ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² ΡƒΡ‡Ρ‘Π±Π΅, ΠΎΡ‡Π΅Π½ΡŒ быстро...
Π Π°Π±ΠΎΡ‚Π°Π΅ΠΌ вмСстС Π΄ΠΎ ΠΏΠΎΠ±Π΅Π΄Ρ‹

Новый эффСктивный ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ для получСния Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² основного Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° роста фибробластов (FGF-2) ΠΈ Π»ΠΈΠ³Π°Π½Π΄-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ Π²Π½Π΅ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° II Ρ‚ΠΈΠΏΠ° TGF-? (T?RII-ED) Π² E. coli

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ ΡˆΡ‚Π°ΠΌΠΌ-ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚ Π•. coli BL21(DE3)/pET-32a/FGF-2 для получСния Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° роста фибробластов FGF-2 ΠΈ Π΅Π³ΠΎ ΠΌΡƒΡ‚Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° FGF-2/C78S/C96S. Π¦Π΅Π»Π΅Π²Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ экспрСссировали Π² ΡΠΎΡΡ‚Π°Π²Π΅ слитного Π±Π΅Π»ΠΊΠ° с Ρ‚иорСдоксином. Показано, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Π³ΠΎΠΌΠΎΠ³Π΅Π½Π½Ρ‹ΠΉ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ T? RII-ED ΠΈΠΌΠ΅Π΅Ρ‚ ΡΡ‚ΠΎΠ»ΡŒ ΠΆΠ΅ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ Π»ΠΈΠ³Π°Π½Π΄-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ TGF?, ΠΊΠ°ΠΊ ΠΈ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΉ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΎΠΊ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Бписок ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… сокращСний
  • 1. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅
  • 2. Π¦Π΅Π»ΠΈ ΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ Ρ€Π°Π±ΠΎΡ‚Ρ‹
  • 3. Π›ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ ΠΎΠ±Π·ΠΎΡ€
    • 3. 1. ΠžΠ±Ρ‰Π°Ρ характСристика Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² роста
    • 3. 2. Основной Ρ„Π°ΠΊΡ‚ΠΎΡ€ роста фибробластов Π ΠžΠ‘
      • 3. 2. 1. ΠžΠ±Ρ‰Π°Ρ характСристика РОР
      • 3. 2. 2. ВзаимодСйствиС РОР-2 с Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°ΠΌΠΈ
      • 3. 2. 3. Π˜Π·ΠΎΡ„ΠΎΡ€ΠΌΡ‹ РОР
      • 3. 2. 4. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ВО¥-~
      • 3. 2. 5. БиологичСская Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ РОР
    • 3. 3. Π’Ρ€Π°Π½ΡΡ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Ρ„Π°ΠΊΡ‚ΠΎΡ€ роста (31 (Π“Π‘Π -Ρ€1) ΠΈ Π΅Π³ΠΎ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ Ρ‚ΠΈΠΏΠ° II (ВРЯП)
      • 3. 3. 1. БупСрсСмСйство Π±Π΅Π»ΠΊΠΎΠ² ВОР-Π 
      • 3. 3. 2. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° Π“Π‘Π -Ρ€
      • 3. 3. 3. Π Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹ ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ
  • Π’Π²Π -Π 
    • 3. 3. 4. БиологичСская Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ВОР-Ρ€
    • 3. 4. ЭкспрСссия ΠΈ Ρ€Π΅Π½Π°Ρ‚урация Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²
    • 3. 4. 1. Π‘Π»ΠΈΡ‚Π½Ρ‹Π΅ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ
    • 3. 4. 2. ЭкспрСссия Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²
    • 3. 4. 3. РасщСплСниС слитных Π±Π΅Π»ΠΊΠΎΠ²
    • 3. 4. 4. РСнатурация Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²
  • 4. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
    • 4. 1. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹
    • 4. 2. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹
      • 4. 2. 1. ΠšΠΎΠ½ΡΡ‚Ρ€ΡƒΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš
      • 4. 2. 2. Π‘Π°ΠΉΡ‚-Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ ΠΌΡƒΡ‚Π°Π³Π΅Π½Π΅Π·
      • 4. 2. 3. PIPES-трансформация, ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. coli ΡˆΡ‚Π°ΠΌΠΌΠ° XL-1 Blue
      • 4. 2. 4. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. coli BL21(DE3)
      • 4. 2. 5. Врансформация ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. coli ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš
      • 4. 2. 6. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš
      • 4. 2. 7. ЭлСктрофорСтичСский Π°Π½Π°Π»ΠΈΠ· Π”ΠΠš Π² Π°Π³Π°Ρ€ΠΎΠ·Π½ΠΎΠΌ Π³Π΅Π»Π΅
      • 4. 2. 8. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠ° Π² Ρ€Π°ΡΡ‚Π²ΠΎΡ€Π΅
      • 4. 2. 9. ЭлСктрофорСтичСский Π°Π½Π°Π»ΠΈΠ· Π±Π΅Π»ΠΊΠΎΠ² Π² ΠΏΠΎΠ»ΠΈΠ°ΠΊΡ€ΠΈΠ»Π°ΠΌΠΈΠ΄Π½ΠΎΠΌ
      • 4. 2. 10. ЭкспрСссия Π±Π΅Π»ΠΊΠ° FGF-2 ΠΈ Π΅Π³ΠΎ ΠΌΡƒΡ‚Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° ΠΈ Π±Π΅Π»ΠΊΠ°
  • T?RII
    • 4. 2. 11. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° ΠΈ Ρ€Π°ΡΡ‰Π΅ΠΏΠ»Π΅Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠ° FGF
    • 4. 2. 12. Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Π±Π΅Π»ΠΊΠΎΠ² ΠΏΠΎ N-ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ
    • 4. 2. 13. ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΎΡ†Π΅Π½ΠΊΠΈ ТизнСспособности ΠΊΠ»Π΅Ρ‚ΠΎΠΊ с ΠΌΠ΅Ρ‚ΠΈΠ»Ρ‚ΠΈΠ°Π·ΠΎΠ»Ρ‚Π΅Ρ‚Ρ€Π°Π·ΠΎΠ»ΠΈΠ΅ΠΌ (МВВ-тСст)
    • 4. 2. 14. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ°, рСнатурация ΠΈ Ρ€Π°ΡΡ‰Π΅ΠΏΠ»Π΅Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠ° T? RII-ED
    • 4. 2. 15. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° T? RII-ED с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΡ„Π°Π·Π½ΠΎΠΉ HPLC Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ
    • 4. 2. 16. MALDI-TOF масс-спСктромСтрия
    • 4. 2. 17. ΠœΠ΅Ρ‚ΠΎΠ΄ спСктроскопии ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΡ…Ρ€ΠΎΠΈΠ·ΠΌΠ°
    • 4. 2. 18. !НЯМР -спСктроскопия
    • 4. 2. 19. ИсслСдованиС связывания Π±Π΅Π»ΠΊΠ°-Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° T? RII-ED с Π»ΠΈΠ³Π°Π½Π΄ΠΎΠΌ TGF-?l ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ELISA
  • 5. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅
    • 5. 1. Π‘ΠΈΠ½Ρ‚Π΅Π· Π³Π΅Π½ΠΎΠ² FGF-2 ΠΈ T? RII-ED ΠΈ ΠΊΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΡ… Π² ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΠΎΠ½Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹
    • 5. 2. ЭкспрСссия слитного Π±Π΅Π»ΠΊΠ° Trx/FGF2 Π² E. col
    • 5. 3. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° слитного Π±Π΅Π»ΠΊΠ° Trx/FGF
    • 5. 4. РасщСплСниС слитного Π±Π΅Π»ΠΊΠ° Trx/FGF-2 энтСропСптидазой ΠΈ ΠΎΡ‡ΠΈΡΡ‚ΠΊΠ° Ρ†Π΅Π»Π΅Π²ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° FGF
    • 5. 5. ИсслСдованиС Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских свойств ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° FGF
    • 5. 6. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ C78S ΠΈ C96S ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ Π² Π³Π΅Π½ FGF-2 ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° pET32a/FGF-2/C78S/C96S
    • 5. 7. ЭкспрСссия ΠΈ ΠΎΡ‡ΠΈΡΡ‚ΠΊΠ° ΠΌΡƒΡ‚Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° FGF-2/C78S/C96S
    • 5. 8. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° биологичСской активности ΠΎΡ‡ΠΈΡ‰Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° FGF-2 ΠΈ Π΅Π³ΠΎ ΠΌΡƒΡ‚Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° FGF-2/C78S/C96S Π½Π° ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
    • 5. 9. ΠŸΡ€Π΅ΠΈΠΌΡƒΡ‰Π΅ΡΡ‚Π²Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ получСния ΠΈ ΠΎΡ‡ΠΈΡΡ‚ΠΊΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ FGF
    • 5. 10. ЭкспрСссия слитного Π±Π΅Π»ΠΊΠ° Trx/T?RII-ED Π² E. col
    • 5. 11. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° ΠΈ Ρ€Π°ΡΡ‰Π΅ΠΏΠ»Π΅Π½ΠΈΠ΅ слитного Π±Π΅Π»ΠΊΠ° Trx/T?RII-ED энтСропСптидазой ΠΈ ΠΎΡ‡ΠΈΡΡ‚ΠΊΠ° Ρ†Π΅Π»Π΅Π²ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° T? RII-ED
    • 5. 12. ИсслСдованиС Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских свойств ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° T? RII-ED
    • 5. 13. ИсслСдованиС связывания Π±Π΅Π»ΠΊΠ°-Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° T? RII-ED с Π»ΠΈΠ³Π°Π½Π΄ΠΎΠΌ TGF-?l ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ELISA
    • 5. 14. ΠŸΡ€Π΅ΠΈΠΌΡƒΡ‰Π΅ΡΡ‚Π²Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ получСния ΠΈ ΠΎΡ‡ΠΈΡΡ‚ΠΊΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ°-Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° T? RII-ED
  • 6. Π’Ρ‹Π²ΠΎΠ΄Ρ‹

Новый эффСктивный ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ для получСния Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² основного Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° роста фибробластов (FGF-2) ΠΈ Π»ΠΈΠ³Π°Π½Π΄-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ Π²Π½Π΅ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° II Ρ‚ΠΈΠΏΠ° TGF-? (T?RII-ED) Π² E. coli (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

6. Π’Ρ‹Π²ΠΎΠ΄Ρ‹.

1. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ ΡˆΡ‚Π°ΠΌΠΌ-ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚ Π•. coli BL21(DE3)/pET-32a/FGF-2 для получСния Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° роста фибробластов FGF-2 ΠΈ Π΅Π³ΠΎ ΠΌΡƒΡ‚Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° FGF-2/C78S/C96S. Π¦Π΅Π»Π΅Π²Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ экспрСссировали Π² ΡΠΎΡΡ‚Π°Π²Π΅ слитного Π±Π΅Π»ΠΊΠ° с Ρ‚иорСдоксином.

2. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ очистки, позволившиС ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 100 ΠΌΠ³ Π±Π΅Π»ΠΊΠ° FGF-2 ΠΈ 120 ΠΌΠ³ FGF-2/C78S/C96S ΠΈΠ· 1 Π»ΠΈΡ‚Ρ€Π° ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ.

3. Показано, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ FGF-2 ΠΈ FGF-2/C78S/C96S ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ высокой ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΈ ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Ρ„ибробластам ΠΌΡ‹ΡˆΠΈ.

4. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ ΡˆΡ‚Π°ΠΌΠΌ-ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚ Π•. coli BL21(DE3)/pET-32a/T?MI-ED для экспрСсии Π»ΠΈΠ³Π°Π½Π΄-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° II Ρ‚ΠΈΠΏΠ° Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½Π° TGFD Π² ΡΠΎΡΡ‚Π°Π²Π΅ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° тиорСдоксин/Tß-RII-EDD ?

5. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π΅Π½Π°Ρ‚ΡƒΡ€Π°Ρ†ΠΈΠΈ ΠΈ ΠΎΡ‡ΠΈΡΡ‚ΠΊΠΈ, позволившиС ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 140 ΠΌΠ³ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° T? RU-ED ΠΈΠ· 1 Π»ΠΈΡ‚Ρ€Π° ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ.

6. Показано, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Π³ΠΎΠΌΠΎΠ³Π΅Π½Π½Ρ‹ΠΉ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ T? RII-ED ΠΈΠΌΠ΅Π΅Ρ‚ ΡΡ‚ΠΎΠ»ΡŒ ΠΆΠ΅ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ Π»ΠΈΠ³Π°Π½Π΄-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ TGF?, ΠΊΠ°ΠΊ ΠΈ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΉ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ….

1. Allendorph G.P., Vale W.W., Choe S., Structure of the ternary signaling complex of a TGF-beta superfamily member, PNAS, 2006; 103: 7643 7648.

2. Avivi A., Yayon A., Givol D., A novel form of fibroblast growth factor receptor-3 using an alternative exon in the immunoglobulin domain-Ill, FEB S Lett., 1993; 330:249−252.

3. Baird A., Schubert D., Ling N., Guillemin R., Receptorand heparin-binding domains of basic fibroblast growth factor, Proc. Natl. Acad. Sci. U.S.A., 1988;85:2324 2328.

4. Barnett V.J., Moustakas A., Lin W., Wang X.-F., Lin H.Y., Galper J.B., Maas R.L., Cloning and Developmental Expression of the Chick Type II and Type III TGFP Receptors, Developmental Dynamics, 1994; 199: 12 -27.

5. Basilico C., Moscatelli D., The FGF family of. growth factors and oncogenes, Adv. Cancer Res., 1992; 59: 115 165.

6. Beck L.S., Deguzman L., Lee W.P., TGF-beta 1 accelerates wound healing: reversal of steroid-impaired healing in rats and rabbits, Growth Factors, 1991; 5: 295−304.

7. Beck L.S., Deguzman L., Lee W.P., Rapid publication, TGFbeta 1 induces bone closure of skull defects, J. Bone Miner. Res., 1991; 6: 1257 1265. (II).

8. Bikfalvi A., Significance of angiogenesis in tumour progression and metastasis, Eur. J. Cancer, 1995; 31A: 1101 1104.

9. Bikfalvi A., Klein S., Pintucci G., Rifkin D.B., Biological roles of Fibroblast growth factor-2, Endocr. Rev. 1997; 18: 26 45.

10. Blobe G.C., Schiemann W.P., Lodish H.F., Role of transforming growth factor beta in human disease, N. Engl. J. Med., 2000; 342 (18): 1350 1358.

11. Blottner D., Wolf N., Lachmund A., Flanders K.C., Unsicker K., TGF-beta rescues target-deprived preganglionic sympathetic neurons in the spinal cord, Eur. J. Neurosci., 1996; 8: 202 210.

12. Bocharov E.V., Korzhnev D.M., Blommers M.J., Arvinte T., Orekhov V.Y., Billeter M., Arseniev A.S., Dynamics-modulated biological activity of transforming growth factor beta3, Journal of Biological Chemistry, 2002; 277: 46 273−46 279.

13. Boesen C.C., Radaev S., Motyka S.A., Patamawenu A., Sun P.D., The 1.1 AΒ° Crystal Structure of Human TGF-p Type II Receptor Ligand Binding Domain, Structure, 2002; 10: 913 919.

14. Bohlen P., Baird A., Esch F., Ling N., Gospodarowicz D., Isolation and partial molecular characterization of pituitary fibroblast growth factor, Proc. Natl. Acad. Sci. USA, 1984; 81: 5364 5368.

15. Brown M.A., Zhao Q., Baker K.A., Naik C., Chen C., Pukac L., Singh M., Tsareva T., Parice Y., Mahoney A., Crystal structure of BMP-9 and functional interactions with pro-region and receptors, Journal of Biological Chemistry, 2005; 280:25 111−25 118.

16. Burrus L.W., Zuber M.E., Lueddecke B.A., Olwin B.B., Identification of a cysteine-rich receptor for fibroblast growth factors, Mol. Cell Biol., 1992; 12: 5600 5609.

17. Cao D., Ashfaq R., Goggins M.G., Hruban R.H., Kern S.E., Iacobuzio-Donahue C.A., Differential expression of multiple genes in association with MADH4/DPC4/SMAD4 inactivation in pancreatic cancer, Int. J. Clin. Exp., 2008; 1:510−517.

18. Casadaban M.J., Martinez-Arias A., Shapira S.K., Chou J., p-galactosidase gene fusion for analyzing gene expression in Escherichia coli and yeast, Methods Enzymol., 1983; 100: 293−308.

19. Cavallo M.G., Rozzilli P., Thorpe R., Cytokines and autoimmunity, Clin. Exp. Immunol., 1994; 96 (1): 1 7.

20. Chen C.H., Poucher S.M., Lu J., Henry P.D., Fibroblast growth factor 2: from laboratory evidence to clinical application, Curr. Vase. Pharmacol, 2004; 2: 33−43.

21. Chin D., Boyle G.M., Parsons P.G., Coman W.B., What is transforming growth factor-beta (TGF-p)?, The British Association of Plastic Surgeons, 2004; 57:215−221.

22. Clark D.A., Coker R., Transforming growth factor-beta (TGF-p), The International Journal of Biochemistry & Cell Biology, 1998; 30: 293 298.

23. Dell K.R., Williams L.T., A novel form of fibroblast growth factor receptor 2. Alternative splicing of the third immunoglobulin-like domain confers ligand binding specificity, J. Biol. Chem., 1992; 267: 21 225 21 229.

24. Dennis P., Saksela O., Harpel P., Rifkin D.B., a2-macroglobulin is a binding protein for basic fibroblast growth factor, J. Biol. Chem., 1989; 264: 7210 -7216.

25. Dennler S., Goumans M.-J., ten Dijke P., Transforming growth factor p signal transduction, Journal of Leukocyte Biology, 2002; 71: 731 740.

26. Derynck R., Miyazono M., TGF-p and the TGF-P family, Cold Spring Harbor Laboratory Press, 2008; vol. 50: 29 44.

27. Derynck R., Zhang Y., Intracellular signalling. The Mad way to do it, Current Biol., 1996; 63: 1226−1229.

28. Eswarakumar V.P., Lax I., Schlessinger J., Cellular signaling by fibroblast growth factor receptors. Cytokine & Growth Factor Reviews. 2005; 16: 139 — 149.

29. Emori Y., Yasuoka A., Saigo K., Identification of four FGF receptor genes in Medeka fish (Oryzies latipes), FEBS Lett., 1994; 314: 176 178.

30. Ensoli B., Sgadari C., Barillari G., Monini P., The fibroblast growth factors. In The Cytokine Handbook. Academic Press, 2003; 748 781.

31. Ericksson A.E., Cousens L.S., Weaver L.H., Matthews B.W., Three dimensional structure of human basic fibroblast growth factor, Proc. Natl. Acad. Sci. USA, 1991; 88: 3441 -3445.

32. Estape D., Van den Heuvel J., Rinas U., Susceptibility towards intramolecular disulphide-bond formation affects conformational stability and folding of human basic fibroblast growth factor, Biochem. J., 1998; 335: 343 -349.

33. Faham S., Hileman R.E., Fromm J.R., Linhardt R.J., Rees D.C., Heparin structure and interactions with basic Fibroblast growth factor, Science 1996; 271: 1116−1120.

34. Faler J.B., Macsata R.A., Plummer D., Mishra L., Sidawy A.N., Transforming Growth Factor-P and Wound Healing, Perspectives in Vascular Surgery and Endovascular Therapy, 2006; 18: 5 — 62.

35. Feige J.J., Baird A., Basic fibroblast growth factor is a substrate for protein phosphorylation and is phosphorylated by capillary endothelial cells in culture, Proc. Natl. Acad. Sci. USA, 1989; 86: 3174 3178.

36. Finklestein S.P., Plomaritoglou A., Growth factors, Head Trauma: Basic, Preclinical, and Clinical Directions, 2001; 165 187.

37. Flamme I., Risau W., Induction of vasculogenesis and hema-topoiesis in vitro. Development, 1992; 116: 435 -439.

38. Flanders K.C., Burmester J.K. Medical applications of transforming growth factor-beta, Clin. Med. Res., 2003; 1: 13 -20.

39. Fox G.M., Schiffer S.G., Rohde M.F., Tsai L.B., Banks A.R., Arakawa Π’., Production, biological activity, and structure of recombinant basic fibroblast growth factor and an analog with cysteine replaced by serine, J. Biol. Chem., 1988; 263: 18 452−18 458.

40. Gabrilove J., White K., Rahman Π’., Wilson E.L., Stem cell factor and basic fibroblast growth factor are synergistic in augmenting committed myeloid progenitor cell growth, Blood, 1994; 83: 907- 910.

41. Gao G., Goldfarb M., Heparin can activate a receptor tyrosine, kinase, EMBO J., 1995; 14: 2183−2190.

42. Garke G., Deckwer W.D.j Anspach F.B., Preparative two-step purification of recombinant human basic fibroblast growth factor from high-cell-density cultivation of Escherichia coli, J. Chromatogr. B. Biomed. Sci. Appl., 2000; 737: 25−38.

43. Gasparian M.E., Ostapchenko V.G., Schulga A.A., Dolgikh D.A., Kirpichnikov M.P., Expression, purification, and characterization of human enteropeptidase catalytic subunit in Escherichia coli, Protein Expr. Purif., 2003; 31(1): 133−139.

44. Geng Z.M., Zheng J.B., Zhang X.X., Tao J., Wang L., Role of transforming growth factor-beta signaling pathway in pathogenesis of benign biliary stricture, World J. Gastroenterol., 2008; 14: 4949 4954.

45. Gilbert E., Del Gatto F., Champion-Arnaud P., Gesnel M.C., Breathnach R., Control of BEK and K-SAM splice sites in alternative splicing of the fibroblast growth factor receptor 2 pre-mRNA, Mol. Cell Biol., 1993; 13: 5461 5468.

46. Gilbert F.S., Developmental Biology, Eighth Edition, 2006; Chapter 6, Cell-cell communication in development.

47. Gilboa L., Wells R.G., Lodish H.F., Henis Y.I., Oligomeric structure of type I and type II TGF-b receptors: Homo-dimers form in the ER and persist at the plasma membrane, J. Cell Biol., 1998; 140: 767 777.

48. Gospodarowicz D., Purification of a Fibroblast growth factor from bovine ituitaiy, J. Biol. Chem. 1975; 250: 2515 2520.i.

49. Gospodarowicz D., Baird A., Cheng J., Lui G.M., Esch F., Bohlen P., Isolation of fibroblast growth factor from bovine adrenal gland: physicochemical and biological characterization, Endocrinology, 1986; 118: 82 90.

50. Gospodarowicz D., Neufeld G., Schweigerer L. Fibroblast growth factor, Mol. Cell Endocrinol., 1986; 46: 187 204. (II).

51. Goumans M.J., Valdimarsdottir G., Itoh S., Lebrin F., Larsson J., Mummery C., Karlsson S., ten Dijke P., Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling, Mol. Cell., 2003; 12(4): 817−828.

52. Greenwald J., Groppe J., Gray P., Waiter E., Kwiatkowski W., Vale W., Choe S., The BMP7/ActRII extracellular domain complex provides new insightsinto the cooperative nature of receptor assembly, Molecular Cell, 2003; 11: 605 -617.

53. Greenwald J., M.E. Vega, G.P. Allendorph, W.H. Fischer, W. Vale, S. Choe, A flexible activin explains the membrane-dependent cooperative assembly of TGF-beta family receptors, Molecular Cell, 2004; 15: 485 489.

54. Griffith D.L., Keck P.C., Sampath T.K., Rueger D.C., W.D. Carlson, Three-dimensional structure of recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor beta superfamily, PNAS, 1996; 93: 878−883.

55. Halaban R., Fan B., Ahn J., Funasaka Y., Gitay-Goren H., Neufeld G., Growth factors, receptor kinase and protein tyrosine phosphatase in normal and malignant melanocytes, J. Immunopathol, 1992; 12: 154 -161 and 121: 505 514.

56. Hanahan D., Weinberg R.A., The hallmarks of cancer, Cell, 2000; 100: 5770.

57. Harrington A.E., Morris-Triggs S.A., Ruotolo B.T., Robinson C.V., Ohnuma S., Hyvonen M., Structural basis for the inhibition of activin signaling by follistain, EMBO Journal, 2006; 25: 1035 1045.

58. Hart P.J., Deep S., Taylor A.B., Shu Z., Hinck C.S., Hinck A.P., Crystal structure of the human TbetaR2 ectodomain-TGF-beta3 complex, Nature Structural Biology, 2002; 9: 203 208.

59. Hayes S., Chawla A., Corvera S., TGF beta receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2, J. Cell Biol., 2002; 158(7): 1239−1249.

60. He W.W., Gustafson M.L., Hirobe S., Donahoe P.K., Developmental expression of four novel serine/threonine kinase receptors homologous to the activin/transforming growth factor-beta type II receptor family, Dev. Dyn., 1993; 196(2): 133 142.

61. Heldin C.-H., Miyazono K., ten Dijke P., TGF-P signalling from cell membrane to nucleus through SMAD proteins, Nature, 1999; 390(4): 465 471.

62. Henis Y.I., Moustakas A., Lin H.Y., Lodish H.F., The types II and in transforming growth factor-b receptors form homo-oligomers, J. Cell Biol., 1994; 126: 139−154.

63. Jaye M., Schlessinger J., Dionne C. j Fibroblast growth factor receptor for acidic and basic fibroblast growth factors, Biochim. Biophys. Acta, 1992; 1135: 185−199.

64. Kan M., Wang F., Xu J., Crabb J.W., Hou J., McKeehan W.-L., An essential heparin-binding domain in the fibroblast growth factor receptor kinase, Science, 1993; 259:1918;1921.

65. Kang, J.S., Liu C., Derynck R., New regulatory mechanisms of TGF-p receptor function, Trends Cell Biol., 2009; 198: 385 394.

66. Kirsch T., Sebald W., Dreyer M.K., Crystal structure of the BMP-2-BRIA ectodomain complex, Nature Structural Biology, 2000; 7: 492 496.

67. Klagsbrun M., Baird A., A dual receptor system is required for basic fibroblast growth factor activity, Cell, 1991; 67:229 231.

68. Kondo S., Isobe K., Ishiguro N., Nakashima I., Miura T., Transforming growth factor-pl enhances the generation of allospecific cytotoxic T-lymphocytes, Immunology, 1993; 79: 459 464.

69. Kretzschmar M., Doody J., Massague J., Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smadl, Nature, 1997; 389: 618−622.

70. Kretschmer A., Moepert K.5 Dames S., Sternberger M., Kaufmann J., Klippel A., Differential regulation of TGF-beta signaling through Smad2, Smad3 and Smad4, Oncogene, 2003; 22: 6748 6763.

71. Maina C.V., Riggs P.D., Grandea A.G., Slatko B.E., Moran L.S.,.

72. Tagliamonte J.A., McReynolds L.A., di Guan C., An Escherichia coli vector toexpress and purify foreign proteins by fusion to and separation from maltose-binding protein, Gene, 1988; 74: 365 373.

73. Massague J., TGF-fUn cancer, Cell, 2008; 134: 215 230.

74. Massague, J., TGF-p signal transduction, Annu. Rev. Biochem., 1998; 67: 753−791.

75. Massague J., Cheifetz S., Laiho M., Transforming growth factor-beta, Cancer Surv., 1992; 12: 81 103.

76. Massague J., Wotton D., Transcriptional control by the TGF-beta/Smad signaling system, Embo. J., 2000; 19: 1745 1754.

77. McKeehan W.-L., Hou J., Adams P., Wang F., Yan G.C., Kan M., Heparin-binding fibroblast growth factors and prostate cancer, Adv. Exp. Med. Biol., 1993; 330: 203−213.

78. Mitchell H., Choudhury A., Pagano R.E., Leof E.B., Ligand-dependent and independent transforming growth factor-beta receptor recycling regulated by clathrin-mediated endocytosis and Rabll, Mol. Biol. Cell, 2004; 15(9): 4166 -4178.

79. Mitraki A., King J., Protein folding intermediates and inclusion body formation, Biotechnology, 1989; 7: 690 697.

80. Mittl P.R.E., Priestle J.P., Cox, D.A., Mcmaster G., Cerletti N., Grutter M.G., The crystal structure of TGF-J33 and comparison to TGF-P2: implications for receptor binding, Protein Sci., 1996; 5: 1261−1271.

81. MourskaiaA.A., Dong Z., Ng S., Banville M., Zwaagstra J.C., O’Connor-McCourt M: D., Siegel P.M., Transforming growth factor-betal is the predominant isoform required for breast cancer cell outgrowth in bone, Oncogene 2009; 28: 1005- 1015.

82. Moustakas A., Lin H.Y., Henis Y.I., Plamondon J., O’Connor-McCourt M.D., Lodish H.F., The transforming growth factor b receptors types I, II, and III form hetero-oligomeric complexes in the presence of ligand, J. Biol. Chem., 1993; 268:22 215−22 218.

83. Moyen Y., Kan M., Sao G.H., McKehan W.L., Sato J.D., Bifunctional e€ects of transforming growth factor-p (TGF-p) on endothelial cell growth correlate with phenotypes of TGF-P binding sites, Exp. Cell Res., 1990; 191: 229 -304.

84. Murphy S.J., Dore J.J., Edens M., Coffey R: J., Barnard J.A., Mitchell' H., Wilkes M., Leof E.B., Differential trafficking of transforming growth factor-beta receptors’and ligand in polarized epithelial cells, Mol. Biol: Cell- 2004; 15(6): 2853−2862.

85. Nagaraj N.S., Datta P.K., Targeting the transforming growth factor-beta signaling pathway in human cancer, Expert Opin. Investig. Drugs, 2010; 19: 77, 91.

86. Nakao A., Imamura T.5 Souchelnytskyi S., Kawabata M., Ishisaki A., Oeda E., Tamaki K., Hanai J., Heldin C.H., Miyazono K., ten Dijke P., TGF-beta receptor-mediated signalling through Smad2- Smad3 and Smad4, EMBO J., 1997; 16(17): 5353 -5362.

87. Nickel J., Kotzsch A., Sebald W., Mueller T.D., A single residue of GDF-5 defines binding specificity to BMP" receptor IB, Journalof Molecular Biology, 2005;349:933−947.

88. Nugent M.A., Iozzo R.V., Fibroblast growth factor. The InternationalJournal of Biochemistry & Cell Biology 2000; 32: 115 120:

89. O’Kane S., Ferguson M.W., Transforming' growthfactor beta and wound healing, Int. J: Biochem. Cell Biol.', 1997; 29: 63 78.

90. Ohnishi' S., Takano K., Amyloid fibrils from1 the viewpoint of protein folding, Cell Mol. Life Sci, 2003; 61(5): 511 524.

91. Olwin B.B., Rapraeger A.C., Repression of myogenic differen-tiation by aFGF, bFGF, and k-FGF is dependent on cellular heparan sulfate, J. Cell Biol., 1992; 118: 631−639.

92. Ornitz D: M., Herr A.B., Nilsson M., Westman J., Svahn C-M., Waksman G., FGF binding and FGF receptor activation by synthetic heparan-derived diand trisaccharides, Science, 1995; 268: 432 436.

93. Ornitz D.M., Itoh N., Fibroblast growth factors, Genome Biol., 2001; 2: 130.

94. Ornitz D.M., Leder P., Ligand specificity and heparin depen-dence of fibroblast growth factor receptor -1 and -3, J. Biol. Chem., 1992; 267: 16 305 -16 311.

95. Ornitz D.M., Xu J., Colvin J.S., McEwen D.G., MacArthur C.A., Coulier F., Gao G., Goldfarb M., Receptor specificity of the fibroblast growth factor family, J Biol. Chem., 1996; 271: 15 292 15 297.

96. Ornitz D.M., Yayon A., Flanagan J.G., Svahn C.M., Levi E., Leder P., Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells, Mol. Cell Biol., 1992; 12: 240 -247.(11).

97. Parekh T., Saxena B., Reibman J., Cronstein B.N., Gold L.I., Neutrophil Chemotaxis in response to TGF-? isoforms (TGF-? 1, TGF-?2, TGF-?3) is mediated by fibronectin, J. Immunol., 1994; 152: 2456 2466.

98. Pinkas J., Teicher B.A., TGF-? in cancer and as a therapeutic target, Biochem. Pharmacol., 2006; 72: 523 529.

99. Prehn J.H., Peruche B., Unsicker K., Krieglstein J., Isoformspecific effects of transforming growth factors-beta on degeneration of primary neuronal cultures induced by cytotoxic hypoxia or glutamate, J. Neurochem., 1993; 60: 1665 -1672.

100. Presta M., Rusnati M., Maier J.A., Ragnotti G., Purification of basic fibroblast growth factor in the rat brain: identification of a Mr 22,000 immunoreactive form, Biochem. Biophys. Res. Commun., 1988; 155: 1161 -1172.

101. Presta M., Statuto M., Rusnati M., Dell’Era P., Ragnotti G., Characterization of a Mr 25,000 basic fibroblast growth factor form in the adult, regenerating, and fetal rat liver, Biochem. Biophys. Res. Commun., 1989; 164: 1182−1189.

102. Provencher S.W., Contin a General-Purpose"Constrained Regularization Program"for Inverting' Noisy Linear Algebraic andIntegral-Equations,. Π‘ΠΎΡ‚Ρ€. Phys. Commun., 1982; 27: 213 — 227, 229 — 242.

103. Rapraeger A.C., Krufka A., Olwin B.B., Requirement of heparan sulfate for bFGF-mediated fibroblast growtband myoblast differ-entiation, Science, 1991; 252: 1705−1708.

104. Ranganathan P., Agrawal A., Bhushan R., Chavalmane A.K., Reddy Kalathur R.K., Takahashi Π’., Kondaiah P., Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells, BMC Genomics, 2007; 8: 98.

105. Roberts A.B., Frolik C.A., Anzano M.A., Sporn M.B., Transforming growth factors from neoplastic and nonneoplastic tissues, Fed. Proc., 1983; 42: 2621 -2626.

106. Roghani M., Mansukhani A., DeU’EraP, Bellosta P.', Basilico C., Rifkin D.B., Moscatelli D., Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required, for binding, J. Biol. Chem., 1994; 269: 22 156−22 162.

107. Rosenberg R.D., Shworak N.W., Liu J., Zhang L., Heparan Sulfate Proteoglycans of the Cardiovascular System., J. Clin. Invest., 1997; 99: 2062 -2070.

108. Sannes P.L., Burch K.K., Khosla J., Immunohistochemical localization of epidermal growth factor and acidic and basic fibroblast growth factor in postnatal developing and adult lung, Am. J. Res. Cell. MoL Biol., 1992; 7: 230 237.

109. Schein C.H., Production of soluble recombinant proteins in bacteria, Biotechnology, 1989; 7: 1141 1149.

110. Scheufler C., Sebald' W., Hulsmeyer Mi, Crystal^ structure of human bone morphogenetic protein-2 at 2.7 A, resolution, Journal' of Biological1 Chemistry,-1999; 287: 103−115.

111. Schlunegger M: P., Grutter M.G., An unusual feature revealed by the crystal structure at 2.2 angstrom resolution of human transforming growth factor-p2, Nature, 1992; 358: 430 -434.

112. Schulz M.W., Chamberlain C.G., de Iongh R.U., McAvoy J.W., Acidic and basic FGF in ocular media and lens: implications for lens polarity and growth patterns, Development, 1993; 118: 117 126.

113. Shaw M., Foreman D.M., Ferguson M.W., Neutralization of TGF-(31 and TGF-p2 or exogenous, addition of TGF-03 to cutaneous rat wound reduces scarring, J. Cell Sci., 1995; 108: 985 1002'.

114. Sheng Z., Chang' S.B., Chirico W.J., Expression' and purification of a biologically active basic fibroblast growth factor fusion protein, Prot. Expr. and Purif., 2003; 27(2): 267 271.

115. Shimasaki S., Moore R.K., Otsuka F., Erickson G.F., The bone morphogenetic protein system in mammalian reproduction, Endocrine Reviews, 2004; 25:72−101.

116. Slack J.M.W., Darlington B.G., Heath J.K., Godsave G., Heparin-binding growth factors as agents of mesoderm induction in early Xenopus embryo, Nature, 1987; 326: 197−200.

117. Smith D.B., Johnson" K.S., Single-step purification* of polypeptides expressed ins Escherichia. coli as fusions with* glutathione S-transferase, Gene, 1988; 67:31 -40:

118. Sorensen V., Nilsen T., Wiedlocha A., Functional diversity of FGF-2 isoforms by intracellular sortingBioEssays, 2006; 28: 504 514. '.

119. Sporn M.B., Roberts* A.B., Transforming growth factor-beta: recent progress and, new challenges, J. Cell Biol., 1992; 119: 1017 1021.

120. Stader J: A., Silhavy T.J., Engineering Escherichiacoli tosecrete heterologous gene products, Methods in Enzymol, 1990; 165: 166. 187.

121. Steegmaier M., Levinovitz A., Isenmann S., Borges E., Lenter M., Kocher P., Kleuser B., Vestweber D., The E-selectin-ligand* ESL-1 is a variant of a receptor for fibroblast growth factor, Nature, 1994; 373: 615 620.

122. Steinbrech D.S., Mehrara B.J., Rowe N.M., Gene expression of TGF-beta, TGF-beta receptor, and extracellular matrix proteins during membranous bone healing in rats, Plast. Reconstr. Surg., 2000; 105: 2028 2038.

123. Stockwell B.R., Schreiber S.L., Probing the role of homomeric and heteromeric receptor interactions in TGF-beta signaling using small molecule dimerizers, Curr. Biol., 1998; 8: 761 770.

124. Stormo G.D., Schneider T.D., Gold L., Characterization of translation initiation sites in E. coli, Nucl. Acids Res., 1982; 10: 2971 2996.

125. Streuli C.H., Schmidhauser C., Kobrin M., Bissell M.J., Derynck R., Extracellular matrix regulates expression of the TGF-betal gene, J. Cell Biol., 1993; 120: 253−260.

126. Sun P.D., Davies D.R., The cysteine-knot growthfactor superfamily, Annu. Rev. Biophys. Biomol. Struct, 1995; 24: 269 291.

127. Sun D., Piez K.A., Ogawa Y., Davies D.R., Crystal structure of TGF-p2: an unusual fold for the superfamily, Science, 1992; 257: 369 373.

128. Taipale J., Saharinen J., Keski-Oja J., Extracellular matrix associated transforming growth factor-beta: role in cancer cell growth and invasion, Adv. Cancer Res., 1998; 75: 87−134.

129. Taylor E.P., FGF-2-FGFR-Heparin (2:2:2) Complex, The University of Michigan, 2005.

130. Thompson' L.D., Pantoliano M.W., Springer B.A., Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain, Biochemistry 1994; 33: 3831 3840.

131. Thompson S.A., The disulfide structure of bovine pituitary basic fibroblast growth factor, J. Biol. Chem., 1992; 267: 2269 2273.

132. Thompson T.B., Woodruff T.K., Jardetzky T.S., Structures of an ActRIIB: activin A complex reveal a novel binding mode for TGF-beta ligand-receptor interactions, EMBO Journal, 2003; 22: 1555 1566.

133. Tsuboi R., Rifkin D.B., Recombinant bFGF stimulates wound healing in healing-impaired db/db mice, J. Exp. Med., 1990; 172: 245 251.

134. Vilgrain I., Baird A., Phosphorylation of basic fibroblast growth factor by a protein kinase associated with the outer surface of a target cell, Mol. Endocrinol., 1991; 5: 1003−1012.

135. Vilgrain I., Gonzales A.M., Baird A., Phosphorylation of basic fibroblast growth factor (FGF-2) in the nuclei of SK-Hep-1 cells, FEBS Lett., 1993; 331: 228−232.

136. Wang J., Hong A., Ren J.-S., Sun F.-Y., Shi Y.-J., Liu K., Xie Q.-L., Dai Y., Li Z.-Y., Chen Y., Biochemical properties of C78SC96S rhFGF-2: A doublepoint-mutated rhFGF-2 increases obviously its activity, Journal of Biotechnology, 2006; 121: 442 447.

137. Wang F., Kan M., Xu J., Yan G., McKeehan W.-L., Ligand specific structural domains in the fibroblast growth’factor receptor, J. Biol. Chem., 1995; 270: 1022−1030.

138. Wang X.F., Lin H.Y., Ng-Eaton E., Downward’J., Lodish H: F., Weinberg R.A., Expression cloning and characterization of the TGF-beta type III receptor, Cell, 1991; 67(4): 797−805.

139. Wang H., — Song K., KrebsT.L., Yang J., Danielpour D., Smad7 is inactivated through a direct physical interaction with the LIM protein Hic-5/ARA55, Oncogene, 2008; 27: 6791 6805.

140. Weis-Garcia F., Massague J., Complementation, between kinase-defective and activation-defective TGF-beta receptors reveals a novel form of receptor cooperativity essential for signaling, EMBO J., 1996; 15: 276 289.

141. Wells R.G., Gilboa L., Sun Y., Liu X., Henis Y.I., Lodish H.F., Transforming growth factor-beta induces formation of a dithiothreitol-resistant type I/Type Ilreceptor complex in live cells, J. Biol. Chem, 1999; 274: 5716 -5722.

142. Westall F.C., Rubin R., Gospodarowicz D., Brain-derived fibroblast growth factor: a study of its inactivation, Life Sci., 1983; 33: 2425 2429.

143. Wharton K., Derynck R., TGFbeta family signaling: novel insights in development and disease, Development, 2009; 136: 3691 3697.

144. Wrana J.L., Attisano L., Carcamo J., Zentella A., Doody J., Laiho M., Wang X.-F., Massague J., TGF-I signals through a heteromeric protein kinase receptor complex, Cell, 1992; 71: 1003 1014.

145. Wrana J.L., Attisano L., Wieser R., Ventura F., Massague J., Mechanism of activation of the TGF-beta receptor, Nature, 1994; 370(6488): 341−347.

146. Wu M.Y., Hill G.S., TGF-p superfamily signaling in embryonic development and homeostasis, Dev. Cell, 2009; 16: 329 343.

147. Yamashita H., ten Dijke P., Franzen P., Miyazono K.,. Heldin G.H., Formation of hetero-oligomeric complexes of type Is and type II receptors for transforming growth’factor-beta, J. Biol. Chem-, 1994; 269(31): 20 172−20 178.

148. Yan X., Liu Z-, Chen Y., Regulation of TGF-beta signaling by Smad7, Acta. Biochim. Biophys. Sin-., 2009; 41: 263 272.

149. Yayon A., Klagsbrun M., Esko J.D., Leder P., Ornitz D.M., Cell surface heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor, Cell 1991; 64: 841 848.

150. Zacchigna S., Lambrechts D., Carmeliet P., Neurovascular signalling defects in neurodegeneration, Nature Reviews Neuroscience, 2008; 9: 169 181.

151. Zhu X., Komiya H., Chirino A., Faham S., Fox G.M., Arakawa T., Hsu B.T., Rees D.C., Three-dimensional structure of acidic and basic fibroblast growth factors. Science 1991; 251: 90 93.

152. Zhu H.-J., Sizeland A.M., Extracellular Domain of the Transforming Growth Factor-beta receptor negatively regulates ligand-independent receptor activation, J. Biol. Chem., 1999; 274: 29 220 29 227.

153. Zimmer Y., Givol D., Yayon A., Multiple structural elements determine ligand binding of fibroblast growth factor receptors. Evidence that both Ig domain 2 and 3 define receptor specificity, J. Biol. Chem., 1993; 268: 7899 7903.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ