Помощь в учёбе, очень быстро...
Работаем вместе до победы

Давление в переходном отсеке при горячем разделении ступеней

РефератПомощь в написанииУзнать стоимостьмоей работы

Где тп = pnw — масса газа в переходном отсеке; Q/RTU = р" — плотность газа в переходном отсеке; Т" = Тп — температура газа в переходном отсеке; Х2= 0,3-Ю, 8 — коэффициент тепловых потерь в переходном отсеке; Т0- температура продуктов сгорания топлива в двигателе второй ступени; W = W0 + Smx — объем газа между разделяющимися ступенями; д; — расстояние между ступенями; W () — свободный объем… Читать ещё >

Давление в переходном отсеке при горячем разделении ступеней (реферат, курсовая, диплом, контрольная)

При горячем разделении ступеней двигатель верхней ступени запускается до начала разделения ступеней и горячие газы, истекающие из его сопл, заполняют переходной отсек, создавая внутри него переменное давление Q (рис. 54). По мере выхода двигателя на режим давление Q возрастает, ступени начинают расходиться, образуя зазор, а газы из отсека истекают через зазор и окна, расположенные на его боковой поверхности. Когда приход газа из двигателя становится меньше, чем расход из зазора и окон, давление в переходном отсеке уменьшается.

Рассматривая плоское движение твердотопливной ракеты, для определения давления Q воспользуемся законом сохранения массы.

Рис. 54.

Рис. 54.

для переходного отсека, в соответствии с которым изменение массы газа в переходном отсеке равно разности прихода его из двигателя и расхода через окна и зазор между ступенями, т. е.

Давление в переходном отсеке при горячем разделении ступеней.

где тп = pnw — масса газа в переходном отсеке; Q/RTU = р" - плотность газа в переходном отсеке; Т" = Тп — температура газа в переходном отсеке; Х2= 0,3-Ю, 8 — коэффициент тепловых потерь в переходном отсеке; Т0- температура продуктов сгорания топлива в двигателе второй ступени; W = W0 + Smx — объем газа между разделяющимися ступенями; д; - расстояние между ступенями; W() — свободный объем переходного отсека;

т2=Ъ"к)Р-2Ри/4Щ; ~ массовый переход газа из двигателя второй ступени; ф2 = 0,96-г 0,98 — коэффициент расхода;

I 2 т1

a (k) = Jk (-)*-1 -константа; F^2— площадь критического се;

чения сопла двигателя второй ступени; /?02 — переменное давление в двигателе второй ступени; х = 0,96-^0,98 — коэффициент тепловых потерь в двигателе; /и0 = ip0a (k)FuQI^jxi^o ~ массовый расход газа из переходного отсека; (р0 = 0,5 ч- 0,8 — коэффициент расхода; Fn =F0+2nRx- суммарная площадь; F0- площадь окон.

После подстановки соответствующих выражений в (6.1) и преобразований с учетом того, что температура Тп в двигателе, газовая постоянная R, а также %2 не зависят от времени, после преобразований получим Давление в переходном отсеке при горячем разделении ступеней.

где.

x0=F0/(2nR), А = ц2а (к)Ркр1^Щх2> В = 2nRq>0a (k)^x2RT0.

В (6.2) неизвестно р02 (?), а также расстояние между ступенями х. Для определения р02 запишем уравнение сохранения массы для двигателя второй ступени: Давление в переходном отсеке при горячем разделении ступеней.

где IVA- свободный объем двигателя (не занятый в данный момент топливом); S, рот — поверхность горения и плотность топлива; щ, v — константы в степенном законе скорости горения топлива.

Так как процесс разделения ступеней кратковременный, то объем WA можно считать постоянным, и тогда (6.3) после преобразований принимает вид Давление в переходном отсеке при горячем разделении ступеней.

где я, =xRT0SuiPm/WA, 6, =2a (k)FKp2AlyRTQ /WA. Уравнение (6.4) можно проинтегрировать от t = t0, когда р02 = р[)0, и получить следующее выражение:

Давление в переходном отсеке при горячем разделении ступеней.

Осевое расстояние х между ступенями определим из уравнения динамики относительного движения.

Уравнение движения первой ступени: Давление в переходном отсеке при горячем разделении ступеней.

где & - угол тангажа; Тх — тяга первой ступени; Г = 2 — газодинамическая сила; Т2 — тяга второй ступени;? — коэффициент газодинамической силы; Х} — сила лобового сопротивления первой ступени; пц — масса отделяемой части первой ступени.

Уравнение движения второй ступени: Давление в переходном отсеке при горячем разделении ступеней.

где X2 — сила лобового сопротивления отделяющейся второй ступени; Fa2 — площадь выходного сечения сопл второй ступени; т2 — масса второй ступени; р— давление в атмосфере на высоте разделения; рл- давление на донную часть второй ступени. Вычитая (6.5) из (6.6), получаем Давление в переходном отсеке при горячем разделении ступеней.

где v = v2 — v, — скорость относительного движения ступеней. Расстояние между ступенями определяется из уравнения.

Давление в переходном отсеке при горячем разделении ступеней.

При расчете относительного движения ступеней необходимо учесть возможный отрыв потока в сопле двигателя второй ступени. Давление в сечении отрыва.

Давление в переходном отсеке при горячем разделении ступеней.

Отрыв потока в сопле возникает при Р/ Р02 > Pall Рог? Ниже, но потоку от сечения отрыва сопло не работает, и поэтому в формуле тяги необходимо принимать Мд2=М,;

Pal = Р; Fa! = F > причем F, = FKV 2 /?(М,), где.

  • ?+1 *+1
  • 2^-1)м,(1 </(М|) = (Ail)— расходная функция;
  • 2 Г *d 1

а М] = - * _] - число Маха в сечении отрыва.

Р

При расчете тяги двигателя первой ступени считаем, что твердое топливо полностью сгорело и из его объема происходит адиабатическое истечение газа, поэтому изменение давления в камере находим по формуле (3.2).

Коэффициент газодинамической силы? зависит от расстояния между ступенями и определяется для следующих трех режимов течения в переходном отсеке.

  • 1. При малых расстояниях между ступенями происходит наддув отсека и звуковое истечение газа через окна и зазор между ступенями. В этом случае ?= 1, т. е. газодинамическая сила Г равна тяге двигателя второй ступени.
  • 2. Сопло двигателя второй ступени все еще находится в отсеке, но газ истекает со звуковой скоростью из окон и зазора между кромкой сопла и стенкой переходного отсека. Режим начинается с момента, когда площадь зазора между ступенями станет равной площади зазора между соплом и стенкой отсека. Расстояние меж-

ду ступенями в этот момент равно: x*=RI2 1 —(-s=-), где.

R

га2- радиус выходного сечения сопла двигателя второй ступени; R — радиус отсека.

3. Струйное истечение в отсек, когда на днище второй ступени действует донное давление, определяемое взаимодействием струи и внешнего потока. Сопло двигателя второй ступени полностью выходит из отсека. Этот режим начинается в тот момент, когда выходное сечение сопла пересекает верхнюю кромку отсека и струя двигателя второй ступени полностью раскрывается.

Из геометрических соображений можно найти расстояние хс, соответствующее этому моменту, как разницу между длиной отсека /0 и расстоянием е0 между соплом и днищем первой ступени до запуска двигателя, т. е. хс = /00. Таким образом, этот режим течения реализуется при х>хс.

На втором режиме течения коэффициент газодинамической силы определяется по формуле.

Давление в переходном отсеке при горячем разделении ступеней.

где = 1 + (1 -(F0 fSm))C3 — коэффициент газодинамической силы в начале третьего режима течения;

Давление в переходном отсеке при горячем разделении ступеней.

Коэффициент газодинамической силы на третьем режиме.

Давление в переходном отсеке при горячем разделении ступеней.

где.

Давление в переходном отсеке при горячем разделении ступеней.

Подводя итог, остановимся на расчете давления в отсеке при рассмотренных режимах течения. Первый режим, реализующийся в диапазоне 0 < х < х*, определяется в результате решения системы обыкновенных дифференциальных уравнений (6.2), (6.4), (6.7), (6.8), донное давление второй ступени /?д и давление в отсеке равно Q. На втором режиме вместо (6.2) для расчета давления в отсеке и равного ему донного давления используется формула.

Q = Q* + (poo ~ Q*)-—, где Q* — давление в переходном отсеке,.

хс — х*.

которое установится в нем на первом режиме, когда расстояние между ступенями станет равным х*. После раскрытия струи, истекающей из двигателя второй ступени на третьем режиме течения, донное давление рд находится в результате решения аэродинамической задачи о взаимодействии внешнего потока и сверхзвуковой струи, а давление в отсеке равно давлению торможения за прямым скачком уплотнения, образующимся в струе перед отсеком. Если воспользоваться аппроксимацией Робертса для распределения плотности в струе, то это давление равно: Q — ^ + Т2. Уравнение.

2 7CZ2

сохранения массы здесь также не используется. В первом приближении донное давление можно принять равным давлению в окружающей среде.

Наглядное представление о характере изменения давления в отсеке и коэффициента газодинамической силы дают графики, приведенные на рис. 55, полученные для одного из вариантов ракеты.

Рис. 55.

Рис. 55.

Показать весь текст
Заполнить форму текущей работой