Помощь в учёбе, очень быстро...
Работаем вместе до победы

Развитие и применение метода ХПЯ для изучения спин-селективных реакций радикалов биологически важных молекул в водных растворах

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Другим важным аспектом данной работы является исследование влияния скалярного спин-спинового взаимодействия ядер (J) как на зависимость ядерной Ti релаксации от магнитного поля, так и на когерентное перераспределение гиперполяризации (на примере ХПЯ) между ядрами в слабых магнитных полях. В магнитных полях, когда разность химических сдвигов ядер становится сравнимой с константами спин-спинового… Читать ещё >

Содержание

  • Глава 1. Литературный обзор
    • 1. 1. Роль радикалов триптофана в живой природе и проблемы детектирования
    • 1. 2. Неэнзнматическая репарация ДНК и нуклеотидов
    • 1. 3. Основы метода ХПЯ с временным разрешением
    • 1. 4. Феноменологическое проявление ХПЯ в спектрах ЯМР
    • 1. 5. Физико-химические свойства реагентов реакций
      • 1. 5. 1. Фотохимические реакции DP с ТгрН
      • 1. 5. 2. Фотохимические реакции DP с ТугОН
      • 1. 5. 3. Фотохимические реакции DP с GMP
      • 1. 5. 4. Внутримолекулярный перенос электрона в дипептиде ТгрН-ТугОН
  • Глава 2. Экспериментальная часть
    • 2. 1. Методы исследования
      • 2. 1. 1. Описание установки ХПЯ с временным разрешением в магнитном поле 4.7 Тл (vh=200 МГц)
      • 2. 1. 2. Описание установки ХПЯ с временным разрешением в магнитном поле 14.1 Тл (vH=600 МГц)
      • 2. 1. 3. Описание установки с быстрым переключением поля и регистрацией спектров ЯМР высокого разрешения для измерения Ti релаксации и ХПЯ в различных магнитных полях
      • 2. 1. 4. Измерение рН
    • 2. 2. Реактивы и растворители
  • Результаты и обсуждение
  • Глава 3. Определение констант СТВ
    • 3. 1. Теоретическая модель и обоснование линейной зависимости геминальной ХПЯ от констант СТВ
    • 3. 2. Условия для пропорциональности ХПЯ константам СТВ
    • 3. 3. Анализ спектров *Н и 13С ХПЯ тирозина
    • 3. 4. Анализ спектров 'Н и 13С ХПЯ триптофана
    • 3. 5. 15NХПЯ аденозин-5-монофосфата
  • Глава 4. Изучение реакций, моделирующих химическую репарацию ДНК (РНК)
    • 4. 1. Восстановление радикала GMP тирозином при различных значениях рН
    • 4. 2. Восстановление радикала GMP триптофаном при различных значениях рН
  • Глава 5. Влияние скалярных спин-спиновых взаимодействий на динамику ядерной поляризации и дисперсию Ti-релаксации в произвольном магнитном поле
    • 5. 1. Дисперсия Ti-релаксации пуриновых нуклеотидов
      • 5. 1. 1. ЯМРД необменивающихся протонов пуриновых оснований AMP и GMP
      • 5. 1. 2. ЯМРД протонов остатка рибозы в AMP и GMP
      • 5. 1. 3. Неэкспоненциальная кинетика релаксации системы связанных спинов
    • 5. 2. Когерентное перераспределение ХПЯ в системе спинов, связанных скалярным взаимодействием
      • 5. 2. 1. Критерий переноса поляризации
      • 5. 2. 2. Когерентный перенос ХПЯ в молекуле AMP
  • Выводы
  • Список используемой литературы

Развитие и применение метода ХПЯ для изучения спин-селективных реакций радикалов биологически важных молекул в водных растворах (реферат, курсовая, диплом, контрольная)

Свободные радикалы играют важную роль во многих биохимических процессах. К сожалению, их изучение во многих случаях затруднительно из-за их короткого времени жизни. Традиционными методами для регистрации радикалов являются методы ЭПР и ЭНДОР. Спектры высокореакционных радикалов регистрировать можно в замороженных матрицах, при этом зачастую регистрируются только вторичные более стабильные радикалы, а данные кинетических исследования в таких условиях не сопоставимы с условиями для реакций в растворах. Альтернативным подходом, использованным в данной работе для изучения короткоживущих радикалов биологически важных молекул в водном растворе, является метод химической поляризации ядер (ХПЯ), который повышает чувствительность ЯМР на несколько порядков. Преимуществом метода ХПЯ с временным разрешением, который был использован в данной работе, состоит в том, что он позволяет легко разделять вклады от геминальных (длительностью несколько наносекунд) и внеклеточных (микросекундный и миллисекундный диапазоны) процессов. Кроме того, из кинетики ядерной поляризации можно определить константы скоростей химических реакций и значения времен ядерной релаксации радикалов. Метод ХПЯ позволяет точно соотнести константу СТВ с положением магнитного ядра в радикале и определить ее знак и величину. На современном уровне развития ЯМР-спектроскопии это можно сделать для всех магнитных ядер в радикале. В ЭПР-спектроскопии положение сигналов обычно не зависит от знака константы СТВ, а для отнесения СТВ в структуре радикала зачастую требуется использование изотопного замещения реагентов. Новизна предлагаемого подхода состоит в применении количественного анализа геминальных спектров ХПЯ для магнитных ядер *Н, 13С и 15N для определения констант СТВ в радикалах биологически важных молекул. В данной работе было экспериментально проверено и теоретически обоснованно, что в многоядерных радикальных парах относительные интенсивности линий в геминальном спектре ХПЯ пропорциональны величинам констант СТВ в радикалах на данных ядрах. Это является существенным развитием метода ХПЯ, поскольку открывает возможность определять константы СТВ в многоядерных радикальных парах. Установив это важное соотношение для радикалов с известными константами СТВ, впервые были определены относительные константы.

13 1.

СТВ в катион-радикале триптофана для ядер Си Да также константы СТВ в катион-радикале аденозин-5'-монофосфата для ядер 15N, которые также были получены впервые. Таким образом, расширена область применения метода ХПЯ с временным разрешением на ядра 13С и 15N.

Особый интерес представляет процесс репарации ДНК — важнейшей биомолскулы в организмах, хранящей генетический код. На данный момент вопрос о молекулярных механизмах, отвечающих за репарацию ДНК, остается открытым. В данной работе методом ХПЯ изучены реакции аминокислот (триптофана и тирозина) с радикалами наиболее легко окисляемого нуклеотида — гаунозин-5-монофосфата (GMP). Реакция переноса электрона с радикала гуанозинмонофосфата на аминокислоты моделирует «химический» путь репарации ДНК. Этот новый путь защиты генетической информации был предположен относительно недавно и пока еще полностью не доказан, но должен быть на несколько порядков быстрее и эффективнее, чем традиционный энзиматический путь репарации нуклеиновых кислот, который протекает на шкале времени от сотен миллисекунд до нескольких часов. В работе показано, что созданный фотохимически радикал нуклеотида быстро (на микросекундной временной шкале) и эффективно восстанавливается аминокислотами до диамагнитной молекулы при варьировании значения рН водных растворов в широких пределах. Реакция (GMP" + АА —> GMP + АА') оказывает сильное влияние на кинетику ХПЯ как аминокислоты (АА), так и GMP. Скорость реакции прямо пропорциональна концентрации АА, к = ке*[АЛ]. От кислотности среды зависит структура и протонированное состояние радикалов и диамагнитных молекул и, соответственно, эффективность переноса электрона и вырожденный электронный обмен.

Другим важным аспектом данной работы является исследование влияния скалярного спин-спинового взаимодействия ядер (J) как на зависимость ядерной Ti релаксации от магнитного поля, так и на когерентное перераспределение гиперполяризации (на примере ХПЯ) между ядрами в слабых магнитных полях. В магнитных полях, когда разность химических сдвигов ядер становится сравнимой с константами спин-спинового взаимодействия, любая спиновая система становится сильно связанной. Поэтому времена релаксации уже относятся не к индивидуальным спинам, а к общим спиновым состояниям. Так, если ядра имели существенно разные Ti в сильном поле ЯМР спектрометра, то при выполнении условия Ti>l/J в слабых полях они имеют близкие Ti, а в случае двух спинов — равные Ть Величина скалярного спин-спинового взаимодействия обычно составляет несколько герц, а времена релаксации ядер, как правило, составляют несколько секунд. Доказательство необходимости учета сильной связи ядер в слабых полях, приводящей к когерентному перераспределению поляризации, особенно важно с методической точки зрения. Проведенное исследование показало, что влияние сильной связи ядер необходимо учитывать при изучении полевых зависимостей ХПЯ с целью получить информацию о константах СТВ и об обменном взаимодействии в радикалах и радикальных парах. Кроме того, учет спин-спинового взаимодействия важен при изучении дисперсии релаксации с целью получить времена корреляции молекулярного движения для того, чтобы избежать систематических ошибок в интерпретации экспериментальных данных. Результаты, полученные в данной работе, открывают путь для направленного манипулирования гиперполяризацией путем переноса ее с исходно поляризованных ядер на ядра-мишени.

В первой главе представлен обзор литературы, посвященный значению радикалов триптофана в процессах живой природы. Дано описание неэнзиматической репарации ДНК. Представлены важные для данной работы результаты фотохимических исследований реакций между триплетным 2,2'-дипиридилом и ТгрН, ТугОН и GMP. Подробно описано явление ХПЯ и метод ХПЯ с временным разрешением, позволяющий получать кинетические данные.

Во второй главе описаны три установки ХПЯ, на которых проводились эксперименты. Особое внимание уделено созданной автором работы установке ХПЯ с временным разрешением в магнитном поле 14.1 Тл, на которой были получены спектры ХПЯ 13С и.

В третьей главе приводится теоретическое обоснование пропорциональности сигналов в спектре ХПЯ константам СТВ. На основе модели, предложенной д.ф.-м.н. Ивановым К. Л., выведены условия применимости метода ХПЯ для получения значений констант СТВ из анализа геминальных спектров ХПЯ. Приведено сравнение интенсивностей 'Н и 13С ХПЯ с известными константами СТВ радикала тирозина. Получены относительные значения констант СТВ для ядер 'Н, 13С катион-радикала триптофана и для ядер 15N катион-радикала аденозин-5-монофосфата.

Четвертая глава посвящена изучению реакций переноса электрона с молекул тирозина и триптофана на радикалы GMP, моделирующих «химическую» репарацию ДНК. Описаны результаты измерений проведенных в широком диапазоне значение рН от 1.3 до 13.3, определены константы скорости реакции переноса электрона с участием аминокислот и радикалов GMP.

В пятой главе рассмотрено влияние спин-спиновых взаимодействий ядер на зависимость Ti-релаксации от магнитного поля. Особый интерес представляет когерентный перенос гиперполяризации в различный магнитных полях от 0.1 мТл до 7 Тл, обнаруженный при изучении полевой зависимости ХПЯ аденозин-5-монофосфат.

В конце диссертации приведены основные результаты и выводы работы, список цитируемой литературы и приложение В приложении приведены экспериментальные и моделированные спектры ЯМР он и С) триптофана, тирозина, аденозин-5-монофосфата и гуанозин-5-монофосфата. Выписаны химические сдвиги и константы спин-спинового взаимодействия, определенные для перечисленных выше молекул и использованные для модельных расчетов в работе.

Выводы.

1. Создана установка и отработана методика для регистрации ХПЯ магнитных ядер (!Н, 13С, 15N) с микросекундным временным разрешением на базе ЯМР-спектрометра (Во = 14.1 Тл) и импульсного лазера (Nd:YAG).

2. Установлено, что в многоядерных радикальных парах, для которых ширина спектра ЭПР больше, чем константа СТВ для любого из ядер, интенсивности сигналов в геминальных спектрах ХПЯ в сильном магнитном поле прямо пропорциональны величинам констант СТВ в радикалах.

3. Впервые зарегистрированы геминальные спектры 13С ХПЯ L-триптофана и 15N ХПЯ аденозин-5-монофосфата, на основании анализа которых определены знаки и относительные величины констант сверхтонкого взаимодействия в катион-радикалах триптофана и нуклеотида.

4. Изучена реакция переноса электрона с триптофана и тирозина на радикалы гаунозин-5-монофосфата при рН водных растворов от 1.3 до 13.3. Установлено, что в кислотных растворах перенос электрона протекает значительно быстрее, чем в щелочных растворах. При одинаковых условиях триптофан является более эффективным восстанавливающим агентом, чем тирозин.

5. Изучена релаксационная дисперсия протонов пуриновых нуклеотидов (AMP и GMP) в диапазоне магнитных полей от 0.1 мТл до 7 Тл. Показано, что на зависимость Ti-релаксации от магнитного поля влияет спин-спиновое взаимодействие. Установлено, что следствием сильной связи спинов Н2 и Н8 в молекуле AMP является когерентное перераспределение неравновесной поляризации и неэкспоненциальная кинетика Ti-релаксации протонов AMP.

Показать весь текст

Список литературы

  1. Staicture and interactions of amino acid radicals in class I ribonucleotide reductase studied by ENDOR and high-field EPR spectroscopy / Lendzian F. // Biochimica et Biophysica Acta, Bioenergetics. 2005. — T. 1707. — № 1. — C. 67−90.
  2. Intraprotein radical transfer during photoactivation of DNA photolyase / Aubert C., Vos M. H., Mathis P., Eker A. P. M., Brettel K. // Nature. 2000. — T. 405. — № 6786. — C. 586−590.
  3. Origin of the transient electron paramagnetic resonance signals in DNA photolyase / Gindt Y. M., Vollenbroek E., Westphal K., Sackett H., Sancar A., Babcock G. T. // Biochemistry. -1999. -T. 38. -№ 13. -C. 3857−3866.
  4. Multifrequency High-Field EPR Study of the Tryptophanyl and Tyrosyl Radical Intermediates in Wild-Type and the W191G Mutant of Cytochrome с Peroxidase / Ivancich
  5. A., Dorlet P., Goodin D. В., Un S. // Journal of the American Chemical Society. 2001. — T. 123. -№ 21. -C. 5050−5058.
  6. Tryptophan-Based Radical in the Catalytic Mechanism of Versatile Peroxidase from Bjerkandera adusta / Pogni R., Baratto M. C., Giansanti S., Teutloff C., Verdin J., Valderrama
  7. B., Lendzian F., Lubitz W., Vazquez-Duhalt R., Basosi R. // Biochemistry. 2005. — T. 44. -№ 11. -C. 4267−4274.
  8. Evidence from Spin-Trapping for a Transient Radical on Tryptophan Residue 171 of Lignin Peroxidase / Blodig W., Smith А. Т., Winterhalter K., Piontek K. // Archives of biochemistry and biophysics. 1999. — T. 370. — № 1. — C. 86−92.
  9. Identification by ENDOR of Trpl91 as the free-radical site in cytochrome с peroxidase compound ES / Sivaraja M., Goodin D. В., Smith M., Hoffman В. M. // Science. 1989. — T. 245. — № 4919. — C. 738−740.
  10. Electrostatic Control of the Tryptophan Radical in Cytochrome с Peroxidase / Barrows T. P., Bhaskar В., Poulos T. L. //Biochemistry. 2004. — T. 43. — № 27. — C. 8826−8834.
  11. Versatile Peroxidase Oxidation of High Redox Potential Aromatic Compounds- Site-directed Mutagenesis, Spectroscopic and Crystallographic Investigation of Three Long-range
  12. Electron Transfer Pathways / Perez-Boada M., Ruiz-Duenas F. J., Pogni R., Basosi R., Choinowski Т., Martinez M. J., Piontek K., Martinez A. T. // Journal of Molecular Biology. -2005. T. 354. — № 2. — C. 385−402.
  13. The role of tryptophan 272 in the Paracoccus denitrificans cytochrome с oxidase / MacMillan F., Budiman K., Angerer H., Michel H. //FEBS Letters. 2006. — T. 580. — № 5. -C. 1345−1349.
  14. Radicals associated with the catalytic intermediates of bovine cytochrome с oxidase / Rich P. R., Rigby S. E. J., Heathcote P. // Biochimica et Biophysica Acta, Bioenergetics. 2002. -T. 1554. -№ 3. -C. 137−146.
  15. Light-induced electron transfer in a cryptochrome blue-light photoreceptor / Giovani В., Byrdin M., Ahmad M., Brettel K. //Nature Structural Biology. 2003. — T. 10. — № 6. — C. 489 490.
  16. Distinguishing features of indolyl radical and radical cation: implications for tryptophan radical studies in proteins / Walden S. E., Wheeler R. A. // Journal of Physical Chemistry. -1996. T. 100. — № 5. — C. 1530−1535.
  17. First Evidence of Anchimeric Spin Derealization in Tryptophan Radical Cation / Walden S. E., Wheeler R. A. //Journal of the American Chemical Society. 1997. — T. 119. — № 13. -C. 3175−3176.
  18. The g-values and hyperfine coupling of amino acid radicals in proteins: Comparison of experimental measurements with ab initio calculations / Un S. // Magnetic Resonance in Chemistry. 2005. — T. 43. — №Spec. Issue. — C. S229-S236.
  19. Hydrogen Atom Transfer in Ribonucleotide Reductase (RNR) / Siegbahn P. E. M., Eriksson L., Himo F., Pavlov M. // Journal of Physical Chemistry B. 1998. — T. 102. — № 51. -C. 10 622−10 629.
  20. Reaction of Bovine Cytochrome с Oxidase with Hydrogen Peroxide Produces a Tryptophan Cation Radical and a Porphyrin Cation Radical / Rigby S. E. J., Juenemann S., Rich P. R., Heathcote P. // Biochemistry. 2000. — T. 39. — № 20. — C. 5921−5928.
  21. Density Functional and MP2 Calculations of Spin Densities of Oxidized 3-Methylindole: Models for Tryptophan Radicals / Jensen G. M., Goodin D. В., Bunte S. W. // Journal of Physical Chemistry. 1996. — T. 100. — № 3. — C. 954−959.
  22. Protein Radicals in Enzyme Catalysis / Stubbe J., van der Donk W. A. // Chemical Reviews. 1998. — T. 98. — № 2. — C. 705−762.
  23. Ribonucleotide reductase-a radical enzyme / Reichard P., Ehrenberg A. // Science. 1983. — T. 221. — № 4610. — C. 514−519.
  24. Electron paramagnetic resonance and nuclear magnetic resonance studies of class I ribonucleotide reductase / Graeslund A., Sahlin M. // Annual Review of Biophysics and Biomolecular Structure. 1996. — T. 25. — C. 259−286
  25. Tyrosine radicals are involved in the photosynthetic oxygen-evolving system / Barry B. A., Babcock G. T. // Proceedings of the National Academy of Sciences of the United States of America. 1987. — T. 84. — № 20. — C. 7099−7103.
  26. A metalloradical mechanism for the generation of oxygen from water in photosynthesis / Hoganson C. W., Tabcock G. T. // Science. 1997. — T. 277. — № 5334. — C. 1953−1956.
  27. Excited-state properties of Escherichia coli DNA photolyase in the picosecond to millisecond time scale / Heelis P. F., Okamura Т., Sancar A // Biochemistry. 1990. — T. 29. -№ 24. — C. 5694−5698.
  28. Role of tryptophans in substrate binding and catalysis by DNA photolyase / Kim S.-T., Heelis P. F., Sancar A // Methods in Enzymology. 1995. — T. 258. — C. 319−343.
  29. Charge transfer between tryptophan and tyrosine in proteins / Butler J., Land E. J., Pruetz W. A., Swallow A. J. // Biochimica et Biophysica Acta, Protein Structure and Molecular Enzymology. 1982. — T. 705. — № 2. — C. 150−162.
  30. Long-range electron transfer between tyrosine and tryptophan in peptides / Faraggi M., DeFelippis M. R., Klapper M. H. // Journal of the American Chemical Society. 1989. — T. 111. -№ 14. -C. 5141−5145.
  31. Electron-transfer reactions of tryptophan and tyrosine derivatives / Jovanovic S. V., Harriman A., Simic M. G. // Journal of Physical Chemistry. 1986. — T. 90. — № 9. — C. 19 351 939.
  32. Intramolecular Electron Transfer in Tryptophan-Tyrosine Peptide in Photoinduced Reaction in Aqueous Solution / Morozova О. В., Yurkovskaya A. V., Vieth H.-M., Sagdeev R. Z. // Journal of Physical Chemistry B. 2003. — T. 107. — № 4. — C. 1088−1096.
  33. Reversibility of Electron Transfer in Tryptophan-Tyrosine Peptide in Acidic Aqueous Solution Studied by Time-Resolved CIDNP / Morozova О. В., Yurkovskaya A. V., Sagdeev R. Z. // Journal of Physical Chemistry B. 2005. — T. 109. — № 8. — C. 3668−3675.
  34. Direct demonstration of electron transfer between tryptophan and tyrosine in proteins / Pruetz W. A., Butler J., Land E. J., Swallow A. J. // Biochemical and Biophysical Research Communications. 1980. — T. 96. — №>1. — C. 408−414.
  35. No Vend of historyV for photolyases / Sancar A. // Science. 1996. — T. 272. — № 5258. -C. 48−49.
  36. Chemical magnetoreception in birds: the radical pair mechanism / Rodgers С. Т., Ноге P. J. // Proceedings of the National Academy of Sciences of the United States of America. -2009. T. 106. — № 2. — C. 353−360.
  37. Electron Spin Resonance Study of Electron and Hole Transfer in DNA: Effects of Hydration, Aliphatic Amine Cations, and Histone Proteins / Cai Z., Gu Z., Sevilla M. D. // Journal of Physical Chemistry B. 2001. — T. 105. — № 25. — C. 6031−6041.
  38. Guanine is the target for direct ionisation damage in DNA, as detected using excision enzymes / Melvin Т., Cunniffe S. M., O’Neill P., Parker A. W., Roldan-Arjona T. // Nucleic acids research. 1998. — T. 26. — № 21. — C. 4935−4942.
  39. UV Laser Photolysis of DNA: Effect of Duplex Stability on Charge-Transfer Efficiency / Douki Т., Angelov D., Cadet J. // Journal of the American Chemical Society. 2001. — T. 123. -№ 46. — C. 11 360−11 366.
  40. Oxidative Nucleobase Modifications Leading to Strand Scission / Burrows C. J., Muller J. G. // Chemical Reviews. 1998. — T. 98. — № 3. — С. 1109−1151.
  41. How Easily Oxidizable Is DNA? One-Electron Reduction Potentials of Adenosine and Guanosine Radicals in Aqueous Solution / Steenken S., Jovanovic S. V. // Journal of the American Chemical Society. 1997. — T. 119. — № 3. — C. 617−618.
  42. Repair of Guanyl Radicals in Plasmid DNA by Electron Transfer Is Coupled to Proton Transfer / Milligan J. R., Aguilera J. A., Hoang O., Ly A., Tran N. Q., Ward J. F. // Journal of the American Chemical Society. 2004. — T. 126. — № 6. — C. 1682−1687.
  43. Proton-Coupled Electron Transfer in Guanine Oxidation: Effects of Isotope, Solvent, and Chemical Modification / Weatherly S. C., Yang I. V., Armistead P. A., Thorp H. H. // Journal of Physical Chemistry B. 2003. — T. 107. — № 1. — C. 372−378.
  44. Purine bases, nucleosides, and nucleotides: aqueous solution redox chemistry and transformation reactions of their radical cations and e- and OH adducts / Steenken S. // Chemical Reviews. 1989. — T. 89. — № 3. — C. 503−520.
  45. Mechanistic Comparison of High-Fidelity and Error-Prone DNA Polymerases and Ligases Involved in DNA Repair / Showalter A. K., Lamarche B. J., Bakhtina M., Su M.-I., Tang K.-H" Tsai M.-D. // Chemical Reviews. 2006. — T. 106. — № 2. — C. 340−360.
  46. Lagging Strand Replication Proteins in Genome Stability and DNA Repair / Rossi M. L., Purohit V., Brandt P. D., Bambara R. A. // Chemical Reviews. 2006. — T. 106. — № 2. — C. 453−473.
  47. Evaluation of Molecular Models for the Affinity Maturation of Antibodies: Roles of Cytosine Deamination by AID and DNA Repair / Samaranayake M., Bujnicki J. M., Carpenter M., Bhagwat A. S. // Chemical Reviews. 2006. — T. 106. — № 2. — C. 700−719.
  48. Catalytic promiscuity and the divergent evolution of DNA repair enzymes / O’Brien P. J. // Chemical Reviews. 2006. — T. 106. — № 2. — C. 720−752.
  49. DNA Repair in Plants / Kimura S., Sakaguchi K. // Chemical Reviews. 2006. — T. 106. -№ 2. — C. 753−766.
  50. Repair of oxidative guanine damage in plasmid DNA by indoles involves proton transfer between complementary bases / Ly A., Tran N. Q., Ward J. F., Milligan J. R. // Biochemistry. 2004. — T. 43. — № 28. — C. 9098−9104.
  51. Reactivity of DNA Guanyl Radicals with Phenolate Anions / Ly A., Bandong S. L., Tran N. Q., Sullivan K. J., Milligan J. R. // Journal of Physical Chemistry B. 2005. — T. 109. -№ 27. -C. 13 368−13 374.
  52. Peptide Repair of Oxidative DNA Damage / Milligan J. R., Tran N. Q., Ly A., Ward J. F. //Biochemistry. 2004. — T. 43. -№ 17. -C. 5102−5108.
  53. Involvement of proton transfer in the reductive repair of DNA guanyl radicals by aniline derivatives / Ly A., Tran N. Q., Sullivan K., Bandong S. L., Milligan J. R. // Organic & Biomolecular Chemistry. 2005. — T. 3. — № 5. — C. 917−923.
  54. Repair of oxidative DNA damage by amino acids / Milligan J. R., Aguilera J. A., Ly A., Tran N. Q., Hoang O., Ward J. F. // Nucleic Acids Research. 2003. — Т. 31. — № 21. — C. 6258−6263.
  55. Interaction of dGMP radical with cysteamine and promethazine as possible model of DNA repair / Willson R. L., Wardman P., Asmus K. D. // Nature. 1974. — T. 252. — № 5481. -C. 323−324.
  56. Electron-Transfer Oxidation Properties of DNA Bases and DNA Oligomers / Fukuzumi S., Miyao H., Ohkubo K., Suenobu T. // Journal of Physical Chemistry A. 2005. — T. 109. -№ 15.-C. 3285−3294.
  57. Time-resolved CIDNP study of native-state bovine and human a-lactalbumins / Morozova О. В., Yurkovskaya A V., Sagdeev R. Z., Мок К. H., Ноге P. J. // Journal of Physical Chemistry B. -2004. -T. 108. -№ 39. C. 15 355−15 363.
  58. Time-Resolved CIDNP Study of Non-Native States of Bovine and Human a-Lactalbumins / Morozova О. В., Ноге P. J., Bychkova V. E., Sagdeev R. Z., Yurkovskaya A. V. // Journal of Physical Chemistry B. 2005. — T. 109. — № 12. — C. 5912−5918.
  59. Nuclear magnetic resonance emission and enhanced absorption in rapid organometallic reactions / Ward H. R., Lawler R. G. // Journal of the American Chemical Society. 1967. -T. 89. -№ 21. -C. 5518−5519.
  60. Mechanism explaining nuclear spin polarizations in radical combination reactions / Closs G. L. // Journal of the American Chemical Society. 1969. — T. 91. — № 16. — C. 4552−4554.
  61. Chemically induced dynamic nuclear polarization. III. Anomalous multiplets of radical coupling and disproportionation products / Kaptein R., Oosterhoff L. J. // Chemical Physics Letters. 1969. — T. 4. — № 4. — C. 214−216.
  62. Effect of glycyrrhizic acid on lappaconitine phototransformation / Kornievskaya Valeria S., Kruppa Alexander I., Polyakov Nicholas E., Leshina Tatyana V. // The journal of physical chemistry. B. 2007. -T. 111.-№ 39. — C. 11 447−11 452.
  63. Photo-CIDNP Reveals Differences in Compaction of Non-Native States of Lysozyme / Schloerb C., Mensch S., Richter C., Schwalbe H. // Journal of the American Chemical Society. 2006. — C. ACS ASAP.
  64. Магнитные и спиновые эффекты в химических реакциях / Бучаченко А. Б., Сагдеев Р. 3., Салихов К. М. Новосибирск: Наука, 1978.
  65. Absolute chemically induced nuclear polarizations and yields from geminate radical-pair reactions. A test of high-field radical-pair theories / Vollenweider J. K., Fischer H. // Chemical Physics. 1988. — T. 124. — № 3. — C. 333−345.
  66. Химическая поляризация ядер в исследовании механизма реакций органических соединений / Грагеров И. П., Киприанова JI. А., Левит А. Ф. Киев, 1985.
  67. Simple rules for chemically induced dynamic nuclear polarization / Kaptein R. // Journal of the Chemical Society, Chemical Communications. 1971. — № 14. — C. 732−733.
  68. Time-resolved СПЖР: applications to radical and biradical chemistry / Closs G. L., Miller R. J., Redwine O. D. // Accounts of Chemical Research. 1985. — T. 18. — № 7. — C. 196−202.
  69. Time-resolved CEDNP in laser flash photolysis of aliphatic ketones. A quantitative analysis / Vollenweider J. K, Fischer H., Hennig J., Leuschner R. // Chemical Physics. -1985. T. 97. — № 2−3. — C. 217−234.
  70. Laser flash photolysis with NMR detection. Microsecond time-resolved CIDNP: separation of geminate and random-phase processes / Closs G. L., Miller R. J. // Journal of the American Chemical Society. 1979. — T. 101. — № 6. — C. 1639−1641.
  71. Photo-CIDNP of biopolymers / Hore P. J., Broadhurst R. W. // Progress in Nuclear Magnetic Resonance Spectroscopy. 1993. — T. 25. — № 4. — C. 345−402.
  72. Photo-CIDNP NMR methods for studying protein folding / Мок К. H., Ноге P. J. // Methods. 2004. — Т. 34. — № 1. — С. 75−87.
  73. Photo-CIDNP studies of proteins / Kaptein R. // Biological Magnetic Resonance. 1982. -T. 4.-C. 145−191.
  74. Photochemically induced dynamic nuclear polarization / Goez M. // Advances in Photochemistry. 1997. — T. 23. — C. 63−163.
  75. Ultraviolet spectra of N: CC:N compounds / Linnell R. H., Kaczmarczyk A. // Journal of Physical Chemistry. 1961. — T. 65. — C. 1196−1200.
  76. Mechanisms of deactivation of the low-lying electronic states of 2,2-bipyridine / Castellucci E., Angeloni L., Marconi G., Venuti E., Baraldi I. // Journal of Physical Chemistry. 1990. — T. 94. — № 5. — C. 1740−1745.
  77. Photolysis mechanism of aqueous tryptophan / Baugher J. F., Grossweiner L. I. // Journal of Physical Chemistry. 1977. — T. 81. — № 14. — C. 1349−1354.
  78. Photo-CIDNP in nucleic acid bases and nucleotides / Kaptein R., Nicolay K., Dijkstra K. // Journal of the Chemical Society, Chemical Communications. 1979. — № 23. — C. 10 921 094.
  79. Photo-CIDNP Study of Biological Molecules / Stob S., 1989.
  80. Изучение спиновой поляризации в реакциях фотолиза алифатических кетонов времяразрешенными методами магнитного резонанса / Юрковская А. В. Новосибирск: Международный томографический центр СО РАН, 1997.
  81. Field cycling by fast NMR probe transfer: design and application in field-dependent CIDNP experiments / Grosse S., Gubaydullin F., Scheelken H., Vieth H. M., Yurkovskaya A. V. // Applied Magnetic Resonance. 1999. — T. 17. — № 2−3. — C. 211−225.
  82. Cross-relaxation effects in the photo-CIDNP spectra of amino acids and proteins / Hore P. J., Egmond M. R., Edzes H. Т., Kaptein R. // Journal of Magnetic Resonance. 1982. — T. 49. -№ 1.-C. 122−150.
  83. Role of diffusion-controlled reaction in chemically induced nuclear-spin polarization. II. General theory and comparison with experiment / Adrian F. J. // Journal of Chemical Physics.- 1971. T. 54. — № 9. — C. 3912−3917.
  84. Basicity, visible spectra, and electron spin resonance of flavosemiquinone anions / Ehrenberg A., Mueller F., Hemmerich P. // European Journal of Biochemistry. 1967. — T. 2.- № 3. C. 286−293.
  85. CIDNP-Untersuchungen an photoinduzierten Radikalpaar-Reaktionen mit Feldzyklisierung im Magnetfeldbereich von 0 bis 7 Tesla / Grosse S. Berlin: Im Fachbereich Physik, Freien Universitat Berlin, 2000.
  86. Flavins and Flavoproteins / Ehrenberg A., Eriksson L. E. G., Mueller F. = ред. Ehrenberg A. Amsterdam: Elsevier, 1966. Vol. 8
  87. Spin Polarization and Magnetic Effects in Chemical Reactions / Salikhov К. M., Molin Y. N., SagdeevR. Z., Buchachenko A. L. Amsterdam: Elsevier, 1984.
  88. Calculation of SNP effects in weak magnetic fields / Osintsev A. M., Purtov P. A., Salikhov К. M. // Chemical Physics. 1993. — T. 174. — № 2. — C. 237−245.
  89. Theory of anomalous electron spin resonance spectra of free radicals in solution. Role of diffusion-controlled separation and reencounter of radical pairs / Adrian F. J. // Journal of Chemical Physics. 1971. — T. 54. — № 9. — C. 3918−3923.
  90. Photoionization of Benzophenone Carboxylic Acids in Aqueous Solution. A FT EPR and Optical Spectroscopy Study of Radical Cation Decay / Saeuberlich J., Brede O., Beckert D. // Journal of Physical Chemistry. 1996. — T. 100. — № 46. — C. 18 101−18 107.
  91. Spin-correlated radical pairs in synthetic hairpin DNA / Nakajima S., Akiyama K., Kawai K., Takada Т., Ikoma Т., Majima Т., Tero-Kubota S. // ChemPhysChem. 2007. — T. 8. — № 4. — C. 507−509.
  92. Photooxidation and decarboxylation of tyrosine studied by EPR and CIDNP chemically-induced dynamic nuclear polarization. techniques / Tomkiewicz M., McAlpine R. D., CociveraM. // Canadian Journal of Chemistry. 1972. — T. 50. — № 23. — C. 3849−3856.
  93. Time resolved CIDNP study of electron transfer reactions in proteins and model compounds / Morozova О. В., Yurkovskaya A. V., Tsentalovich Y. P., Forbes M. D. E., Hore P. J., Sagdeev R. Z. // Molecular Physics. 2002. — T. 100. — № 8. — C. 1187−1195.
  94. ID Radical Motion in Protein Pocket: Proton-Coupled Electron Transfer in Human Serum Albumin / Kobori Y., Norris J. R., Jr. // Journal of the American Chemical Society. -2006. -T. 128. -№ 1. C. 4−5.
  95. Two-dimensional 15N-1H photo-CIDNP as a surface probe of native and partially structured proteins / Lyon С. E., Jones J. A., Redfield C., Dobson С. M., Hore P. J. // Journal of the American Chemical Society. 1999. — T. 121. — № 27. — C. 6505−6506.
  96. Medium-Dependent Electron and H Atom Transfer between 2-Deoxyadenosine and Menadione: A Magnetic Field Effect Study / Sengupta Т., Choudhury S. D., Basu S. // Journal of the American Chemical Society. 2004. — T. 126. — № 34. — C. 10 589−10 593.
  97. Nitrogen-15 nuclear magnetic resonance spectroscopy of some nucleosides and nucleotides / Markowski V., Sullivan G. R., Roberts J. D. // Journal of the American Chemical Society. 1977. — T. 99. — № 3. — C. 714−718.
  98. БЭС «Химия» /. Москва, 1998. — 580 с.
  99. A kinetic study on the interaction of deprotonated purine radical cations with amino acids and model peptides / Pan J., Lin W., Wang W., Han Z., Lu C., Yao S., Lin N., Zhu D. // Biophysical Chemistry. 2001. — T. 89. — № 2−3. — C. 193−199.
  100. Field-cycling NMR relaxometry / Kimmich R., Anoardo E. // Progress in Nuclear Magnetic Resonance Spectroscopy. 2004. — T. 44. — № 3−4. — C. 257−320.
  101. Collective Relaxation of Protein Protons at Very Low Magnetic Field: A New Window on Protein Dynamics and Aggregation / Luchinat C., Parigi G. // Journal of the American Chemical Society. 2007. — T. 129. — № 5. — C. 1055−1064.
  102. Blood-pool MRI contrast agents: properties and characterization / Clarkson R. B. // Topics in Current Chemistry. 2002. — T. 221. — №Contrast Agents I. — C. 201−235.
  103. Biological applications of relaxometry / Fasano M. // Chimica e l’lndustria (Milan, Italy). 2001. — T. 83. — № 10. — C. 89.
  104. Nuclear spin relaxation and molecular motion in liquid crystals / Kothe G., Stohrer J. // NATO ASI Series, Series C: Mathematical and Physical Sciences. 1994. — T. 431. -№Molecular Dynamics of Liquid Crystals. — C. 195−206.
  105. Magnetic relaxation dispersion studies of biomolecular solutions / Halle В., Denisov V. P. //Methods in Enzymology. 2001. — T. 338. — C. 178−201.
  106. Water and monovalent ions in the minor groove of B-DNA oligonucleotides as seen by NMR / Halle В., Denisov V. P. // Biopolymers. 2000. — T. 48. — № 4. — C. 210−233.
  107. Magnetic relaxation dispersion of lithium ion in solutions of DNA / Victor K. G., Teng C.-L., Dinesen T. R. D., Korb J -P., Bryant R. G. //Magnetic Resonance in Chemistry. 2004. -T. 42. — № 6,-C. 518−523.
  108. Water molecule binding and lifetimes on the DNA duplex d (CGCGAATTCGCG)2 / Zhou D., Bryant R. G. // Journal of Biomolecular NMR. 1996. — T. 8. — № 1. — C. 77−86.
  109. High-Resolution Magnetic Relaxation Dispersion Measurements of Solute Spin Probes Using a Dual-Magnet System / Wagner S., Dinesen T. R. J., Rayner Т., Bryant R. G. // Journal of Magnetic Resonance. 1999. — T. 140. — № 1. — C. 172−178.
  110. Phospholipid bilayer surface configuration probed quantitatively by 31P field-cycling NMR / Roberts M. F., Redfield A. G. // Proceedings of the National Academy of Sciences of the United States of America. 2004. — T. 101. — № 49. — C. 17 066−17 071.
  111. High-Resolution 31P Field Cycling NMR as a Probe of Phospholipid Dynamics / Roberts M. F., Redfield A. G. // Journal of the American Chemical Society. 2004. — T. 126. -№ 42. — C. 13 765−13 777.
  112. The theory of relaxation processes / Redfield A. G. // Advances in Magnetic Resonance. 1966. — Т. 1. — C. 1−32.
  113. Transfer of C1DNP among coupled spins at low magnetic field / Ivanov K. L., Miesel K., Yurkovskaya A. V., Korchak S. E., Kiryutin A. S., Vieth H. M. // Applied Magnetic Resonance. 2006. — T. 30. — № 3−4. — C. 513−534.
  114. Coherence transfer during field-cycling NMR experiments / Miesel K., Ivanov K. L., Yurkovskaya A. V., Vieth H. M. // Chemical Physics Letters. 2006. — T. 425. — № 1−3. — C. 71−76.
  115. CIDNP transfer via nuclear dipolar relaxation and spin-spin coupling / De Kanter F. J. J., Kaptein R. // Chemical Physics Letters. 1979. — T. 62. — № 3. — C. 421−426.
  116. Low-field CIDNP in intramicellar radical disproportionation. Violation of equivalency in J-coupled nuclear spin systems / Tarasov V. F., Shkrob I. A. // Journal of Magnetic Resonance, Series A. 1994. — T. 109. — № 1. — C. 65−73.
  117. Transfer of Parahydrogen-Induced Hyperpolarization to 19 °F / Kuhn L. Т., Bommerich U., Bargon J. // Journal of Physical Chemistry A. 2006. — Т. 110. — № 10. — C. 3521−3526.
  118. The creation of off-diagonal elements in chemically induced dynamic nuclear polarization experiments / Schaublin S., Wokaun A., Ernst R. R. // Chemical Physics. 1976. -T. 14.-C. 285−293.
  119. Creation of spin coherent states in the course of chemical reactions
  120. К. M. // Chemical Physics Letters. 1993. — T. 201. — C. 261−264.
  121. Carbon-13 NMR spectra of tryptophan, tryptophan peptides, and of native and denatured proteins / Bradbury J. H., Norton R. S. // Biochimica et Biophysica Acta, Protein Structure. -1973. T. 328. — № 1. — C. 10−19.
  122. Definitive assignment of carbon-13 NMR signals in tryptophan and related molecules / Morales-Rio s M. S., Joseph-Nathan P. // Journal of Heterocyclic Chemistry. 1986. — T. 23.6. -C. 1617−1619.
Заполнить форму текущей работой