Помощь в учёбе, очень быстро...
Работаем вместе до победы

Преобразование акустического сигнала в инфракрасный диапазон при передаче

РефератПомощь в написанииУзнать стоимостьмоей работы

Следует учитывать, что и защищаемый речевой сигнал и защитный шум распространяются в пространстве и обеспечить полную идентичность распределения их в пространстве крайне сложно. Поэтому во многих случаях защитный шум может быть в значительной степени подавлен методами направленного или многоканального приема. Хорошо известный даже по бытовой звукозаписывающей технике факт: микрофон надо направить… Читать ещё >

Преобразование акустического сигнала в инфракрасный диапазон при передаче (реферат, курсовая, диплом, контрольная)

Одним из последних современных изобретений в области радиотехники является преобразование полезного акустического сигнала в инфракрасный диапазон [8].

Инфракрасное излучение занимают диапазон частот 3*1011 — 3,85*1014 Гц. Им соответствует длина волны 780нм — 1 мм. Инфракрасное излучение было открыто в 1800 году астрономом Уильямом Гершлем. Изучая повышение температуры термометра, нагреваемого видимым светом, Гершель обнаружил наибольшее нагревание термометра вне области видимого света (за красной областью). Невидимое излучение, учитывая его место в спектре, было названо инфракрасным. Источником инфракрасного излучения является излучение молекул и атомов при тепловых и электрических воздействиях. Мощный источник инфракрасного излучения — Солнце, около 50% его излучения лежит в инфракрасной области. На инфракрасное излучение приходится значительная доля (от 70 до 80%) энергии излучения ламп накаливания с вольфрамовой нитью. Инфракрасное излучение испускает электрическая дуга и различные газоразрядные лампы. Излучения некоторых лазеров лежит в инфракрасной области спектра. Индикаторами инфракрасного излучения являются фото и терморезисторы, специальные фотоэмульсии. Инфракрасное излучение используют для сушки древесины, пищевых продуктов и различных лакокрасочных покрытий (инфракрасный нагрев), для сигнализации при плохой видимости, дает возможность применять оптические приборы, позволяющие видеть в темноте, а также при дистанционном управлении. Инфракрасные лучи используются для наведения на цель снарядов и ракет, для обнаружения замаскированного противника. Эти лучи позволяют определить различие температур отдельных участков поверхности планет, особенности строения молекул вещества (спектральный анализ). Инфракрасная фотография применяется в биологии при изучении болезней растений, в медицине при диагностике кожных и сосудистых заболеваний, в криминалистике при обнаружении подделок. При воздействии на человека вызывает повышение температуры человеческого тела.

При защите речевого обмена решающее значение имеет форма представления аналогового речевого сигнала в канале связи [9].

Основные используемые в настоящее время методы преобразования речевого сигнала и х взаимосвязь показана на рисунок 2.2.

Основные методы преобразования речевого сигнала и их взаимосвязь.

Рисунок 2.2 — Основные методы преобразования речевого сигнала и их взаимосвязь.

На рисунке 2.2 показано применение вариантов преобразований Б, В и, в большинстве случаев, А требует наличия соответствующей аппаратуры у каждого из взаимодействующих абонентов сети.

При применении защитного шума (вариант А) следует учитывать ряд обстоятельств:

  • 1. Стойкий защитный эффект оказывает лишь наложение шума, действительно являющегося случайным процессом и по диапазону частот полностью перекрывающего речевой сигнал. В то же время, многие известные и широко применяемые способы получения «шумового» сигнала на самом деле формируют псевдошумовой сигнал, по ряду своих частотных и временных параметров весьма близкий к действительно шумовому, но на самом деле в значительной степени детерминированный или имеющий существенные внутренние корреляционные связи. Такой сигнал во многих случаях может полностью заменять шумовой (при измерениях частотных характеристик, оценке помехозащищенности и пр.). Фактическая детерминированность сигнала, как правило, оказывается даже полезной, поскольку облегчает его параметризацию и стабилизацию. Сигнал, имеющий существенные внутренние корреляционные связи, может быть успешно использован и в качестве защитного шума, если перехват ведется на слух, без использования корреляционной обработки принимаемой или предварительно записанной смеси речевой сигнал/шум. Однако при применении относительно несложных методов корреляционной обработки такой «шум» может быть почти полностью подавлен. Следует отметить, что выявить корреляционные связи только по наблюдаемому выходному сигналу используемого генератора довольно сложно. Гораздо проще выявить их, анализируя схему генератора. Поэтому, как уже было сказано выше, крайне желательно затруднить получение злоумышленником информации об используемом оборудовании формирования защитного шума, облегчающей последующее его подавление.
  • 2. Речевой обмен в естественных условиях подвержен влиянию множества разнообразнейших помех, и в процессе эволюции речевой и слуховой аппарат человека сформировали прекрасно сопряженную и исключительно помехоустойчивую систему. Поэтому, если для технических систем отношение шум/сигнал, необходимое для подавления восприятия сигнала, составляет обычно десятки процентов, то для речи подавление смыслового восприятия происходит при отношении шум/сигнал в несколько сотен процентов, а подавление признаков речи (невозможность фиксации факт разговора) достигается при отношении шум/сигнал близком к 10. В том же случае, когда «шумовой» сигнал содержит значительную детерминированную составляющую, которая может быть отфильтрована при перехвате, требуемое значение уровня «шума» еще более возрастает. При оценке защитного эффекта шума «на слух» при отсутствии специальных навыков очень легко ошибиться, т.к. при длительном прослушивании шума и, тем более, при многократном прослушивании записи выявляются многие элементы речи, невоспринимаемые при кратковременной (в течение нескольких секунд) оценке.
  • 3. Следует учитывать, что и защищаемый речевой сигнал и защитный шум распространяются в пространстве и обеспечить полную идентичность распределения их в пространстве крайне сложно. Поэтому во многих случаях защитный шум может быть в значительной степени подавлен методами направленного или многоканального приема. Хорошо известный даже по бытовой звукозаписывающей технике факт: микрофон надо направить на источник звука, при произвольном же расположении микрофона будет записан не столько нужный звук, сколько окружающие шумы. Точно так же высокое отношение шум/сигнал при одном варианте съема сигнала еще не гарантирует столь же высокую эффективность защитного шума при другом варианте съема сигнала, используемого злоумышленником, а при использовании нескольких специально выбранных точек съема может быть ослаблен защитный эффект большинства источников защитного шумового поля. При этом, конечно, нельзя не учитывать, что применение многоканального приема требует как высокой квалификации злоумышленника, так и значительной свободы его действий по отношению к перехватываемому каналу связи.

Для того, чтобы исключить возможность применения нападающей стороной методов многоканального приема можно полностью совместить пути распространения защищаемого сигнала и защитного шума, но тогда будет исключено восприятие речи и абонентом, для которого она предназначена. Чтобы выполнить основную задачу — обеспечить связь, можно было бы предложить формирование идентичных шумовых сигналов на передающей и на приемной стороне. При этом на передающей стороне шум складывался бы с защищаемым сигналом, а на приемной — вычитался из принимаемого суммарного сигнала. Несмотря на кажущуюся простоту такого варианта, он в течение многих десятилетий не находил реального применения в силу сложности и нестабильности передаточной характеристики канала связи и несовершенства аппаратуры записи и воспроизведения. Компенсация защитного шума на приемной стороне оставалась неполной, причем «остаток» оказывался неприемлемо большим для качественного восприятия речи принимающим абонентом. Следует отметить, что в настоящее время в связи с развитием методов цифровой записи и воспроизведения звука и методов цифровой фильтрации с применением быстродействующих сигнальных процессоров, позволяющих обеспечить быструю и точную адаптацию к характеристике канала связи, методы защиты, основанные на полном объединении полезного сигнала и защитного шума в канале связи могут получить новую жизнь.

Варианты Б, В, БВ изменяют форму (спектр) сигнала в канале, проводя перемешивание (скремблирование) отдельных временных или спектральных отрезков исходного сигнала (подробнее реализация таких преобразований рассматривается во второй части стати). При этом в линейном сигнале неизбежно сохраняются отдельные обобщенные признаки преобразуемого речевого сигнала, в которых проявляется взаимная связь перемешиваемых отрезков. Это принципиально исключает высокую стойкость преобразования. По перехвату сигнала в линии связи при использовании достаточно мощного измерительно-вычислительного комплекса исходная речь может быть с приемлемым для смыслового восприятия качеством восстановлена независимо от примененного закона перестановки, управляющего криптоалгоритма, количества ключей и порядка их ввода. Исторически аппаратура такого типа возникла и получила распространение в 40-х годах во время расцвета аналоговой техники обработки информации. Однако тогда же были обнаружены и доказаны принципиальные ограничения достигаемой защищенности преобразованного сигнала. В результате, начиная с 50-х годов, аппаратура этих типов для защиты наиболее важных сообщений не применяется.

Показать весь текст
Заполнить форму текущей работой