher, L. A., Dunahay, T. G., Frohlick, J. A., Mazurkiewicz, A. M., Meehl, J. B. and Staehelin, L. A. (1999). Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121,1127−42.
  154. Nebenfiihr, A. and Staehelin, L. A. (2001). Mobile factories: Golgi dynamics in plant cells. Trends Plant Sci 6, 160−7.
  155. Neumann, U., Brandizzi, F. and Hawes, C. (2003). Protein transport in plant cells: in and out of the Golgi. Ann Bot (Lond) 92,167−80.
  156. Nickel, W., Brugger, B. and Wieland, F. T. (2002). Vesicular transport: the core machinery of COPI recruitment and budding. J Cell Sci 115, 3235−40.
  157. Nicol, F., His, I., Jauneau, A., Vernhettes, S., Canut, H., Hofte, H. (1998) A plasma membrane-bound putative endo-l, 4-b-Dglucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO 17 (19):5563—5576.
  158. Nufer, O., Guldbrandsen, S., Degen, M., Kappeler, F., Paccaud, J. P., Tani, K. and Hauri, H. P. (2002). Role of cytoplasmic C-terminal amino acids of membrane proteins in ER export. J Cell Sci 115, 619−28.
  159. Okamuro J.K., Caster B., Villarroel R., van Montagu M., Jofuku K.D. (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. USA. 94:70 767 081.
  160. Oparka KJ (2004) Getting the message across: How do plant cells exchange macromolecular complexes? Trends Plant Sci 9:3311
  161. Overall R.L. and Blackman L.M.(1998) Immunolocalization ofthe cytoskeleton to plasmodesmata of Chara corallina. Plant J. 14:733−741.127
  162. Overall R.L. and Blackman L.M. (1996) A model of the macromolecular structure of plasmodesmata. Trends Plant Sei 1: 307−311
  163. Paleotti, O., Macia, E., Luton, F., Klein, S., Partisani, M., Chardin, P., Kirchhausen, T. and Franco, M. (2005). The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes. J Biol Chem 280, 21 661−6.
  164. Paris, N. and Neuhaus, J. M. (2002). BP-80 as a vacuolar sorting receptor. Plant Mol Biol 50,903−14.
  165. Paris, N., Stanley, C. M., Jones, R. L. and Rogers, J. C. (1996). Plant cells contain two functionally distinct vacuolar compartments. Cell 85, 563−72.
  166. Peremyslov VV, Hagiwara Y, Dolja VV (1999) HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc Natl Acad Sei USA 96:14 771−14 776
  167. Petty, I.T.D., Jackson, A.O. (1990). Mutational analysis of barleystripe mosaic virus RNA?. Virology, 179: 712−71
  168. Pilon M, Schekman R (1999) Protein translocation: how Hsp70 pulls it off. Cell 97: 679−682
  169. Pimpl, P., Movafeghi, A., Coughlan, S., Denecke, J., Hillmer, S. and Robinson, D. G. (2000). In situ localization and in vitro induction of plant COPI-coated vesicles. Plant Cell 12,2219−36.
  170. Porte B., Oertel-Buchheit P., Granger-Schnarr M., Schnarr M. (1997). Fos Leucine Zipper Variants with Increased Association Capacity. Nucleic Acids Res. 25(15): 3026−3033.
  171. Pratelli, R., Sutter, J. U. and Blatt, M. R. (2004). A new catch in the SNARE. Trends Plant Sei 9,187−95.
  172. Pruyne DW, Schott DH, Bretscher A (1998) Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J Cell Biol 143: 1931−1945
  173. Qi, Y., Pelissier, T., Itaya, A., Hunt, E., Wassenegger, M. and Ding, B. (2004). Direct role of a viroid RNA motif in mediating directional RNA trafficking across a specific cellular boundary. Plant Cell.16(7): 1741 1752
  174. Radford J., E., and White R., G. (1998) Localization of myosin -like protein to plasmodesmata. Plant J. 14(6): 743−50
  175. Raemdonck, D. van, Pesquet E., Cloquet S., Beeckman H., Boeijan W., Goffner D., El Jaziri M., and Baucher M.(2005). Molecular changes associated with the setting up of secondary growth in aspen. J. of Experimental Botany. 56(418): 2211−2227.
  176. Raes, J., Rohde, A., Holst-Christensen, J., Van de Peer, Y. and Boeijan, W. (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol. 133:1051−1071
  177. Reichel C, Mas P, Beachy RN (1999) The role of the ER and cytoskeleton in plant viral trafficking. Trends Plant Sei 4:45862
  178. Rein, U., Andag, U., Duden, R., Schmitt, H. D. and Spang, A. (2002). ARF-GAP-mediated interaction between the ER-Golgi v-SNAREs and the COPI coat. J Cell Biol 157,395−404.
  179. Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide related signaling. Phytochemistry 57: 929 967
  180. Rinne, P.L.H., Kaikuranta, P.M., van der Schoot, C. (2001). Theshoot apical meristem restores its symplastic organisation duringchilling-induced release from dormancy. Plant J., 26,249−264.
  181. M.R., Lucas W.J. (1990) Plasmodesmata. Annu Rev. Plant. Physiol. Plant Mol. Biol 41: 368−419.
  182. Roberts, A.G., and K.J. Oparka. 2003. Plasmodesmata and the control of symplastic transport. Plant Cell Environ. 26:103−124.
  183. K. (2001) How the Cell Wall Acquired a Cellular Context. Plant Physiology, January 2001, Vol. 125, pp. 127−130.
  184. Roberts A. G. and Oparka K. J. (2003) Plasmodesmata and the control of symplastic transport. Plant, Cell and Environment 26:103−124.
  185. Roberts, A.G., Santa-Cruz, S., Roberts, I.M., Prior, D.A.M., Turgeon,.R., Oparka, K.J. (1997). Phloemunloading in sink leaves ofNicotiana benthamiana: comparison of a fluorescent solute withafluorescent virus. Plant Cell, 9:1381−1396.
  186. Robinson, D. G., Hinz, G. and Holstein, S. E. (1998). The molecular characterization of transport vesicles. Plant Mol Biol 38,49−76.
  187. , M. G. (1999). Inheriting the Golgi. Cell 99, 559−62.
  188. Ruiz-Medrano, R., Xoconostle-Cazares, B., and Lucas, W.J. (1999). Phloem long-distance transport of CmNACP mRNA: Implications for supracellular regulation in plants. Development 126,4405−4419.
  189. Runions J, Brach T, Ku"hner S, Hawes C (2005) Photoactivation of GFP for quantification of protein dynamics within the endoplasmic reticulum membrane. J Exp Bot 57:43−50
  190. Rushton, P.J., Macdonald, H., Huttly, A.K., Lazarus, C.M., and Hooley, R. (1995). Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of a-Amy2 genes. Plant Mol. Biol. 29, 691−70
  191. Rushton, P.J., Torres, J.T., Parniske, M., Wernert, P., Hahlbrock, K., and Somssich, I.E. (1996). Interaction of elicitor-induced DNA-binding proteinswith elicitor response elements in the promoters of parsley PR1 genes. EMBOJ. 15, 5690−5700.
  192. Russinova, E., Borst, J. W., Kwaaitaal, M., Cano-Delgado, A., Yin, Y., Chory, J. and de Vries, S. C. (2004). Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell 16, 3216−29.
  193. Sacher, M., Barrowman, J., Wang, W., Horecka, J., Zhang, Y., Pypaert, M. and Ferro-Novick, S. (2001). TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport. Mol Cell 7,433−42.
  194. Saito, T., Yamana, K., Okada, Y. (1990). Long-distance movement and viral assembly of tobacco mosaic virus mutants. Virology. 176: 329−336.
  195. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning. A Laboratory Manual. 2nd edn. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory.
  196. Sanderfoot, A. A., Assaad, F. F. and Raikhel, N. V. (2000). The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol 124,1558−69.
  197. Sanderfoot, A. A., Kovaleva, V., Bassham, D. C. and Raikhel, N. V. (2001). Interactions between syntaxins identify at least five SNARE complexes within the Golgi/prevacuolar system of the Arabidopsis cell. Mol Biol Cell 12, 3733−43.
  198. Sapperstein, S. K., Walter, D. M., Grosvenor, A. R., Heuser, J. E. and Waters, M. G. (1995). pi 15 is a general vesicular transport factor related to the yeast endoplasmic reticulum to Golgi transport factor Usolp. Proc Natl Acad Sci U S A 92,522−6.
  199. Schott D, Ho J, Pruyne D, Bretscher A (1999) The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J Cell Biol 147: 791−808
  200. Serafini, T., Orci, L., Amherdt, M., Brunner, M., Kahn, R. A. and Rothman, J. E. (1991a). ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67,239−53.
  201. Shorter, J. and Warren, G. (2002). Golgi architecture and inheritance. Annu Rev Cell Dev Biol 18, 379−420.
  202. Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L and Seguin A (2005): CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. The Plant Cell. 17:2059−2076.
  203. Sollner, T., Whiteheart, S. W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P. and Rothman, J. E. (1993). SNAP receptors implicated in vesicle targeting and fusion. Nature 362,318−24.
  204. Solovyev, A. G., Stroganova, T. A., Zamyatnin, A. A., Jr., Fedorkin, O. N., Schiemann, J. and Morozov, S. Y. (2000). Subcellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting ofTGBp2. Virology 269,113−27.
  205. Storms, M.M., Kormelink, R., Peters, D., van Lent, J.W., Goldbach, R.W. (1995). The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology, 214: 485−493.
  206. , T. C. (2004). The synaptic vesicle cycle. Annu Rev Neurosci 27, 509−47.
  207. Surpin, M. and Raikhel, N. (2004). Traffic jams affect plant development and signal transduction. Nat Rev Mol Cell Biol 5,100−9.
  208. Suvorova, E. S., Duden, R. and Lupashin, V. V. (2002). The Sec34/Sec35p complex, a Yptlp effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J Cell Biol 157, 631−43.
  209. Sztul, E. and Lupashin, V. (2006). Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol 290, CI 1−26.
  210. Terry B. R and Robards A.B.(1987) Hydrodynamic radius alone governs the mobility of molecules trough plasmodesmata. Planta 172: 145−157 .
  211. Tilney, L.G., Cooke, T.J., Connelly, P. S., Tilney, M.S. (1991). The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion. J Cell Biol, 112, 739−747.
  212. Trutnyeva K, Bachmaier R, Waigmann E (2005) Mimicking carboxyterminal phosphorylation differentially effects subcellular distribution and cell-to-cell movement of tobacco mosaic virus movement protein. Virology 332: 563−577
  213. E.B. (1982)TransIocation in the staminal hairs of Setcreasea purpurea. I. Study of ultrastructure and cell-to-cell passage of molecular probes. Protoplasma 113:193−201.
  214. Ueda, T. and Nakano, A. (2002). Vesicular traffic: an integral part of plant life. Curr Opin Plant Biol 5, 513−7.
  215. Ueda, T., Ueraura, T., Sato, M. H. and Nakano, A. (2004). Functional differentiation of endosoraes in Arabidopsis cells. Plant J 40,783−9.
  216. Uemura, T., Ueda, T., Ohniwa, R. L., Nakano, A., Takeyasu, K. and Sato, M. H. (2004). Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29,49−65.
  217. Ungermann, C. and Langosch, D. (2005). Functions of SNAREs in intracellular membrane fusion and lipid bilayer mixing. J Cell Sci 118, 381 928.
  218. Van Lent J., Wellink J., and Goldbach R. (1990) Evidence for the involvement of the 58K and 48K proteins in the intercellular movement of cowpea mosaic virus. J.Gen. Virol. 71:219−223.
  219. Wada T, Tachibana T, Shimura Y and Okada K (1997) Epidermal cell differentiation in Arabidopsis determined by a myb homolog, CPC. Science, 277,1113−1116.
  220. Waigmann E, Chen MH, Bachmaier R, Ghoshroy S, Citovsky V (2000) Regulation of plasmodesmal transport by phosphorylation of tobacco mosaic virus cell-to-cell movement protein. EMBO J 19:4875−4884
  221. Waigmann, E., Turner, A., Peart, J., Roberts, K., Zambryski, P. (1997). Ultrastructural analysis of leaf trichome plasmodesmata reveals major differences from mesophyll plasmodesmata. Planta. 203: 75−84.
  222. Waigmann, E., Zambryski, P., 1995. Tobacco mosaic virus movement protein-mediated protein transport between trichrome cells. Plant Celli, im-im.
  223. Wang, Z., Yang, P., Fan, B., and Chen, Z. 1998. An oligo selection procedure for identification of sequence-specific DNA-binding activities associated with plant defense. Plant J. 16:515−522.
  224. Ward T.H., Polishchuk R.S., Caplan S., Hirschberg K. and Lippincottschwartz J. (2001) Maintenance of Golgi structure and function depends on the integrity of ER export. J. Cell Biol., 155, 557−570.
  225. Waters, M. G., Clary, D. O. and Rothman, J. E. (1992). A novel 115-kD peripheral membrane protein is required for intercisternal transport in the Golgi stack. J Cell Biol 118,1015−26.
  226. Wieczorek A and Sanfacon H. (1993) Characterization and subcellular location of Tomato Ringspot nepovirus putative movement protein. Virology,, 194:734−742.
  227. Wickner, W. and Haas, A. (2000). Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms. Annu Rev Biochem 69, 247−75.
  228. Willats WG, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47: 9−27
  229. White, R.G., Badelt, K., Overall, R.L., Vesk, M. (1994). Actin associated with plasmodesmata. Protoplasma, 180, 169−184.
  230. Wolf, S., Deom, C.M., Beachy, R.N., Lucas, W.J. (1989). Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science, 426:377−379.
  231. Wolf S, Deom CM, Beachy R, Lucas WJ (1991) Plasmodesmatal function is probed using transgenic tobacco plants that express a virus movement protein. Plant Cell 3: 593−604
  232. Xiong, Z., Kim, K.H., Giesman-Cookmeyer, D., Lommel, S.A. (1993). The roles of the red necrotic mosaic virus capsid and cell-to-cell movement proteins in systemic infection. Virology, 192,27−32.
  233. Xu, R.M., Carmel, G., Sweet, R.M., Kuret, J., Cheng, X., 1995. Crystal structure of casein kinase-1, a phosphate-directed protein kinase. EMBO J. 14,1015−1023.
  234. Yamakawa, H., Seog, D. H., Yoda, K., Yamasaki, M. and Wakabayashi, T. (1996). Usol protein is a dimer with two globular heads and a long coiled-coil tail. J Struct Biol 116,356−65.
  235. Yahalom, A., Lando, R., Katz, A., Epel, B.L., 1998. A calcium-dependent protein kinase is associated with maize mesocotyl plasmodesmata. J. Plant Physiol. 153, 354−362.
  236. Yahalom A., Warmbrodt R.D., Laird D.W., Traub O., Revel J.P., Willecke K, Epel B.L.(1991). Maize mesocotyl plasmodesmata proteins cross-react with connexin gap junction protein antibodies. Plant Cell 3:407−417.
  237. Yang, P., Wang, Z., Fan, B., Chen, C. and Chen, Z. (1999) A pathogen- and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter. Plant Cell 13: 1779−1790
  238. Yoo, B.C., Kragler, F., Varkonyi-Gasic, E., Haywood, V., Archer-Evans, S., Lee, Y.M., Lough, T.J., Lucas, W.J., 2004. A systemic small RNA signaling system in plants. Plant Cell 16,1979−2000.
  239. Youn B, Camacho R, Moinuddin SG, Lee C, Davin LB, Lewis NG, Kang C (2006). Ciystal structures and catalytic mechanism of the Arabidopsis cinnamyl alcohol dehydrogenases AtCAD5 and AtCAD4. Org. Biomol. Chem., 4: 1687- 1697.
  240. Zambiyski, P., and K. Crawford. 2000. Plasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plants. Annu. Rev. Cell Dev. Biol. 16: 393121.
  241. Zheng H." Wang G." and Zhang L., (1997) Alfalfa Mosaic Virus Movement Protein induces yubules in plant protoplasts. MPMI 10 (No. 8): pp. 1010−1014
  242. Zerial, M. and McBride, H. (2001). Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2,107−17.
  243. Zhao, L., Helms, J. Π’., Brugger, Π’., Harter, C., Martoglio, Π’., Graf, R., Brunner, J. and Wieland, F. T. (1997). Direct and GTP-dependent interaction of ADP ribosylation factor 1 with coatomer subunit beta. Proc Natl Acad Sci U S A 94,4418−23.
  244. Zhao, L., Helms, J. Π’., Brunner, J. and Wieland, F. T. (1999). GTP-dependent binding of ADP-ribosylation factor to coatomer in close proximity to the binding site for dilysine retrieval motifs and p23. J Biol Chem 274,14 198−203.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ