Помощь в учёбе, очень быстро...
Работаем вместе до победы

Термодинамический потенциал. 
Место биофизики в естествознании

РефератПомощь в написанииУзнать стоимостьмоей работы

Состояние каждой термодинамической системы может полностью определяться с помощью термодинамических потенциалов. Каждому из них приписывается определенный набор независимых параметров состояния. Кроме упомянутой выше внутренней энергии U, к термодинамическим потенциалам относят: энтальпию Н, свободную энергию Гельмгольца F, свободную энергию Гиббса G. Они могут быть определены с помощью формул… Читать ещё >

Термодинамический потенциал. Место биофизики в естествознании (реферат, курсовая, диплом, контрольная)

Состояние каждой термодинамической системы может полностью определяться с помощью термодинамических потенциалов. Каждому из них приписывается определенный набор независимых параметров состояния. Кроме упомянутой выше внутренней энергии U, к термодинамическим потенциалам относят: энтальпию Н, свободную энергию Гельмгольца F, свободную энергию Гиббса G. Они могут быть определены с помощью формул, где Р — давление, V — объем, Sэнтропия и Т — температура.

Н = U + РV.

F = U — SТ.

G = U + РV — SТ.

Свободная энергия Гиббса соответствует состоянию системы, при котором давление и температура являются постоянными. Поэтому этот термодинамический потенциал употребляют для описания биологических систем. Полезная работа в таких системах выполняется за счет уменьшения потенциала Гиббса, составляющих системы. Согласно принципу Больцмана, энтропия системы S в данном состоянии пропорциональна термодинамической вероятности этого состояния W:

S = k log W.

где к — константа Больцмана.

Термодинамическая вероятность является числом микросостояний системы, посредством которых реализуется данное макросостояние системы. Чем больше возможно микросостояний (вариантов расположения частиц), тем более неупорядочена система, тем больше — величины S.

Каждая система стремится к переходу из менее вероятного высокоупорядоченного состояния в статистически более вероятные состояния, характеризующиеся беспорядочным расположением молекул. Можно сказать, что каждая система характеризуется тенденцией самопроизвольного перехода к состоянию максимального молекулярного беспорядка или хаоса.

Линейный закон обобщает многие эмпирические принципы, например, закон Фика (зависимость переноса веществ от концентрационного градиента), закон Ома (зависимость переноса электрического заряда от градиента электрического потенциала) и т. п. Каждое отдельное изменение в системе может вызвать только уменьшение её свободной энергии и повышение энтропии. Но другие изменения в этой же системе могут происходить так, что повышение энтропии при одном изменении компенсировалось её уменьшением из-за другого изменения. Например, некоторые частицы могут перемещаться через мембрану клетки в направлении их более высокой концентрации. При этом происходит уменьшение энтропии системы, которое компенсируется гидролизом АТФ, в результате которого энтропия системы увеличивается.

Показать весь текст
Заполнить форму текущей работой