Помощь в учёбе, очень быстро...
Работаем вместе до победы

Исследование механизма репротонирования основания Шиффа при фотоцикле мутантного бактериородопсина D96N

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Предполагается, что все исследованные агенты влияют на равновесие между формами Мз и Мо, смещая его в сторону Мз, а также N0 и N3, смещая его в сторону N3. Стабилизация Мз и N3 происходит либо при фиксации белка ОА или ионами лютеция, либо в результате понижения глицерином и сахарозой активности воды, молекулы которой участвуют в формировании обводненного канала в состоянии МоСдвиг равновесия… Читать ещё >

Содержание

  • ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Строение Пурпурных Мембран и бактериородопсина
      • 1. 1. 1. Структура пурпурных мембран
      • 1. 1. 2. Структура активного центра БР
      • 1. 1. 3. Область белка с внешней стороны мембраны.*
      • 1. 1. 4. Особенности структуры цитоплазматического домена бактериородопсина
    • 1. 2. ФОТОЦИКЛ БР
      • 1. 3. 1. Первичные процессы фотоцикла
      • 1. 3. 2. Депротонирование шиффова основания и выброс протона с внешней стороны мембраны
      • 1. 3. 3. Переключение активного центра с внешнего домена на цитоплазматический
      • 1. 3. 4. Репротонирование шиффова основания
      • 1. 3. 5. Поглощение протона со стороны цитоплазмы и возвращение БР в исходное состояние
  • ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ
    • 2. 1. Препаративные методы
      • 2. 1. 1. Объект исследования
      • 2. 1. 2. Выращивание бактерий
      • 2. 1. 3. Выделение пурпурных мембран
      • 2. 1. 4. Приготовление препаратов
        • 2. 1. 4. 1. Бифункциональные сшивающие агенты
        • 2. 1. 4. 2. Модификация белка вА, РА, ЭМБ и ОМА
        • 2. 1. 4. 3. Модификация белка БА
        • 2. 1. 4. 4. Изучение действия катионов поливалентных металлов на белок
        • 2. 1. 4. 5. Искусственные доноры протона (азид натрия и гидроксиламин)
        • 2. 1. 4. 6. Приготовление солюбилизированного препарата бактериородопсина

Исследование механизма репротонирования основания Шиффа при фотоцикле мутантного бактериородопсина D96N (реферат, курсовая, диплом, контрольная)

Мембранный белок бактериородопсин (БР) был открыт в 1971 году (Oesterhelt and Stoeckenius, 1971), но до сих пор привлекает к себе внимание многих исследователей. Известно, что БР является единственным белком, входящим в состав пурпурных мембран (ПМ) — особых участков плазматической мембраны бактерий Halobacterium salinarium и некоторых других экстремальных галофиллов. Этот белок является светозависимой протонной помпой. Фотоактивность БР обусловлена наличием хромофорной группы — ретиналя. При поглощении ретиналем кванта света происходит ряд циклических превращений молекулы БР. В результате этого процесса на мембране генерируется электрохимический градиент протонов, достаточный для обеспечения клетки энергией при отсутствии кислорода (Stoeckenius et al., 1979; Oesterhelt et al., 1992; Ebrey, 1993; Skulachev, 1993; Lanyi and Varo, 1995).

При фотоцикле БР проходит через ряд функциональных состояний — интермедиатов. В настоящее время интенсивно исследуются молекулярные механизмы транспорта протона. Однако до сих пор недостаточно понятна роль конформационных изменений белка в процессе переноса протона. Ранее были проведены исследования по изменению светорассеяния суспензии ПМ во время фотоцикла (при образовании интермедиата М, переходе M->Ni релаксации в исходное состояние БР), которые свидетельствуют о конформационных изменениях молекулы БР в процессе фотоцикла и изменении кристаллической упаковки БР в мембране (Каулен и др., 1989). Дополнительные свидетельства в пользу конформационных перестроек были получены при изучении влияния на фотоцикл увеличения гидростатического давления (Motoyuki et al., 1980; Varo and Lanyi, 1995).

Кроме того, показано, что кинетические параметры фотоцикла БР дикого типа зависят от интенсивности возбуждающего света (Комраков и др., 1995; Radionov and Kaulen, 1995). 4.

Зависимость скорости распада интермедиата М от интенсивности возбуждающего света наиболее выражена при щелочных значениях рН (Даншина и др., 1992 (b) — Danshina et al., 1992). На основании этих данных была предложена схема, согласно которой, молекулы БР в тримере взаимодейс твуют между собой. Причина такого взаимодействия может заключаться в конформационных изменениях белка при переходе М —> N.

Сложность проведения кинетического анализа при экспериментах с БР дикого типа заключается в том, что варьировать в широких пределах скорость распада М невозможно. В связи с этим для уточнения схемы, описывающей взаимодействие молекул БР в тримерах, мы решили исследовать зависимость скорости распада М от интенсивности возбуждающего света при фотоцикле мутанта по Асп-96 — D96N. У этого мутанта внутрибелковый донор протона Асп-96 заменен на аспарагин. Вследствие этой замены скорость распада М существенно замедляется и становится зависимой от концентрации протонов в среде. Распад М можно ускорить, добавив в среду искусственный донор протонов — азид.

Полученные ранее данные свидетельствуют о значительном замедлении скорости распада интермедиата М в фотоцикле БР дикого типа при действии различными сшивающими агентами: глутаровым альдегидом, диметил-адипимидатом, диметил-суберимидатом (Konishi and Packer, 1976; Konishi et al., 1979). Это дает основания полагать, что в процессе репротонирования шиффового основания большую роль играют конформационные изменения белка.

С помощью сшивающих агентов и других ингибиторов распада М нам представилось возможным определить роль конформационных изменений белка в процессе транспорта протона при фотоцикле БР.

выводы.

1. Показано, что у мутанта 096Ы существуют два пути распада интермедиата М. При высокой ионной силе и рН<5 протон поглощается со стороны цитоплазмы. При рН>5 протон главным образом поглощается обратно с наружной поверхности мембраны.

2. Ингибиторы распада интермедиата М у БР дикого типа (глутаровый альдегид, ионы лютеция, алюминия и глицерин) не влияют на распад интермедиатаМ у мутанта Е)96Ы в отсутствие азида, но ингибируют этот распад в присутствии азида.

3. Все указанные ингибиторы распада интермедиата М ускоряют распад интермедиата N у мутанта 9 614.

4. Ингибиторы распада интермедиата М предотвращают сдвиг максимума дифференциального спектра М у мутанта Б96И в коротковолновую область и вызывают сдвиг минимума дифференциального спектра интермедиата N в коротковолновую область.

5. Предложена схема, согласно которой в состояниях М и N белок может находиться в двух отличающихся спектрально формах с открытым и закрытым протонным каналом. Между этими состояниями существует равновесие. Переход в состояние N осуществляется из открытого состояния М в результате переноса протона на шиффово основание с Асп-96 у БР дикого типа или с молекул искусственных доноров протонов, способных проникать через этот канал, а 13—цис—> полиостыо-трапс — реизомеризация хромофора и восстановление исходного состояния БР происходят из закрытого состояния N. Предполагается, что исследуемые ингибиторы стабилизируют закрытые состояния интермедиатов М и N.

6. Предполагается, что равновесная концентрация открытого состоянияМ при фотоцикле БР дикого типа значительно ниже, чем при фотоцикле мутанта Б96К Стабилизация формы Мо может происходить только при высоких значениях рН, где и наблюдается коротковолновой сдвиг максимума дифференциального спектра интермедиата М.

СПИСОК ИСПОЛЬЗУЕМЫХ ОБОЗНАЧЕНИЙ И СОКРАЩЕНИЙ коэффициент молярной экстинкции. характеристическое время, за которое амплитуда сигнала меняется в е раз. длина волны. максимум спектра абсорбции. константа равновесия реакции. константа скорости реакции. кажущаяся константа скорости реакции. глутаровый альдегид. формальдегид диметил-суберимидат (СюН2(№ 02*2НС1). диметил-адипимидат (С8Н16К202*2НС1).

2-(![-морфолино) этан-сульфоновая кислота) гуанидингидрохлорид (СЫ3Н5*НС1)).

Ы-2-гидроксиэтилпиперазин-]Ч'-2-этансульфоновая кислота янтарный ангидрид (С4Н4О3).

Трис (гидроксиметил)аминометан) закрытая", «открытая» форма интермедиата М форма интермедиата М, белковая структура которого сходна со структурой интермедиата N быстрый и медленный компоненты распада интермедиата М при щелочных значениях рН. закрытая", «открытая» форма интермедиата N бактериородопсин дикого типа бактериородопсин. инфракрасный. комбинационное рассеяние. пурпурная мембрана. фотоэлектронный умножитель этилендиаминтетрауксусная кислота.

ЗАКЛЮЧЕНИЕ

.

В данной работе мы рассмотрели влияние различных ингибиторов распада интермедиата М на фотоцикл БР дикого типа и мутанта по Асп-96, который является внутрибелковым донором протона для основания Шиффа— 096Ы. Кроме того, мы исследовали кооперативные эффекты при фотоцикле БР, возникающие при повышении интенсивности возбуждающего света и особенности фотоцикла мутанта Б96М, а именно, зависимости скорости распада М от рН.

На основании полученных данных мы предложили схему (Рис. 33) фотохимических превращений БР, согласно которой, интермедиаты М и N могут присутствовать в двух формах — «открытой» и «закрытой», между которыми быстро устанавливается равновесие. Эти формы характеризуются состоянием входного протонного канала, а именно степенью его обводненности. Переход в состояние N осуществляется из открытого состояния М (Мо) в результате переноса протона на основание Шиффа с Асп-96 у БР дикого типа или с молекулы искусственного донора протона (протонированной формы азидоводорода), способной проникать в этот канал.

Предполагается, что все исследованные агенты влияют на равновесие между формами Мз и Мо, смещая его в сторону Мз, а также N0 и N3, смещая его в сторону N3. Стабилизация Мз и N3 происходит либо при фиксации белка ОА или ионами лютеция, либо в результате понижения глицерином и сахарозой активности воды, молекулы которой участвуют в формировании обводненного канала в состоянии МоСдвиг равновесия к Мз уменьшает скорость распада интермедиата М. Прежняя скорость распада М достигается при увеличении концентрации азидоводорода.

Данная схема позволяет также объяснить ускорение распада интермедиата N ингибиторами распада интермедиата М, если учесть, что «открытые» и «закрытые» формы.

Показать весь текст

Список литературы

  1. C.B., Драчев J1.A., Каулен А. Д., Корана Х. Г., Марта Т., Моги Т., Скулачев В. П. Исследование интермедиата N с помощью мутантных форм бактериородопсина по Асп-96. // Биохимия. 1992 (а). Т. 57. № 10. С. 1574−1585.
  2. C.B., Драчев JI.A., Каулен А. Д., Скулачев В. П. Репротонирование хромофорной группы бактериородопсина: спектральный и электрический анализ. // Биохимия. 1992 (Ь). Т. 57, С. 738−748.
  3. В. Катализ в химии и энзимологии. М.: Мир, 1972. С. 197−224.
  4. Драчев J1.A., Каулен А. Д., Комраков А. Ю. Природа многокомпонентности образования интермедиата M при фотоцикле бактериородопсина. III. Кинетический анализ влияния азида на фотоцикл D96N бактериородопсина. // Биохимия. 1994. Т. 59, С. 287−291.
  5. Л.А., Каулен А. Д., Хитрина Л. В. Соли поливалентных металлов как ингибиторы фотохимических превращений бактериородопсина. // Биохимия. 1988. Т. 53, С. 663−667.
  6. Л.А., Каулен А. Д., Корана Х. Г., Моги Т., Otto X., Скулачев В. П., Хейн М. П., Хольц М. Участие карбоксильной группы Асп-96 в переносе протона по входному протонпроводящему пути в бактериородопсине. // Биохимия. 1989. Т. 54. С. 1467−1477.
  7. А.Д., Драчев Л. А., Зорина В. В. Анализ кинетики изменения светорассеяния в суспензии пурпурных мембран. // Биол. мембраны. 1989. Т. 6. № 2. С. 149−152.
  8. А.Ю., Радионов А. Н., Каулен А. Д. Взаимодействие бактериородопсиновыхмолекул в пурпурных мембранах при фотоцикле. // Мол. биол. 1995. Т. 29. № 6. С. 1368−1375.100
  9. А.Н., Каулен А. Д. Сравнение действия ингибиторов на распад интермедиата М при фотоцикле бактериородопсина дикого типа и мутанта D96N. // Биохимия. 1996. Т. 61. № 9. С. 1537−1551.
  10. ХодоновА.А., Еремин С. В., ЛокшинДж.Л., Швец В. И., Демина О. В., ХитринаЛ.В., Каулен А. Д. Аналоги ретиналя и их роль в исследованиях бактериородопсина. // Биоорган, химия. 1996. Т. 22. № 10−11. С. 745−776.
  11. Ames J.B., Mathies R.A. The role of back-reactions and proton uptake during the N —> О transition in bacteriorhodopsin’s photocycle: a kinetic resonance Raman study. // Biochemistry. 1990. Vol. 29. N 31. P. 7181−7190.
  12. Balashov S.P., Imasheva E.S., GovindjeeR., Ebrey T.G. Titration of Aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release. // Biophys. J. 1996. Vol. 70. N 1. P. 473−481.
  13. BouscheO., Braiman M., He Y.-W., Marti T., KhoranaH.G., Rothschild K.J. Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence that Asp-96 deprotonates during the M-N transition. //J. Biol. Chem. 1991. Vol. 266. N 17. P. 11 063−11 067.
  14. Braiman M.S., Bousche O., Rothschild K.J. Protein dynamics in the bacteriorhodopsin photocycle: submillisecond Fourier transform infrared spectra of the L, M, and N photointermediates. // Proc. Nat. Acad. Sci. USA. 1991. Vol. 88. N 6. P. 2388−2392.
  15. Brown L.S., Bonet L., Needleman R., Lanyi J.K. Estimated acid dissociation constants of the Schiff base, Asp-85, and Arg-82 during the bacteriorhodopsin photocycle. // Biophys. J. 1993. Vol. 65. N l.P. 124−130.
  16. Brown L.S., Lanyi J.K. Determination of the transiently lowered pKa of the retinal Schiff base during the photocycle of bacteriorhodopsin. // Proc. Nat. Acad. Sci. USA. 1996. Vol.93. N4. P. 1731−1734.
  17. Brown L.S., Sasaki J., Kandori H., Maeda A., Needleman R., Lanyi J.K. Glutamic acid 204 is the terminal proton release group at the extracellular surface of bacteriorhodopsin. // J. Biol. Chem. 1995. Vol. 270. N 45. P. 27 122−27 126.
  18. Brown L.S., Varo G., Needleman R. and Lanyi J.K. Functional significance of protein conformation change at the cytoplasmic end of helix F during the bacteriorhodopsin photocycle. // Biophys. J. 1995. Vol. 69. P. 2103−2111.
  19. Brown L., Yamazaki Y., Maeda A., Sun L., Needleman R. and Lanyi J.K. The proton transfers in the cytoplasmic domain of bacteriorhodopsin are facilitated by a cluster of interacting residues. // J. Mol. Biol. 1994. Vol. 239. N 3. P. 401−414.
  20. ButtH.J., FendlerK., Bamberg E., TittorJ., OesterheltD. Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. // EMBO J. 1989. Vol. 8. N 6. P. 1657−1663.
  21. Cao Y., Brown L.S., Sasaki J., Maeda A., Needleman R., Lanyi J.K. Relationship of proton release at the extracellular surface to deprotonation of the Schiff base in the bacteriorhodopsin photocycle. //Biophys. J. 1995. Vol. 68. N 4. P. 1518−1530.
  22. Cao Y., Varo G., Chang M., Ni B.F., Needleman R., Lanyi J.K. Water is required for proton transfer from Aspartate-96 to the bacteriorhodopsin Schiff base. // Biochemistry. 1991. Vol. 30. N45. P. 10 972−10 979.
  23. Chernavskii D.S., Chizhov I.V., LozierR.H., MurinaT.M., Prokhorov A.M., Zubov B.V. Kinetic model of bacteriorhodopsin photocycle — pathway from M state to Br. // Photochem. and Photobiol. 1989. Vol. 49. N 5. P. 649−653.
  24. Chu F.S., Crary E., Bergdoll M.S. Chemical modification of amino groups in staphylococcal enterotoxin B. // Biochemistiy. 1969. Vol. 8. N 7. P. 2890−2896.
  25. Czege J. Light scattering changes and protein distortion in the bacteriorhodopsin during the photocycle. // FEBS Lett. 1988. Vol. 242. N 1. P. 89−93.
  26. Czege J. and Reinisch L. Cross-correlated photon scattering during the photocycle of bacteriorhodopsin. // Biophys. J. 1990. Vol. 58. N 3. P. 721−729.
  27. Dancshazy Z., Govindjee R., Ebrey T.G. Independent photocycles of the spectrally distinct forms of bacteriorhodopsin. // Proc. Nat. Acad. Sci. USA. 1988. Vol. 85. N 17. P. 6358−6361.
  28. Dancshazy Z., Tokaji Z. Actinic light density dependence of the bacteriorhodopsin photocycle. // Biophys. J. 1993. Vol. 65. N 2. P. 823−831.
  29. Danshina S.V., Drachev L.A., Kaulen A.D., Skulachev V.P. The inward proton pathway in bacteriorhodopsin: the role of M412 and P (N)560 intermediates. // Photochem. and Photobiol. 1992. Vol. 55. N5. P. 735−740.
  30. De Groot H.J.M., Harbison G.S., Herzfeld J., Griffin R.G. Nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin— counterion effects on the I5N shift anisotropy. // Biochemistry. 1989. Vol. 28. N 8. P. 3346−3353.
  31. Delaney J.K., Schweiger U., Subramaniam S. Molecular mechanism of protein-retinal coupling in bacteriorhodopsin. // Proc. Nat. Acad. Sci. USA. 1995. Vol. 92. N 24. P. 11 120−11 124.
  32. DencherN.A., Dresselhaus D., Zaccai G., BiildtG. Structural changes in bacteriorhodopsin during proton translocation revealed by neutron diffraction. // Proc. Nat. Acad. Sci. USA. 1989. Vol. 86. N 20. P. 7876−7879.
  33. DencherN.A., HeynM.P. Bacteriorhodopsin monomers pump protons. // FEBS Lett. 1979. Vol. 108. N2. P. 307−310.
  34. Drachev A.L., Drachev L.A., Kaulen A.D., Khitrina L.V. The action of lanthanum ions and formaldehyde on the proton-pumping function of bacteriorhodopsin. // Europ. J. Biochem. 1984. Vol. 138. N2. P. 349−356.
  35. Drachev L.A., Dracheva S.V., Kaulen A.D. pH dependence of the formation of an M-type intermediate in the photocycle of 13-d.s-bacteriorhodopsin. // FEBS Lett. 1993. Vol. 332. N 1−2. P. 67−70.
  36. Drachev L.A., Kaulen A.D., KomrakovA.Y. Interrelations of M-intermediates in bacteriorhodopsin photocycle. // FEBS Lett. 1992. Vol. 313. N 3. P. 248−250.
  37. Drachev L.A., Kaulen A.D., Skulachev V.P. Correlation of photochemical cycle, H+ release and uptake, and electric events in bacteriorhodopsin. // FEBS Lett. 1984. Vol. 178. N 2. P. 331−335.
  38. Drachev L.A., Kaulen A.D., Skulachev V.P., Zorina V.V. Protonation of a novel intermediate P is involved in the M -" Br step of the bacteriorhodopsin photocycle. // FEBS Lett. 1986. Vol. 209. N2. P. 316−320.
  39. Drachev L.A., Kaulen A.D., Skulachev V.P., Zorina V.V. The mechanism of II1 transfer by bacteriorhodopsin— the properties and the function of intermediate P. // FEBS Lett. 1987. Vol. 226. N 1. P. 139−144.
  40. Drachev L.A., Kaulen A.D., Zorina V.V. Light scattering changes in the bacteriorhodopsin photocycle. // FEBS Lett. 1989. Vol. 243. N 1. P. 5−7.
  41. Dracheva S., Bose S., Hendler R.W. Chemical and functional studies on the importance of purple membrane lipids in bacteriorhodopsin photocycle behavior. // FEBS Lett. 1996. Vol. 382. P. 209−212.
  42. Druckmann S, Ottolenghi M, PandeA, PandeJ, CallenderRH. Acid-base equilibrium of the Schiff base in bacteriorhodopsin. // Biochemistry. 1982. Vol. 21. N 20. P. 4953−4959.
  43. Ebrey T.G. Light energy transduction in bacteriorhodopsin. // Thermodynamics of Membrane Receptors and Channels: CRC Press, 1993. P. 353−387.
  44. Eisfeld W., Pusch C., Diller R., Lohrmann R., Stockburger M. Resonance Raman and optical transient studies on the light-induced proton pump of bacteriorhodopsin reveal parallel photocycles. // Biochemistry. 1993. Vol. 32. N 28. P. 7196−7215.
  45. Essen L.O., SiegertR., Lehmann W.D., OesterheltD. Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. // Proc. Nat. Acad. Sei. USA. 1998. Vol. 95. P. 11 673−11 678.
  46. Friedman N., Gat Y., Sheves M., Ottolenghi M. On the heterogeneity of the M population in the photocycle of bacteriorhodopsin. // Biochemistry. 1994. Vol. 33. N 49. P. 14 758−14 767.
  47. GartyH., Caplan S.R., CahenD. Photoacoustic photocalorimetry and spectroscopy of Halobacterium halobium purple membranes. // Biophys. J. 1982. Vol. 37. N 2. P. 405−415.
  48. Gerwert K., Hess B., Soppa J., Oesterhelt D. Role of Aspartate-96 in proton translocation by bacteriorhodopsin. // Proc. Nat. Acad. Sci. USA. 1989. Vol. 86. N 13. P. 4943−4947.
  49. Glaeser R.M., Baldwin J., Ceska T.A., Henderson R. Electron diffraction analysis of the M412 intermediate of bacteriorhodopsin. // Biophys. J. 1986. Vol. 50. N 5. P. 913−920.
  50. Gounaris A.D., Perlmann G.E. Succinylation of pepsinogen. // J. Biol. Chem. 1967. Vol. 242. P. 2739−2745.
  51. GrigorieffN., Ceska T.A., Downing K.H., Baldwin J.M., Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. // J. Mol. Biol. 1996. Vol. 259. N 3. P. 393−421.
  52. Grzesiek S., Dencher N.A. Time course and stoichiometry of light-induced proton release and uptake during the photocycle of bacteriorhodopsin. // FEBS Lett. 1986. Vol. 208. N 2. P. 337−342.
  53. Hanamoto J.H., Dupuis P., el-Sayed M.A. On the protein (tyrosine)-chromophore (protonated Schiff base) coupling in bacteriorhodopsin. // Proc. Nat. Acad. Sci. USA. 1984. Vol. 81. N22. P. 7083−7087.
  54. Hashimoto S., Sasaki M. and Takeuchi H. Ultraviolet Resonance Raman evidence for the opening of a water-permeable channel in the M to N transition of bacteriorhodopsin. // J. Am. Chem. Soc. 1998. Vol. 120. P. 443−444.
  55. Hatanaka M., Kandori H., Maeda A. Localization and orientation of functional water molecules in bacteriorhodopsin as revealed by polarized Fourier transform infrared spectroscopy. // Biophys. J. 1997. Vol. 73. P. 1001−1006.
  56. HauptsU., TittorJ., Bamberg E., OesterheltD. General concept for ion translocation by halobacterial retinal proteins: the isomerization/ switch/transfer (1ST) model. // Biochemistry. 1997. Vol. 36. N l.P. 2−7.
  57. Heberle J., Dencher N.A. The surface of the purple membrane: a transient pool for protons? // Struct. Funct. Ret. Prot.: Ed. J.L. Rigaud, Coll. INSERM, 1992. Vol. 221. P. 221−224.
  58. Henderson R., Baldwin J.I., CescaT.A., ZemlinF., BeckmannE. Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy. // J. Mol. Biol. 1990. Vol. 213. P. 899−930.
  59. Hendler R.W., Dancshazy Z., Bose S., Shrager R.I., Tokaji Z. Influence of excitation energy on the bacteriorhodopsin photocycle. // Biochemistry. 1994. Vol. 33. N 15. P. 4604−4610.
  60. IharaK., AmemiyaT., MiyashitaY., MukohataY. Met-145 is a key residue in the dark adaptation of bacteriorhodopsin homologs. // Biophys. J. 1994. Vol. 67. N 3. P. 1187−1191.
  61. Jonas R., Ebrey T.G. Binding of a single divalent cation directly correlates with the blue-to-purple transition in bacteriorhodopsin. // Proc. Nat. Acad. Sci. USA. 1991. Vol. 88. N 1. P. 149 153.
  62. Jonas R., Koutalos Y., Ebrey T.G. Purple membrane: surface charge density and the multiple effect of pH and cations. // Photochem. and Photobiol. 1990. Vol. 52. N 6. P. 1163−1177.
  63. Kalaidzidis I.V., Belevich I.N., KaulenA.D. Photovoltage evidence that Glu-204 is the intermediate proton donor rather than the terminal proton release group in bacteriorhodopsin. // FEBS Lett. 1998. Vol. 434. P. 197−200.
  64. KaliskyO., Ottolenghi M., Honig B., KorensteinR. Environmental effects on formation and photoreaction of the M412 photoproduct of bacteriorhodopsin: implications for the mechanism of proton pumping. // Biochemistry. 1981. Vol. 20. N 3. P. 649−655.
  65. Kamikubo H., Kataoka M., Varo G., Oka T., Tokunaga F., Needleman R., Lanyi J.K. Structure of the N intermediate of bacteriorhodopsin revealed by X-ray diffraction. // Proc. Nat. Acad. Sci. USA. 1996. Vol. 93. N 4. P. 1386−1390.
  66. KandoriH., YamazakiY., Sasaki J., NeedlemanR., Lanyi J.K., MaedaA. Water-mediated proton transfer in proteins— an FTIR study of bacteriorhodopsin. // J.Am. Chem. Soc. 1995. Vol. 117. N7. P. 2118−2119.
  67. Kataoka M., Kamikubo H., Tokunaga F., Brown L.S., Yamazaki Y., Maeda A., Sheves M., NeedlemanR., Lanyi J.K. Energy coupling in an ion pump: the reprotonation switch of bacteriorhodopsin. // J. Mol. Biol. 1994. Vol. 243. N 4. P. 621−638.
  68. Kates M., Kushwaha S.C., Sprott G.D. Lipids of purple membrane from extreme halophiles and of methanogenic bacteria. // Meth. Enzymol. 1982. Vol. 88. N 1. P. 98−111.
  69. Koch M.H.J., Dencher N.A., Oesterhelt D., Plohn H.J., Rapp G., Biildt G. Time-resolved X-ray diffraction study of structural changes associated with the photocycle of bacteriorhodopsin. // EMBO J. 1991. Vol. 10. N 3. P. 521−526.
  70. Komrakov A.Y., KaulenA.D. On the two forms of bacteriorhodopsin. // FEBS Lett. 1994. Vol. 340. N3. P. 207−210.
  71. KomrakovA.Y., KaulenA.D. M decay in the bacteriorhodopsin photocycle: effect of cooperativity and pH. // Biophys. Chem. 1995. Vol. 56. N 1−2. P. 113−119.
  72. KonishiT., Packer L. Light-dark conformational states in bacteriorhodopsin. // Biochem. and Biophys. Res. Commun. 1976. Vol. 72. N 4. P. 1437−1442.
  73. Konishi T., Tristram S., Packer L. The effect of cross-linking on photocycling activity of bacteriorhodopsin. // Photochem. and Photobiol. 1979. Vol. 29. P. 353−358.
  74. KorensteinR. and HessB. Hydration effects on the photocycle of bacteriorhodopsin in thin layers of purple membranes. //Nature. 1977. Vol. 270. N 5633. P. 184−186.
  75. Kouyama T., Nasuda-Kouyama A., Ikegami A., Mathew M.K., Stoeckenius W. Bacteriorhodopsin photoreaction — identification of a long-lived intermediate N (P, R350) at high pH and its M-like photoproduct. // Biochemistry. 1988. Vol. 27. N 16. P. 5855−5863.
  76. Kuschmitz D., Hess B. Trans-cis isomerization of the retinal chromophore of bacteriorhodopsin during the photocycle. // FEBS Lett. 1982. Vol. 138. N 1. P. 137−140.
  77. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T. // Nature. 1970. Vol. 227. P. 680.
  78. Lanyi J.K. Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin. // Biochim. et Biophys. Acta. 1993. Vol. 1183. N 2. P. 241−261.
  79. Lanyi J.K., Varo G. The photocycles of bacteriorhodopsin. // Isr. J. Chem. 1995. Vol. 35. N 34. P. 365−385.
  80. LinG.C., AwadE.S., El-SayedM.A. Temperature and pH dependence of the deprotonation step — L-550 M-412 in the bacteriorhodopsin photocycle. // J. Phys. Chem. 1991. Vol. 95. N 25. P. 10 442−10 447.
  81. LiuS.Y. Light-induced currents from oriented purple membrane: -I. Correlation of the microsecond component (B2) with the L-M photocycle transition. // Biophys. J. 1990. Vol. 57. N 5. P. 943−950.
  82. LiuS.Y., EbreyT.G. Photocurrent measurements of the purple membrane oriented in a polyacrylamide gel. // Biophys. J. 1988. Vol. 54. N 2. P. 321−330.
  83. LozierR.H., Xie A., Hofrichter J., Clore G.M. Reversible steps in -the bacteriorhodopsin photocycle. // Proc. Nat. Acad. Sci. USA. 1992. Vol. 89. N 8. P. 3610−3614.
  84. LueckeH., Richter H.-T., LanyiJ.K. Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. // Science. 1998. Vol. 280. P. 1934−1937.
  85. LueckeH., SchobertB., Richter H.-T., Cartailler J.-P., LanyiJ.K. Structure of bacteriorhodopsin at 1.55 A resolution. // J. Mol. Biol. 1999. Vol. 291. P. 899−911.
  86. MaedaA., OguraT., KitagawaT. Resonance Raman study on proton-dissociated state of bacteriorhodopsin— stabilization of L-like intermediate having the all-trans chromophore. // Biochemistry. 1986. Vol. 25. N 10. P. 2798−2803.
  87. MaedaA., Takeuchi Y., YoshizawaT. Absorption spectral properties of acetylated bacteriorhodopsin in purple membrane depending on pH. // Biochemistry. 1982. Vol.21. N 18. P. 4479483.
  88. Marti T., Otto H., Mogi T., Rosselet S.J., Heyn M.P., Khorana H.G. Bacteriorhodopsin mutants containing single substitutions of serine or threonine residues are all active in proton translocation. // J. Biol. Chem. 1991. Vol. 266. N 11. P. 6919−6927.
  89. Mathies R.A., Lin S.W., Ames J.B., Pollard W.T. From femtoseconds to biology: mechanism of bacteriorhodopsin’s light-driven proton pump. // Annu. Rev. Biophys. Biophys. Chem. 1991. Vol.20. P. 491−518.
  90. Means G.E., Feeney R.E. Chemical modification of proteins. // Holden-Day, Inc. 1971.
  91. Milder S.J., Thorgeirsson T.E., Miercke L.J.W., Stroud R.M., Kliger D.S. Effects of detergent environments on the photocycle of purified monomeric bacteriorhodopsin. // Biochemistry. 1991. Vol. 30. N7. P. 1751−1761.
  92. Miller A., Oesterhelt D. Kinetic optimization of bacteriorhodopsin by aspartic acid 96 as an internal proton donor. // Biochim. et Biophys. Acta. 1990. Vol. 1020. N 1. P. 57−64.
  93. Mogi T., Stern L.J., Marti T., Chao B.H., Khorana H.G. Structure-function studies on bacteriorhodopsin. 7. Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. // Proc. Nat. Acad. Sei. USA. 1988. Vol. 85. N 12. P. 4148152.
  94. MotoyukiT., Thomas G. Effect of high pressure on the absorption spectrum and isomeric composition of bacteriorhodopsin. // Biophys. J. 1980. Vol. 30. P. 149−158.
  95. Mowery P.C., Lozier R.H., Chae Q., Tseng Y.W., Taylor M., Stoeckenius W. Effect of acid pH on the absorption spectra and photoreactions of bacteriorhodopsin. // Biochemistry. 1979. Vol. 18. N 19. P. 4100−4107.
  96. Oesterhelt D., Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. // Nature, New Biol. 1971. Vol. 233. N 39. P. 149−152.
  97. Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. // Meth. Enzymol. 1974. Vol. 31(A). P. 667−678.
  98. Oesterhelt D., TittorJ., Bamberg E. A unifying concept for ion translocation by retinal proteins. // J. Bioenerg. and Biomembr. 1992. Vol. 24. N 2. P. 181−191.
  99. OhtaniH., KobayashiT., IwaiJ.I., IkegamiA. Picosecond and nanosecond spectroscopies of the photochemical cycles of acidified bacteriorhodopsin. // Biochemistry. 1986. Vol.25. N11. P.3356−3363.
  100. OrmosP. Infrared spectroscopic demonstration of a conformational change in bacteriorhodopsin involved in proton pumping. // Proc. Nat. Acad. Sci. USA. 1991. Vol. 88. N 2. P. 473−477.
  101. Ormos P., Der A., Gergely C., Kruska S., Szaraz S. and Tokaji Z. The effect of azide on the photocycle of bacteriorhodopsin. // Photochem. and Photobiol. J. 1997. Vol. 40. P. 111−119.
  102. Ort D.R., Parson W.W. Enthalpy changes during the photochemical cycle of bacteriorhodopsin. // Biophys. J. 1979. Vol. 25(2. Pt 1). P. 355−364.
  103. Otto H., Marti T., Holz M., Mogi T., Lindau M., Khorana H.G., Heyn M.P. Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin. // Proc. Nat. Acad. Sci. USA. 1989. Vol. 86. N 23. P. 9228−9232.
  104. Peters K., Richards M. Chemical cross-linking reagents and problems in studies of membrane structure. // Annu. Rev. Biochem. 1977. Vol. 46. P. 523−551.
  105. Provencher S.W. A Fourier method for the analysis of exponential decay curves. // Biophys. J. 1976. Vol. 16. P. 27−41.
  106. Radionov A.N., Kaulen A.D. Cooperative phenomena in the photocycle of D96N mutant of bacteriorhodopsin. // FEBS Lett. 1995. Vol. 377. P. 330−332.
  107. Radionov A.N., Kaulen A.D. Complicated character of the M decay pH dependence in the D96N mutant is due to the two pathways of the M decay. // FEBS Lett. 1996(b). Vol. 399. P. 251 254.
  108. Radionov A.N., Kaulen A.D. Two bacteriorhodopsin M intermediates differing in accessibility of the Schiff base for azide. // FEBS Lett. 1996©. Vol. 387. P. 122−126.
  109. Radionov A.N., Kaulen A.D. Inhibition of the Ml →• M2 (Mci0seci -" Mopen) transition in the D96N mutant photocycle and its relation to the corresponding transition in wild-type bacteriorhodopsin. // FEBS Lett. 1997. Vol. 409. P. 137−140.
  110. Rammeisberg R., Huhn G., Lubben M., Gerwert K. Bacteriorhodopsin’s intramolecular protonrelease pathway consists of a hydrogen-bonded network. // Biochemistry. 1998. Vol. 37. P. 50 015 009.
  111. Richter H.-T., Brown L.S., Needleman R., Lanyi J.K. A linkage of the pKa’s of Asp-85 and Glu-204 forms part of the reprotonation switch of bacteriorhodopsin. // Biochemistry. 1996. Vol. 35. N13. P. 4054^4062.
  112. Rink T., RiesleJ., Oesterhelt D., GerwertK. and Steinhoff H.J. Spin-labeling studies of the conformational changes in the vicinity of D36, D38, T46 and El 61 of bacteriorhodopsin during the photocycle. // Biophys. J. 1997. Vol. 73. P. 983−993.
  113. Rodig C., SiebertF. Distortion of the L→M transition in the photocycle of the bacteriorhodopsin mutant D96N: a time-resolved step-scan FTIR investigation. // FEBS Lett. 1999. Vol. 445. P. 14−18.
  114. Rothschild K.J., He Y.-W., Sonar S., Marti T., Khorana H.G. Vibrational spectroscopy of bacteriorhodopsin mutants: evidence that Thr-46 and Thr-89 form part of a transient network of hydrogen bonds. // J. Biol. Chem. 1992. Vol. 267. N 3. P. 1615−1622.
  115. Sass H.J., GessenichR., Koch M.N.J., Oesterhelt D., DencherN.A., BiildtG. and Rapp G. Evidence for charge-controlled conformational changes in the photocycle of bacteriorhodopsin. // Biophys. J. 1998. Vol. 75. P. 399−405.
  116. Schulten K., Schulten Z., Tavan P. An isomerization model for the pump cycle of bacteriorhodopsin. // Information and Energy Transduction in Biological Membranes: Alan R. Liss, New York, Progr. Clin. Biol. Res., 1984. Vol. 164. P. 113−131.
  117. Schulten K., Tavan P. A mechanism for the light-driven proton pump of Halobacterium halobium. //Nature. 1978. Vol. 272. N 5648. P. 85−86.
  118. ShichidaY., MatuokaS., HidakaY., YoshizawaT. Absorption spectra of intermediates of bacteriorhodopsin measured by laser photolysis at room temperatures. // Biochim. et Biophys. Acta. 1983. Vol. 723. N 2. P. 240−246.
  119. SiebertF., Mantele W., Kreutz W. Evidence for the protonation of two internal carboxylic groups during the photocycle of bacteriorhodopsin. // FEBS Lett. 1982. Vol. 141. N 1. P. 82−87.
  120. Skulachev V.P. Interrelations of bioenergetic and sensory functions of the retinal proteins. // Quart. Rev. Biophys. 1993. Vol. 26. N 2. P. 177−199.
  121. Smith S.O., PardoenJ.A., Mulder P.P.J., Curry B., Lugtenburg J., Mathies R. Chromophore structure in bacteriorhodopsin’s 0640 photointermediate. // Biochemistry. 1983. Vol.22. N26. P. 6141−6148.
  122. Souvignier G., GerwertK. Proton uptake mechanism of bacteriorhodopsin as determined by time-resolved stroboscopic FTIR spectroscopy. // Biophys. J. 1992. Vol. 63. N 5. P. 1393−1405.
  123. Steinhoff H.J., Mollaaghababa R., Altenbach C., Hideg K., Krebs M., KhoranaH.G., Hubbell W.L. Time-resolved detection of structural changes during the photocycle of spin-labeled bacteriorhodopsin. // Science. 1994. Vol. 266. N 5182. P. 105−107.
  124. Stoeckenius W., Lozier R.H., Bogomolni R.A. Bacteriorhodopsin and the purple membrane of halobacteria. // Biochim. et Biophys. Acta. 1979. Vol. 505. P. 215−278.
  125. Subramaniam S., GersteinM., Oesterhelt D., Henderson R. Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. // EMBO J. 1993. Vol. 12. N 1. P. 1−8.
  126. Subramaniam S., Lindahl M., BulloughP., Faruqi A.R., TittorJ., Oesterhelt D., Brown L., Lanyi J., Henderson R. Protein conformational changes in the bacteriorhodopsin photocycle. // J. Mol. Biol. 1999. Vol. 287. P. 145−161.
  127. Szaraz S., Oesterhelt D., Ormos P. pH-induced structural changes in bacteriorhodopsin studied by Fourier transform infrared spectroscopy. // Biophys. J. 1994. Vol. 67. N 4. P. 1706−1712.
  128. Tavan P., Schulten K., Oesterhelt D. The effect of protonation and electrical interactions on the stereochemistry of retinal Schiff bases. // Biophys. J. 1985. Vol. 47. N 3. P. 415130.
  129. Thorgeirsson T.E., Xiao W., Brown L.S., NeedlemanR., Lanyi J.K. Shin Y.-K. Transient channel-opening in bacteriorhodopsin: an EPR study. // J. Mol. Biol. 1997. Vol. 273, P. 951−957.
  130. TittorJ., Soell C., Oesterhelt D., Butt H. J., Bamberg E. A defective proton pump, point-mutated bacteriorhodopsin Asp96 -" Asn is fully reactivated by azide. // EMBO J. 1989. Vol. 8. N 11. P. 3477−3482.
  131. TittorJ., Wahl M., SchweigerU., Oesterhelt D. Specific acceleration of de- and reprotonation steps by azide in mutated bacteriorhodopsin. // Biochim. et Biophys. Acta. 1994. Vol. 1187. N2. P. 191−197.
  132. TokajiZ., DancshazyZ. Light-induced, long-lived perturbation of the photocycle of bacteriorhodopsin. // FEBS Lett. 1991. Vol. 281. N 1−2. P. 170−172.
  133. Turner G.J., Miercke L.J.W., Thorgeirsson T.E., KligerD.S., Betlach M.C., Stroud R.M. Bacteriorhodopsin D85N— three spectroscopic species in equilibrium. // Biochemistry. 1993. Vol. 32. N5. P. 1332−1337.
  134. Varo G., Keszthelyi L. Photoelectric signal from dried oriented purple membranes of Halobacterium halobium. // Biophys. J. 1983. Vol. 43. N 1. P. 47−51.
  135. Varo G., Lanyi J.K. Photoreactions of bacteriorhodopsin at acid pH. // Biophys. J. 1989. Vol. 56. N6. P. 1143−1151.
  136. VaroG., Lanyi J.K. Pathways of the rise and decay of the M-photointermediate (s) of bacteriorhodopsin. // Biochemistry. 1990. Vol. 29. N 9. P. 2241−2250.
  137. VaroG., Lanyi J.K. Distortions in the photocycle of bacteriorhodopsin at moderate dehydration. // Biophys. J. 1991 (a). Vol. 59. N 2. P. 313−322.
  138. VaroG., Lanyi J.K. Kinetic and spectroscopic evidence for an irreversible step between deprotonation and reprotonation of the Schiff base in the bacteriorhodopsin photocycle. // Biochemistry. 1991 (b). Vol. 30. N 20. P. 5008−5015.
  139. VaroG., Lanyi J.K. Thermodynamics and energy coupling in the bacteriorhodopsin photocycle. // Biochemistry. 1991 ©. Vol. 30. N 20. P. 5016−5022.
  140. Varo G., Lanyi J.K. Effects of hydrostatic pressure on the kinetics reveal a volume increase during the bacteriorhodopsin photocycle. // Biochemistry. 1995. Vol. 34. N 38. P. 12 161−12 169.
  141. Varo G., Needleman R., Lanyi J.K. Protein structural change at the cytoplasmic surface as the cause of cooperativity in the bacteriorhodopsin photocycle. // Biophys. J. 1996. Vol.70. N 1. P. 461−467.
  142. Varo G., Zimanyi L., Chang M., Ni B., Needleman R., Lanyi J.K. A residue substitution near the (3-ionone ring of the retinal affects the M substates of bacteriorhodopsin. // Biophys. J. 1992. Vol. 61. N3. P. 820−826.
  143. Vonck J. A three-dimensional difference map of the N intermediate in the bacteriorhodopsin photocycle — part of the F helix tilts in the M to N transition. // Biochemistry. 1996. Vol. 35. N 18. P. 5870−5878.
  144. Weik M., Zaccai G., Dencher N.A., Oesterhelt D., Haub T. Structure and hydration of the M-state of the bacteriorhodopsin mutant D96N studied by neutron diffraction. // J. Mol. Biol. 1998. Vol. 275. P. 625−634.
  145. Yoshida M., Ohno K., Takeuchi Y. Altered activity of bacteriorhodopsin in high concentrations of guanidine hydrochloride. // J. Biochem. 1980. Vol. 87. N 2. P. 491−495.
  146. Zimanyi L., Cao Y., Needleman R., Ottolenghi M., Lanyi J.K. Pathway of proton uptake in the bacteriorhodopsin photocycle. // Biochemistry. 1993. Vol. 32. N 30. P. 7669−7678.
  147. Zimanyi L., Varo G., Chang M., Ni B., Needleman R., Lanyi J.K. Pathways of proton release in the bacteriorhodopsin photocycle. //Biochemistry. 1992. Vol. 31. N 36. P.-8535−8543.
Заполнить форму текущей работой